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A Proof of Riemann Hypothesis by Vector Properties of 

Riemann Zeta Function and Rubber Strip Model 

Tae Beom Lee 

Abstract: The Riemann Hypothesis (RH) states that the non-trivial zeros of the Riemann 

Zeta Function (RZF) (𝑠) or the Dirichlet Eta Function(DEF) (𝑠) for a complex variable 

𝑠 = 𝑥 + 𝑖𝑦 is of the form 𝑠 = 0.5 + 𝑖𝑦. In this thesis, we treat each term of the RZF(we only 

mention the RZF instead of ‘the RZF or the DEF’) as a vector. We showed some vector 

properties of the RZF by tracing term vectors. If there exist zeros whose real part is not 0.5, 

such as (− 𝑖) = (1 − + 𝑖) = 0, the trajectory of (− 𝑖𝑦) and (1 − + 𝑖𝑦) must 

intersect at the origin when 𝑦 = . To check if this can happen, we introduced the rubber 

strip model, and by using the Cauchy-Riemann differential equations, we induced a 

contradiction, (𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , which proves the RH. In appendices, we provided the 

source programs for visualizing vector traces of the RZF. We also suggested three other 

possible proofs of the RH for further studies.  

1. Introduction 

The RZF [1][2][3][4][5] 𝜁(𝑠) and the DEF [6] (𝑠) are functions of a complex variable 

𝑠 = 𝑥 + 𝑖𝑦.  

𝜁(𝑠) =  ∑
1

𝑛𝑠
∞
𝑛=1 =

1

1𝑠 +
1

2𝑠 +
1

3𝑠 + ⋯    (1.1) 

(𝑠) =  ∑
(−1)𝑛+1

𝑛𝑠
∞
𝑛=1 = (1 − 21−𝑠)(𝑠)   (1.2) 

The RH [1][7][8] states that all the non-trivial zeros of 𝜁(𝑠) are of the form 𝑠 = 0.5 + 𝑖𝑦. 

The line 𝑥 = 0.5 is called the critical line. The RH remains one of the most important unsolved 

problems in mathematics.  

Despite of the tremendous effort [8] to prove the RH, we were somewhat surprised to find 

that, there, as far as we know, are few efforts to prove the RH by considering each term of 

the RZF as a vector. The fact that each term of the RZF is a complex number, and a complex 

number is equivalent to a 2-dimensional vector, was the stimulus to visually trace the 

individual term as a vector.  

Our effort does not focus on how to find zeros of the RZF, but focus on how the infinite 

series of term vectors of the RZF approaches to the origin. It was our intuition that, for any 

complex variable 𝑠 = 𝑥 + 𝑖𝑦, 𝑥 ≠ 0.5, if we can geometrically prove that the infinite series of 

term vectors of the RZF can’t approach to the origin, then the RH is true.  

If there exist zeros whose real part is not 0.5, such as (− 𝑖) = (1 −  + 𝑖) = 0, the 

trajectory of (− 𝑖𝑦) and (1 − + 𝑖𝑦) must intersect at the origin when 𝑦 = . To check 

if this can happen, we introduced the rubber strip model, and by using the Cauchy-Riemann 

differential equations, we induced a contradiction, (𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which proves the RH. 

The rubber strip model is just the trajectory of (𝑥 + 𝑖𝑦), ≤ 𝑥 ≤ 1 − , which resembles a 

thin flexible rubber band, as depicted in Figure 12.  
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2. Symmetry Properties of the Zeros of the RZF 

It is well known that the following three equations are true, where (𝑠) is the Riemann's 

Xi-function [8][10].  

(𝑠) =
1

2
𝑠(𝑠 − 1) (

𝑠

2
) (𝑠)

−𝑠

2   (2.1) 

(𝑠) = (1 − 𝑠)  (2.2) 

(𝑠) = (𝑠)  (2.3) 

The right side of the equations (1.2) and (2.1) include (𝑠), so, the zeros of (𝑠) are also 

the zeros of (𝑠) and (𝑠). 

Lemma 2.1. Equations (2.2) and (2.3) means that there exist two types of symmetries of the 

zeros of the RZF, as in Figure 1. 

① Critical line symmetry: Symmetry of (2.2), which means that if 𝑠 =  + 𝑖 is zero, 

then 1 −  + 𝑖 is also a zero.  

② Complex conjugate symmetry: Symmetry of (2.3), which means that if 𝑠 =  + 𝑖 

is a zero, then 𝑠 = − 𝑖 is also a zero.  

Figure 1. Zero symmetries of the RZF. 

 

Proof. Let 𝑠 = + 𝑖. First, in (2.3), (− 𝑖) = (+ 𝑖) = 0, which is same as (𝑅) =

(𝑃) = 0 , in Figure 1. So, the complex conjugate symmetry is true. Second, in (2.2), 

(+ 𝑖) = {1 − (+ 𝑖)} = 0, which is same as (𝑃) = (𝑆) = 0, in Figure 1. Because of 

the complex conjugate symmetry, (𝑆) = (𝑄) = 0. So, (𝑃) = (𝑄) = 0, which is the critical 

line symmetry.                                                                   ■ 

① critical line symmetry 

② complex conjugate symmetry 

x 

y 
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Lemma 2.2. By moving 𝑥 from  to 1 − , where (+ 𝑖) = (1 − + 𝑖) = 0, a logically 

closed trajectory must be drawn, which starts from the origin and ends at the origin, as in 

Figure 2. 

Figure 2. A closed curve trajectory for 𝛼 ≤ 𝑥 ≤ 1 − 𝛼, 0 ≤ 𝛼 ≤ 0.5. 

 

Proof. A closed curve trajectory C in Figure 2 must be drawn, as 𝑥 moves from P(, ) to 

Q(1 - , ), by the following 3 steps. 

① Initial state at P(, ): At P(, ), the trajectory remains at the origin. 

② Movement to (0.5, ): The trajectory will leave the origin and will reach somewhere 

on the curve C. 

③ Movement to Q(1 - , ): At Q(1 - , ), the trajectory will come back to the origin. 

So, the trajectory drawn while 𝑥 moves from  to 1 - , must be a logically closed 

trajectory C. Here, a logically closed trajectory means that, C may cross itself, resulting 

multiple loops C1, C2, …, Ci.                                                        ■ 

3. Vector Properties of the RZF 

3.1 Considering Each Term of the RZF as a Vector 

In (1.1) and (1.2), let’s denote each term of the RZF or the DEF as 𝑓𝑛(𝑠) and 𝑔𝑛(𝑠), 𝑠 =

𝑥 + 𝑖𝑦, respectively.  

𝑓𝑛
 (𝑠) =  

1

𝑛𝑠
= 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛 = 𝑟𝑛(𝑥)𝑒

𝑖𝜃𝑛(𝑦) = 𝑢𝑛(𝑥, 𝑦) + 𝑖𝑣𝑛(𝑥, 𝑦)   (3.1) 

𝑟𝑛
 (𝑥) = 𝑒−𝑥𝑙𝑛𝑛   (3.2) 

𝜃𝑛
 (𝑦) =  −𝑦𝑙𝑛𝑛   (3.3) 

𝑢𝑛(𝑥, 𝑦) = 𝑟𝑛(𝑥)𝑐𝑜𝑠𝜃𝑛
 (𝑦)   (3.4) 

𝑣𝑛(𝑥, 𝑦) = 𝑟𝑛(𝑥)𝑠𝑖𝑛𝜃𝑛
 (𝑦)   (3.5) 

𝑓1
 (𝑠) =  

1

1𝑠 = 𝑒−𝑥𝑙𝑛1𝑒−𝑖𝑦𝑙𝑛1 = 1    
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𝑓2
 (𝑠) =  

1

2𝑠
= 𝑒−𝑥𝑙𝑛2𝑒−𝑖𝑦𝑙𝑛2 = 𝑒−𝑥𝑙𝑛2{cos (𝑦𝑙𝑛2) − 𝑖𝑠𝑖𝑛(𝑦𝑙𝑛2)}    

(𝑠) = ∑ 𝑓𝑛(𝑠)
∞
𝑛=1 = ∑ 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞

𝑛=1     

= 1 + ∑ 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=2    (3.6) 

𝑔𝑛
 (𝑠) =  

(−1)𝑛+1

𝑛𝑠 = (−1)𝑛+1𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛 = (−1)𝑛+1𝑓𝑛(𝑠)   (3.7) 

(𝑠) = ∑ 𝑔𝑛(𝑠)
∞
𝑛=1 = ∑ (−1)𝑛+1𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞

𝑛=1     

= 1 + ∑ (−1)𝑛+1𝑒−𝑥𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=2    (3.8) 

We consider 𝑓𝑛(𝑠) or 𝑔𝑛(𝑠) as a 2-dimensional vector in (𝑥, 𝑦) plane, and by using 

computer programs we traced the series of vectors. By doing so, we can visually observe 

how the RZF or the DEF approaches to the origin or to the other point.  

Lemma 3.1. Each term of the RZF can be considered as a 2-dimentional vector.  

Proof. Each term of the RZF is a complex number. A complex number can be represented as 

a point in (𝑥, 𝑦) plane, which can be considered as a 2-dimentional vector. So, each term of 

the RZF can be considered as a 2-dimentional vector.                                 ■ 

Definition 3.2. Term vector: A term of the RZF that is equivalent to a 2-dimensional vector.   

Lemma 3.3. The following three properties of 𝑓𝑛
 (𝑠), 𝑠 = 𝑥 + 𝑖𝑦, are true.  

① x determines the magnitude of 𝑓𝑛(𝑠), which is 𝑒−𝑥𝑙𝑛𝑛. 

② y determines the argument of 𝑓𝑛(𝑠), which is −𝑦𝑙𝑛𝑛. 

③ x and y are independent. 

Proof. The magnitude and argument of 𝑓𝑛
 (𝑠) are as follows.  

𝑟𝑛
 (𝑥) = |𝑓𝑛

 (𝑠)| = 𝑒−𝑥𝑙𝑛𝑛  (3.9) 

𝜃𝑛
 (𝑦) = 𝑎𝑟𝑔 {𝑓𝑛

 (𝑠)} = −𝑦𝑙𝑛𝑛   (3.10) 

So, obviously, the above three properties are true for 𝑓𝑛
 (𝑠).                        ■ 

Lemma 3.3 also applies to 𝑔𝑛
 (𝑠)  of (3.7). What is important is that 𝑥  and 𝑦  are 

independent. Table 1 shows some examples of 𝑥 vs 𝑟𝑛
 (𝑥) relationships.  

Table 1. Magnitude rn(x) examples. 

x 0 1/3 1/2 2/3 1 

rn(x) 1 (1/n)1/3 (1/n)1/2 (1/n)2/3 (1/n)1 

r2(x) 1 0.794 0.707 0.630 0.500 

r3(x) 1 0.693 0.577 0.481 0.333 

r100(x) 1 0.215 0.100 0.046 0.010 

r10000(x) 1 0.046 0.010 0.002 0.0001 



 

 

                           

                                                

- 5 - 

 

Figure 3 shows some graphs of these relationships as functions, 𝑦 = 𝑟𝑛
 (𝑥) = |𝑓𝑛

 (𝑠)| =

𝑒−𝑥𝑙𝑛𝑛 , for some 𝑛 . For 𝑛 = 1 , 𝑦 = 𝑟1
 (𝑥) = 𝑒−𝑥𝑙𝑛1 = 𝑒0 = 1 , which corresponds to the 

constant term 1 in (3.6) and (3.8). As 𝑛 increases, the graphs decreases more sharply. 

Figure 3. Graphs of 𝑦 = 𝑒−𝑥𝑙𝑛𝑛 for 𝑛 = 1, 2, 4, 100. 

 

3.2 Vector Trace Graphs 

We used PureBasic [11] free version to plot the trace. The source program and some 

videos are given in appendix A and C. Figure 4 shows some vector trace graphs of the RZF 

and the DEF for 𝑠 = 0.5 + 14.13𝑖 and 𝑠 = 0.5 + 24499.24𝑖, which are two zeros of the RZF.  

Figure 4. Sample vector trace graphs. 

 

 

(a) the RZF: x = 0.5, y = 14.13 (b) the DEF: x = 0.5, y = 14.13 

  
(c) the RZF: x = 0.5, y = 24499.24 (d) the DEF: x = 0.5, y = 24499.24 

𝑦 = 𝑒−𝑥𝑙𝑛1 = 1 

𝑦 = 𝑒−𝑥𝑙𝑛2 

𝑦 = 𝑒−𝑥𝑙𝑛4 

𝑦 = 𝑒−𝑥𝑙𝑛100 
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To understand how Figure 4 is drawn, please watch vector trace videos in Appendix C. 

You can see vectors spiral in and spiral out making lumps, according to the vector argument 

graphs in Figure 5. More lumps appear when y is large. 

Figure 5. Example graphs of vector argument. 

 
(a) y = 14.13(blue), y = 124.26(brown) 

 

(b) mod(arg, 2), y = 14.13(blue), y = 124.26(brown) 

In Figure 5 (a), the argument, 𝜃𝑛
 (𝑦) = 𝑎𝑟𝑔 {𝑓𝑛

 (𝑠)} = −𝑦𝑙𝑛𝑛, is depicted by replacing 𝑛 

by 𝑥 . The blue graph is, 𝜃𝑥
 (14.13) = 𝑎𝑟𝑔{𝑓𝑥

 (𝑠)} = −14.13𝑙𝑛𝑥, 𝑦 = 14.13  and the brown 

graph is 𝜃𝑥
 (124.26) = 𝑎𝑟𝑔{𝑓𝑥

 (𝑠)} = −124.26𝑙𝑛𝑥, , 𝑦 = 124.26. Figure 5 (b) is the modulo of 

the Figure 5 (a), 𝑚𝑜𝑑{𝜃𝑛
 (𝑦), 2}. The blue graph is, 𝑚𝑜𝑑{𝜃𝑥

 (14.13), 2} and the brown 

graph is 𝑚𝑜𝑑{𝜃𝑥
 (124.26), 2}.  

You can see that for larger 𝑦, the graph increases more rapidly, which means that the 

change of the direction of vector is more severe. 

The movement of vectors can be roughly classified as follows. 

① Zigzag: Vectors zigzag when the argument of vector changes severely. 

② Spiral in: Vectors shrink to a point. It occurs when sequence of vectors with 

arg(vn+1) – arg(vn) > 90° are dominant. 

③ Spiral out: Vectors are inverted from spiral-in to spiral-out. It occurs when 

sequence of vectors with arg(vn+1) – arg(vn) < 90° are dominant. 

④ Smooth moving: Vectors move to other place smoothly.  

3.3 Trace of x and y 

We used GeoGebra [12] to trace the RZF with respect to x and y. GeoGebra provides 

zeta function and we set the following parameter and function, and animated x and y. 

𝑠 = 𝑥 + 𝑖𝑦   

𝑤 = 𝑧𝑒𝑡𝑎(𝑠)   

Graphs for the following cases are traced. 

(a) x = 0.5, 14.13 ≤ y ≤ 32.94. 
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(b) x = 0.25, 14.13 ≤ y ≤ 32.94. 

(c) x= 0.75, 14.13 ≤ y ≤ 32.94. 

(d) 0≤ x ≤1, y = 14.13. 

(e) 0≤ x ≤1, y= 124.26. 

(f) 0≤ x ≤1, y = 294014.13. 

Figure 6 shows above 6 graphs.  

Figure 6. Trace of the RZF with respect to x and y. 

  

(a) x = 0.5, 14.13 ≤ y≤ 32.94. (b) x = 0.25, 14.13 ≤ y ≤ 32.94. 

 
 

(c) x = 0.75, 14.13 ≤ y ≤ 32.94. (d) 0≤ x ≤1, y = 14.13. 

  
(e) 0≤ x ≤1, y = 124.26 (f) 0≤ x ≤1, y = 294014.13 

From the graphs in Figure 6, we can see the followings. 

(a) When x = 0.5, graphs pass the origin because there exist some zeros of the RZF.  

(b) When x = 0.25, graph swells with some bias to the left, because the magnitude of 

each vector 𝑒−𝑥𝑙𝑛𝑛 increases. 

(c) When x = 0.75, graph shrinks with some bias to the right, because the magnitude 

of each vector 𝑒−𝑥𝑙𝑛𝑛 decreases. 

(d) When y = 14.13, as x moves from 0 to 1, an open curve which passes the origin 

at x = 0.5 is drawn, because 𝑠 = 0.5 + 14.13𝑖 is a zero of the RZF. 
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(e) When y = 124.26, as  moves from 0 to 1, an open curve which passes the origin 

at x = 0.5 is drawn, because 𝑠 = 0.5 + 124.26𝑖 is a zero of the RZF.  

(f) When y = 294014.13, as x moves from 0 to 1, an open curve which does not pass 

the origin is drawn, because 𝑠 = 0.5 + 294014.13𝑖 is not a zero of the RZF.  

4. Three Vector Properties of the RZF 

Lemma 4.1. The RZF and the DEF can be geometrically represented as the sum of three 

vectors. 

Proof. We can rewrite the RZF in (3.6) and the DEF in (3.8) as follows.  

(𝑠) = 1 + ∑ 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=2   (3.6) 

= 1 + ∑ 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=3 + 𝑒−𝑥𝑙𝑛2𝑒−𝑖𝑦𝑙𝑛2   

= 𝐴𝑥
⃗⃗ ⃗⃗ + 𝐵𝑥

⃗⃗⃗⃗ + 𝐶𝑥
⃗⃗⃗⃗   (4.1) 

𝐴𝑥
⃗⃗ ⃗⃗ = (1,0)  (4.2) 

𝐵𝑥
⃗⃗⃗⃗ = ∑ 𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞

𝑛=3   (4.3) 

𝐶𝑥
⃗⃗⃗⃗ = 𝑒−𝑥𝑙𝑛2𝑒−𝑖𝑦𝑙𝑛2  (4.4) 

(𝑠) = 1 + ∑ (−1)𝑛+1𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=2   (3.8) 

= 1 + ∑ (−1)𝑛+1𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞
𝑛=3 − 𝑒−𝑥𝑙𝑛2𝑒−𝑖𝑦𝑙𝑛2   

= 𝐷𝑥
⃗⃗ ⃗⃗ + 𝐸𝑥

⃗⃗⃗⃗ + 𝐹𝑥⃗⃗  ⃗  (4.5) 

𝐷𝑥
⃗⃗ ⃗⃗ = (1,0)  (4.6) 

𝐸𝑥
⃗⃗⃗⃗ = ∑ (−1)𝑛+1𝑒−𝑥𝑙𝑛𝑛𝑒−𝑖𝑦𝑙𝑛𝑛∞

𝑛=3   (4.7) 

𝐹𝑥⃗⃗  ⃗ = −𝑒−𝑥𝑙𝑛2𝑒−𝑖𝑦𝑙𝑛2  (4.8) 

The sum of three vectors in (4.1) and (4.5) are the geometric representations of the RZF 

and the DEF, respectively.                                                         ■ 

The vector representations of the RZF and the DEF are similar, so, from now on, we 

mention only for the RZF, but the logic applied to the RZF can also be applied to the DEF.  

Definition 4.2. Last vector: Vector 𝐶𝑥
⃗⃗⃗⃗  in (4.1).  

Definition 4.3. Three vector set(TVS): Set of three vectors in (4.1), 𝑉𝑥 = {𝐴𝑥
⃗⃗ ⃗⃗ , 𝐵𝑥

⃗⃗⃗⃗ , 𝐶𝑥
⃗⃗⃗⃗ }.  

Definition 4.4. Two last vectors: The two last vectors 𝐶⃗⃗⃗⃗  and 𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  .   

Lemma 4.5. If (+ 𝑖) = (1 − + 𝑖) = 0, 0 <  < 0.5, then the two last vectors 𝐶⃗⃗⃗⃗  and 

𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   must be on the same line.  
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Proof. Figure 7 shows two types of TVSs, 𝑉 = {𝐴
⃗⃗ ⃗⃗  , 𝐵⃗⃗⃗⃗ , 𝐶⃗⃗⃗⃗ } and 𝑉1− = {𝐴1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐵1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐶1−

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  }.  

Figure 7. Last vector examples. 

  

(a) Two last vectors can’t end at the origin. (b) Two last vectors end at the origin. 

The two last vectors are 𝐶⃗⃗⃗⃗ = 𝑒−𝛼𝑙𝑛2𝑒−𝑖𝑙𝑛2 and 𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑒−(1−𝛼)𝑙𝑛2𝑒−𝑖𝑙𝑛2 , respectively. 

The arguments of the two last vectors are same, so, they are parallel to each other. If the two 

last vectors are not on the same line as in Figure 7 (a), it can’t be (+ 𝑖) = (1 − + 𝑖) =

0. So, the two last vectors should be on the same line, as in Figure 7 (b).                  ■ 

Definition 4.6. Same line restriction: The result of Lemma 4.5.  

Lemma 4.7. The magnitude of the last vector 𝐶𝑥
⃗⃗⃗⃗  monotonously decreases as 𝑥 moves from 

 to 1 − , 0 <  < 0.5.  

Proof. The magnitude of the two last vectors are 𝑒−𝛼𝑙𝑛2 and 𝑒−(1−𝛼)𝑙𝑛2, respectively, as in 

Figure 8.  

Figure 8. Last vector magnitude graph. 

 

* The graph 𝑒−𝑥𝑙𝑛2 represents the magnitude of all vectors for n = 2. 

The graph 𝑦 = 𝑒−𝑥𝑙𝑛2  represents the magnitude of the term vector for 𝑛 = 2, which 

monotonously decreases as 𝑥 moves from  to 1 − . So, the magnitude of the last vector 

𝐶⃗⃗⃗⃗  monotonously decreases as  moves from  to 1 − .                           ■ 

Lemma 4.8. The trajectory 𝐴
⃗⃗ ⃗⃗  , +𝐵𝑥

⃗⃗⃗⃗ + 𝐶𝑥
⃗⃗⃗⃗ , while 𝑥 moves from  to 1 − , will draw a closed 

curve, as an example trajectory in Figure 9, which is a vector aspect of Lemma 2.2. 
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Figure 9. An example trajectory of 𝐴
⃗⃗ ⃗⃗  , +𝐵𝑥

⃗⃗⃗⃗ + 𝐶𝑥
⃗⃗⃗⃗ ,  ≤ 𝑥 ≤ 1 − . 

 
* While G moves around A, H draws C. 

Proof. In Figure 9, let 𝐶⃗⃗⃗⃗ = 𝑃𝑂⃗⃗⃗⃗  ⃗, 𝐶1−
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑄𝑂⃗⃗⃗⃗⃗⃗ . Let G be a point on the trajectory A, which is the 

trajectory of 𝐴
⃗⃗ ⃗⃗  + 𝐵𝑥

⃗⃗⃗⃗ . We assumed A is a closed curve. Then 𝐶𝑥
⃗⃗⃗⃗ = 𝐺𝐻⃗⃗⃗⃗⃗⃗ , |𝐺𝐻⃗⃗⃗⃗⃗⃗ | = 𝑒−𝑥𝑙𝑛2. While 

G moves on the trajectory A1, the trajectory of 𝐴
⃗⃗ ⃗⃗  + 𝐵𝑥

⃗⃗⃗⃗ + 𝐶𝑥
⃗⃗⃗⃗  will draw a closed curve C1. 

Likewise, while G moves on the trajectory A2, the trajectory of 𝐴
⃗⃗ ⃗⃗  + 𝐵𝑥

⃗⃗⃗⃗ + 𝐶𝑥
⃗⃗⃗⃗  will draw a closed 

curve C2. The curves C1 and C2 may intersect themselves, but we can consider them as 

logically closed curves as in Figure 2. So, the trajectory 𝐴
⃗⃗ ⃗⃗  + 𝐵𝑥

⃗⃗⃗⃗ + 𝐶𝑥
⃗⃗⃗⃗ , while 𝑥 moves from 

 to 1 − , will draw a closed curve.                                                ■ 

Lemma 4.8 is just a vector aspect of Lemma 2.2. We draw Figure 9 by using GeoGebra 

just to see how a closed curve is generated, according to the same line restriction.   

Lemma 4.9. The trajectory of Lemma 4.8, will intersect the curve (0.5 + 𝑖𝑦) , where 

(+ 𝑖𝑦) = (1 − + 𝑖𝑦) = 0, as in Figure 10. 

Figure 10. An example trajectory of (𝑥 + 𝑖𝑦), ≤ 𝑥 ≤ 1 − . 

 

Proof. In Figure 10, the black curve is the trace of (0.5 + 𝑖𝑦), 0 ≤ 𝑦 ≤ 20. If there exist zeros 

such that (+ 𝑖) = (1 − + 𝑖) = 0 , then while x moves between  ≤ 𝑥 ≤ 1 −  , a 

closed curve which starts at the origin and ends at the origin will be drawn and that curve will 

meet the curve at 𝑃((0.5 + 𝑖𝑦)), when 𝑥 = 0.5.                                      ■ 

Figure 11 shows nine parallel vector trace graphs for y = 24499.249265478 and x = 

0.3(outside red), 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7(inside aqua).  
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Figure 11. Parallel vector trace example. 

 

In Figure 11, the white lines from outside to inside are the lines that connect the end 

points for every 100’th term vectors. The parallel vector trace program source is provided in 

Appendix B. 

5. Proof of the RH by the Rubber Strip Model 

Definition 5.1. Rubber strip model: A model to explain the trajectory of (𝑥 + 𝑖𝑦),  ≤ 𝑥 ≤

1 −  , -  ≤ 𝑦 ≤  . Figure 12 depicts an exemplary rubber strip model for 𝑥 =

0.44/0.47(𝑏𝑙𝑢𝑒), 0.5(𝑟𝑒𝑑), 0.53/0.56(𝑔𝑟𝑒𝑒𝑛), 0 ≤ 𝑦 ≤ 20 . The rubber strip can be flexibly 

bended and the width may change along with 𝑦. 

Figure 12. An exemplary rubber strip model. 

 
* A rubber strip model for  = 0.44/0.47(𝑏𝑙𝑢𝑒), 0.5(𝑟𝑒𝑑), 0.53/0.56(𝑔𝑟𝑒𝑒𝑛), 0 ≤ 𝑦 ≤ 20. 

Definition 5.2. Edge lines: Two edge lines of the rubber strip, which are (+ 𝑖𝑦)  and   

(1 −  + 𝑖𝑦).  
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Lemma 5.3. To have two zeros such as (+ 𝑖) = (1 − + 𝑖) = 0, two edge lines should 

intersect at the origin when 𝑦 = , as in Figure 13.  

Figure 13. Two edge lines intersect at the origin. 

 

Proof. If two edge lines intersect at (𝑥, 𝑦) ≠ (0, 0) , which is not the origin, (+ 𝑖) =

(1 −  + 𝑖) ≠ (0,0), so, two edge lines must intersect at the origin.                     ■ 

Lemma 5.4. To make two edge lines intersect at the origin, two edge lines should cross the 

other lines within the rubber strip, passing infinitely many points like 𝑃 or 𝑄 in Figure 13, 

which leads to a contradiction (𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. So, the RH is true. 

Proof. Suppose at 𝑦 =  − 𝑙1, 𝑙1 > 0, the two edge lines begin to approach to the origin. Then 

the two edge lines must step into the rubber strip, which makes the two edge lines cross the 

other lines within the rubber strip and makes infinitely many points like 𝑃 or 𝑄 in Figure 13. 

So, the following two equations must be satisfied.  

(+ 𝑖𝑦) = (+ 𝑥 + 𝑖𝑦), at 𝑃.  (5.1) 

(1 −  + 𝑖𝑦) = (1 − − 𝑥 + 𝑖𝑦), at 𝑄.  (5.2) 

Let 𝑠 = 𝑥 + 𝑖𝑦.  

(𝑠) = (𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)   

𝑠 = 𝑥 + 𝑖𝑦   

′(𝑠) = lim
𝑠→0

(𝑠+𝑠)−(𝑠)

𝑠
   

Let’s select (5.1) for our proof.  

(+ 𝑖𝑦) = (+ 𝑥 + 𝑖𝑦)   

𝑢(, 𝑦) + 𝑖𝑣(, 𝑦) = 𝑢(+ 𝑥, 𝑦) + 𝑖𝑣(+ 𝑥, 𝑦)    

𝑢(+ 𝑥, 𝑦) − 𝑢(, 𝑦) + 𝑖𝑣(+ 𝑥, 𝑦) − 𝑖𝑣(, 𝑦) = 0   
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Let 𝑥 =  + 𝑥, then  = 𝑥 − 𝑥.   

𝑢(𝑥, 𝑦) − 𝑢(𝑥 − 𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) − 𝑖𝑣(𝑥 − 𝑥, 𝑦) = 0   

lim
𝑥→0

𝑢(𝑥,𝑦)−𝑢(𝑥−𝑥,𝑦)

𝑥
+ 𝑖 lim

𝑥→0

𝑣(𝑥,𝑦)−𝑣(𝑥−𝑥,𝑦)

𝑥
= 0   

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
= 0   

𝜕𝑢

𝜕𝑥
= 0 and 

𝜕𝑣

𝜕𝑥
= 0  

The Cauchy-Riemann differential equations states that the real part and the imaginary 

part of an analytic function ℎ(𝑠) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) satisfy the following equations at each 

point where ℎ(𝑧) is analytic [13][14][15][16]. 

∂u

∂x
=

∂v

∂y
 and 

∂u

∂y
= −

∂v

∂x
  (5.3) 

The RZF is analytic to all complex plane except 𝑠 = 1 [4], so, the RZF is analytic to all 

points 𝑠 = 𝑥 + 𝑖𝑦, 𝑦 > 0. To satisfy (5.3), 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
= 0 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
= 0.   

′(𝑠) = 0   

(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (5.4) 

The result (5.4) contradicts, so, the RH is proved.                                  ■ 

6. Conclusion 

In this thesis, we proved the RH by analyzing the vector properties of the RZF and the 

DEF. We treated each term of the RZF as a vector and showed some vector properties of the 

RZF by tracing term vectors. For a complex variable 𝑠 = 𝑥 + 𝑖𝑦, 𝑥 affects the magnitude of  

term vectors and 𝑦 affects the argument of each term vectors. If there exist zeros whose real 

part is not 0.5, such as (− 𝑖) = (1 − + 𝑖) = 0 , the trajectory of (− 𝑖𝑦)  and 

(1 −  + 𝑖𝑦) must intersect at the origin when 𝑦 = . To check if this can happen, we 

introduced the rubber strip model, and by using the Cauchy-Riemann differential equations, 

we induced a contradiction, (𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which proves the RH.  
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Appendix A : Source Progeam for RZF or DEF Trace 
 

;Code for zeta or eta vector trace visualization using PureBasic evaluation version. 

 

;[1] graph window. 

#Window1   = 0 

#Image1    = 0 

#ImgGadget = 0 

#width         = 1370 

#height        = 735 

 

;[2] variables. 

Define.d Dim x(10000000)    ;Re(z) 

Define.d Dim y(10000000)    ;Im(z) 

Define.d Dim t(10000000)    ;Arg(z), radian 

Define.d Dim deg(10000000)  ;Arg(z), degree 

Define.d Dim r(10000000)    ;r = |z| 

Define.d a, b, r, t, delta, x0, y0, x1, y1, xsum, ysum, x2, y2, x3, y3, lnn, rr 

Define.q i, m, n, thresh 

 

;[3] sample zero values. 

a = 1/2 

;a = 0.501 

;b = 14.134725141734693790 

;b = 236.5242296658162058 

;b = 5565.566217327 

b = 24499.249265478 

;b = 74908.108191005 

 

;[4] font. 

LoadFont (0, "Courier", 15) ;load Courier Font, Size 15. 

LoadFont (1, "Arial", 24)   ;load Arial Font, Size 24. 

OpenConsole() 

If b>0 

  header$ = "Riemann Zeta : s=" + a + "+" + b + "i"  

  ;header$ = "Dirichlet Eta : s=" + a + "+" + b + "i"  

Else 

  header$ = "Riemann Zeta : s=" + a + "" + b + "i"  

  ;header$ = "Dirichlet Eta : s=" + a + "" + b + "i"  

EndIf 

delta = 0.007  ;image zoom factor: small value for zoom in.  

m = 7000 ;#vectors to plot. 

pi.d = 3.1415926535 

 

;[5] calculate vectors. 

For n=1 To m Step 1    

  lnn = Log(n) 

  r(n) = Exp(-a*lnn) 

  t(n) = -b*lnn 

  deg(n) = Mod(Round(Degree(t(n)), #PB_Round_Down), 360)  ;#PB_Round_Up, #PB_Round_Nearest   

  If deg(n)<0 

    deg(n) = deg(n) + 360 

  EndIf 

  dg = deg(n) - deg(n-1) 
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  ;PrintN("n=" + n + " r(n)=" + r(n) + " θ=" + deg(n) + "° dθ=" + dg + "°" + " t(n)=" + t(n))  ;print values.   

;for eta function, remove following 5 comments in If...Else...EndIf block. 

;  If Mod(n, 2)=1  

    x(n) = r(n)*Cos(t(n)) 

    y(n) = r(n)*Sin(t(n)) 

;  Else 

;    x(n) = -r(n)*Cos(t(n)) 

;    y(n) = -r(n)*Sin(t(n))   

;  EndIf     

Next 

 

;[6] graph origin. 

x0 = #width/2 

y0 = #height/2 

xsum = 0 

ysum = 0 

If OpenWindow(#Window1, 0, 0, #width, #height, header$, #PB_Window_SystemMenu ) ;If 1 

  If CreateImage(#Image1, #width, #height)                                      ;If 2       

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1))           

    StartDrawing(ImageOutput(#Image1))     

    Delay(2000)     

    DrawingFont(FontID(1))  ;use the 'Courier' font       

    c$ = "Riemann Zeta Function Vector Trace : s = " + a + " + " + b + "i" 

    ;c$ = "Dirichlet Eta Function Vector Trace : s = " + a + " + " + b + "i" 

    DrawText(200,200, c$, RGB(255, 255, 255))      

    StopDrawing()     

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1))     

    Delay(1000)     

    DrawingFont(FontID(1))  

    c$ = "                                                                                                                                        

" 

DrawText(150, 200, c$, RGB(0, 0, 0))  ;erase previous text.      

    StopDrawing()                 

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1))       

    ;axis. 

    LineXY(0, y0, #width, y0, RGB(128,128,128)) 

    LineXY(x0, 0, x0, #height, RGB(128,128,128)) 

    x1 = Int(xsum/delta) + x0 

    y1 = -Int(ysum/delta) + y0 

    StopDrawing()        

 

    ;[7]plot vectors. 

    For i = 1 To m    

      If Not(i>=startVector And i<=endVector) 

        Gosub plotVector 

      EndIf         

    Next      

    SetGadgetState(#ImgGadget, ImageID(#Image1))  

    StartDrawing(ImageOutput(#Image1))            

   EndIf  ;If 2    

  Repeat 
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    Event = WaitWindowEvent() 

  Until Event = #PB_Event_CloseWindow   

EndIf ;If 1 

 

;======================== plotVector Subroutine =============================== 

plotVector: 

       xsum = xsum + x(i) 

       ysum = ysum + y(i) 

       xx = Int(xsum/delta) 

       yy = Int(ysum/delta) 

       x2 = xx + x0 

       y2 = -yy + y0           

       SetGadgetState(#ImgGadget, ImageID(#Image1))  

       StartDrawing(ImageOutput(#Image1))        

       ;vector colors. 

       If Mod(i, 3) = 1 

         color = RGB(255, 255, 255) ;white. 

       ElseIf Mod(i, 3) = 2 

         color = RGB(0, 255, 255)   

       Else 

         color = RGB(255, 0, 255)          

       EndIf  

       LineXY(x1, y1, x2, y2, color)        

       x3 = Int(xsum*100)/100 

       y3 = Int(ysum*100)/100  

       rr = Sqr(xsum*xsum + ysum*ysum) 

       c$ = "n = " + Str(i+jump) + " : (x, y) = (" + xsum + ", " + ysum + "), r = " + rr + ", θ = " + deg(i) + "°, dθ = " 

+ Str(deg(i)-deg(i-1)) + "°          " 

       DrawText(20, 20, c$) 

       PrintN(c$)                   

       If i=1 ;mark 0 and 1 

         DrawText(x1, y1, "0")   

         DrawText(x2, y2, "1")             

       EndIf                                          

       If i>=2 And i<=10  ;mark first 10 points 

         DrawText(x2, y2, Str(i))             

       EndIf              

       Delay(1)  ;plot speed.                   

       StopDrawing()                 

       x1 = x2 

       y1 = y2 

Return  
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Appendix B: Source Program for Parallel RZF or DEF Trace 
 

;Code for parallel zeta or eta vector trace visualization using PureBasic evaluation version. 

 

#Window1   = 0 

#Image1    = 0 

#ImgGadget = 0 

#width         = 1370 

#height        = 735 

 

Define.d Dim x(100000, 9) 

Define.d Dim y(100000, 9) 

Define.d Dim t(100000, 9) 

Define.d Dim deg(100000, 9) 

Define.d Dim r(100000, 9) 

Define.d Dim a2(9) 

Define.s Dim header$(9) 

 

Define.d a, b, r, t, delta 

Define.d Dim x0(9), Dim y0(9), Dim x1(9), Dim y1(9), Dim xsum(9), Dim ysum(9), Dim x2(9), Dim y2(9), Dim 

x3(9), Dim y3(9) 

Define.d lnn, rr 

Define.q i, m, n, Dim color(9) 

 

b = 14.134725141734693790 

;b = 21.02203963877155499 

;b = 69.546401711 

;b = 124.256818554 

;b = 236.5242296658162058 

;b = 570.051114782 

;b = 572.419984132 

;b = 1201.810334857 

;b = 2210.850941099 

;b = 3156.300357947 

;b = 5565.566217327 

;b = 7776.955377123 

;b = 9457.289938949 

;b = 10000.065345417 

;b = 10000.651847322 

;b = 10000.918178956 

;b = 12571.195309379 

;b = 15536.816303095 

;b = 24499.249265478 

;b = 33945.406726423 

;b = 48596.896626512 

;b = 53243.675588739 

;b = 74908.108191005 

 

maxj = 9 

 

a2(1) = 0.3 

a2(2) = 0.35 

a2(3) = 0.4 
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a2(4) = 0.45 

a2(5) = 0.5 

a2(6) = 0.55 

a2(7) = 0.6 

a2(8) = 0.65 

a2(9) = 0.7 

 

color(1) = RGB(255, 0, 0) 

color(2) = RGB(255, 127, 0) 

color(3) = RGB(255, 255, 0) 

color(4) = RGB(0, 255, 0) 

color(5) = RGB(255, 255, 255) 

color(6) = RGB(0, 0, 255) 

color(7) = RGB(75, 0, 130) 

color(8) = RGB(148, 0, 211) 

color(9) = RGB(0, 255, 255) 

 

delta = 0.015 ;image size zoom factor 

d = 0 ;delay 

markN = 1 ;1=mark, 0=do not mark n on the image 

 

m = 5500 ;# terms 

 

LoadFont (0, "Courier", 15)            ; Load Courier Font, Size 15 

LoadFont (1, "Arial", 24)              ; Load Arial Font, Size 24 

 

OpenConsole() 

 

For j=1 To maxj 

  header$(j) = "Riemann Zeta : s" + j + "=" + a2(j) + "+" + b + "i"  

Next  

 

pi.d = 3.1415926535 

 

For n=1 To m Step 1  

  For j=1 To maxj 

     

    lnn = Log(n) 

    r(n, j) = Exp(-a2(j)*lnn) 

    t(n, j) = -b*lnn 

    deg(n, j) = Mod(Round(Degree(t(n, j)), #PB_Round_Down), 360) ;#PB_Round_Up, #PB_Round_Nearest   

    If deg(n, j)<0 

      deg(n, j) = deg(n, j) + 360 

    EndIf 

    dg = deg(n, j) - deg(n-1, j) 

    ;PrintN("n=" + n + " r(n, j)=" + r(n, j) + " θ" + j + "=" + deg(n, j) + "° dθ" + j + "=" + dg + "°" + " t(n, j)=" + t(n, 

j)) 

  ;  If Mod(n, 2)=1 ;For eta function, remove comments of If...Else...EndIf block. 

      x(n, j) = r(n, j)*Cos(t(n, j)) 

      y(n, j) = r(n, j)*Sin(t(n, j)) 

  ;  Else 

  ;    x(n, j) = -r(n, j)*Cos(t(n, j)) 

  ;    y(n, j) = -r(n, j)*Sin(t(n, j))   
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  ;  EndIf 

     

  Next   

Next 

 

;origin 

For j=1 To maxj  

  x0(j) = #width/2 

  y0(j) = #height/2 

  xsum(j) = 0 

  ysum(j) = 0 

Next 

 

j = 1 

 

If OpenWindow(#Window1, 0, 0, #width, #height, header$(1) + "/" + header$(2), #PB_Window_SystemMenu ) ;If 

1 

  If CreateImage(#Image1, #width, #height)                                      ;If 2 

       

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1))           

    StartDrawing(ImageOutput(#Image1)) 

     

    Delay(1000) 

     

    DrawingFont(FontID(1)) ; Use the 'Courier' font 

     

    c$ = "Riemann Zeta Function Vector Trace : s = " + a2(1) + " + " + b + "i" 

    DrawText(200,200, c$, RGB(255, 255, 255)) 

    c$ = "Riemann Zeta Function Vector Trace : s = " + a2(maxj) + " + " + b + "i" 

    DrawText(200,300, c$, RGB(255, 255, 255)) 

     

    StopDrawing() 

         

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1)) 

     

    Delay(2000) 

     

    DrawingFont(FontID(1))  

    c$ = "                                                                                                                                        

" 

    DrawText(150, 200, c$, RGB(0, 0, 0))  

    DrawText(150, 300, c$, RGB(0, 0, 0))  

   

    StopDrawing()       

           

    ImageGadget(#ImgGadget, 0, 0, #width, #height, ImageID(#Image1)) 

    StartDrawing(ImageOutput(#Image1)) 

     

 

     LineXY(0, y0(j), #width, y0(j), RGB(128,128,128)) 

     LineXY(x0(j), 0, x0(j), #height, RGB(128,128,128)) 
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     For j=1 To maxj 

       x1(j) = Int(xsum(j)/delta) + x0(j) 

       y1(j) = -Int(ysum(j)/delta) + y0(j) 

     Next    

      

     xo = 150 

     yo = 150 

     deg(0, 1) = 0 

     deg(0, 2) = 0 

               

     StopDrawing() 

      

     lastMile = 0 

 

     For i = 1 To m  ;For loop        

       For j=1 To maxj 

         Gosub plotVector 

       Next      

        

        

       If Mod(i, 100)=0          

         For j=2 To maxj+0     

           Delay(1) 

           SetGadgetState(#ImgGadget, ImageID(#Image1))  

           StartDrawing(ImageOutput(#Image1)) 

           LineXY(x1(j-1), y1(j-1), x1(j), y1(j), color(5))  

           StopDrawing() 

         Next          

       EndIf            

        

     Next ;For loop 

           

   EndIf ;If 2 

    

  Repeat 

    Event = WaitWindowEvent() 

  Until Event = #PB_Event_CloseWindow 

   

EndIf ;If 1 

 

;======================== plotVector Subroutine =============================== 

 

plotVector: 

 

  Delay(d) 

 

       xsum(j) = xsum(j) + x(i, j) 

       ysum(j) = ysum(j) + y(i, j) 

       xx = Int(xsum(j)/delta) 

       yy = Int(ysum(j)/delta) 

       x2(j) = xx + x0(j) 

       y2(j) = -yy + y0(j) 

           



 

 

                           

                                                

- 23 - 

 

       SetGadgetState(#ImgGadget, ImageID(#Image1))  

       StartDrawing(ImageOutput(#Image1)) 

               

       LineXY(x1(j), y1(j), x2(j), y2(j), color(j)) 

 

       x3(j) = Int(xsum(j)*100)/100 

       y3(j) = Int(ysum(j)*100)/100 

                                         

       rr = Sqr(xsum(j)*xsum(j) + ysum(j)*ysum(j)) 

 

       c$ = "n = " + Str(i+jump) + " : (x, y) = (" + xsum(j) + ", " + ysum(j) + "), r = " + rr + ", θ = " + deg(i, j) + "°, 

dθ = " + Str(deg(i, j)-deg(i-1, j)) + "°          " 

       DrawText(20, 20, c$) 

       ;PrintN(c$) 

                   

       If i=1 ;mark 0 and 1 

         DrawText(x1(j), y1(j), "0")   

         DrawText(x2(j), y2(j), "1")             

       EndIf                       

                   

       StopDrawing() 

                      

       x1(j) = x2(j) 

       y1(j) = y2(j) 

Return  
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Appendix C: Vector Trace Videos 

seq type s link 

1 

the 

DEF 

0.4 + 10000.065i https://www.youtube.com/watch?v=cIZlImNSclI 

2 0.6 + 10000.065i https://www.youtube.com/watch?v=CHjCcqthuTc 

3 0.5 + 74908.108i https://www.youtube.com/watch?v=dE2fnWLzqxw 

4 0.5 + 10000.065i https://www.youtube.com/watch?v=3c2riWMV78I 

5 0.5 + 14.135i https://www.youtube.com/watch?v=5XPmdAfBphw 

6 

RZF 

0.4 + 10000.065i https://www.youtube.com/watch?v=54FGRm4mb_c 

7 0.6 + 10000.065i https://www.youtube.com/watch?v=pOeANPrMIRI 

8 0.5 + 74908.108i https://www.youtube.com/watch?v=W09mzoCTHEI 
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Appendix D: Other Possible Proofs 

D.1. Possible Proof 1: By Lattice Hitting 

the RZF can be rewritten as (𝑠) = 1 + ∑ 1/𝑛𝑠∞
𝑛=2  and we can consider zero of ζ(s) as 

where  ∑ 1/𝑛𝑠∞
𝑛=2  hit the origin starting from (1, 0), as in the following figure.  

 

 
 

  Considering that the origin is also a lattice point, only some circle with radius √𝑛 or 1/√𝑛 

can hit the origin. To keep the radius to be of 1/√𝑛 pattern,  should be 1/2. 

 

D.2. Possible Proof 2: By x-Axis Property 

(𝑠) = ∑
1

𝑛𝑠
∞
𝑛=1   

= 𝐴()𝑒𝑖𝐵()  

= 𝐴(){𝑐𝑜𝑠𝐵() + 𝑖𝑠𝑖𝑛𝐵()}  

= 𝑢 + 𝑖𝑣  

Eventually, the RZF falls into just the two sine and cosine functions, but with a variable 

amplitude 𝐴() and a variable argument 𝐵(). So, the zeros of the RZF must be on the x-

axis, because the zeros must satisfy 𝑐𝑜𝑠𝐵() = 0, 𝑠𝑖𝑛𝐵() = 0, simultaneously.  

The x-axis on the complex plane is just the critical line, where zeros are found. That is to 

say, zeros of sinusoidal functions are found only on x-axis, so, the crtical line should be the 

x-axis. 
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D.3. Possible Proof 3: By Cauchy Integral Theorem 

Suppose that the trajectory C of Lemma 4.8 and Lemma 4.9 does not contain any zeros 

of (𝑠) and ′(𝑠) and let’s represent C as two parameterized closed curve 𝐶 = (𝑡, 
0
), ≤

𝑡 ≤ 1 − , (+ 𝑖
0
) = (1 − + 𝑖

0
) = 0. Then 

𝑑(𝑠)

𝑑𝑡
 can’t be zero in 𝐶. So, the reciprocal 

function of 
𝑑(𝑠)

𝑑𝑡
, 

𝑑𝑡

𝑑(𝑠)
 can’t have any poles in 𝐶. That is to say, 

𝑑𝑡

𝑑(𝑠)
 is analytic in 𝐶.  

Let’s apply the Cauchy Integral Theorem to 𝐶 = (𝑡, ), where 
𝑑𝑡

𝑑(𝑠)
 has no poles.  

∮ ℎ((𝑡, 
0
))𝑑(𝑡, 

0
)

 

𝐶
= 0    

𝑑(𝑡, 
0
) =

𝑑(𝑡,0)

𝑑𝑡
𝑑𝑡, ≤ 𝑡 ≤ 1 −     

Let ℎ((𝑡, 
0
)) =

𝑑𝑡

𝑑(𝑡,0)
, which is analytic in 𝐶.  

∮ ℎ((𝑡, 
0
))𝑑(𝑡, 

0
)

 

𝐶
=   

∫
𝑑𝑡

𝑑(𝑡,0)

𝑑(𝑡,0)

𝑑𝑡
𝑑𝑡 =

1−𝛼

𝛼
    

∫ 𝑑𝑡 =
1−𝛼

𝛼
   

[𝑡] =𝛼  
1−𝛼    

1 − 2 = 0   

 = 0.5.   

 

 


