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Cooper-Pair Breaking

Sylwester Kornowski

Abstract: Theoretical results obtained in this paper are perfectly consistent with the 
experimental data presented by Mannila, et al. (2021). We described the origin of three new 
formulae for the normalized number density of quasiparticles, relaxation times of bursts, and 
statistical distribution of the broken Cooper pairs per burst. We show that the Cooper-pair 
breaking is due to the nuclear weak interactions of the spacetime condensates created in the 
core of nucleons.

1. Introduction
Superconductors free from quasiparticles (QPs) that force decays of the Cooper pairs (CPs) 

into electrons, are very important in superconducting quantum computing. It is assumed that 
QPs corrupt the superposition. Just the Cooper-pair breaking decreases the coherence times of 
superconducting qubits.

Here we show that shielding against the ionizing radiation background (IRB) is not enough 
to eliminate QPs from superconductors built of chemical elements because the nuclear weak 
interactions, which are responsible for creations of QPs, are ubiquitous in all physical 
conditions.

The global features of superconductivity based on the Scale-Symmetric Theory (SST) we 
described in [1]. There appear the three phonon fields. Here by applying the internal dynamics 
of the core of nucleons described in SST [2], [1], we show that the Cooper-pair breaking is the 
result of the nuclear weak interactions of the spacetime condensates created in the core of 
protons and neutrons.

But this paper is written in such a way as not to refer to the SST. All applied here 
quantities are also calculated in SST with very high accuracy [2]. To make our paper 
clearer, our main results obtained in this paper are marked in red and our new formulae 
in blue.

Our basic assumption is that the neutral pion πo (πo = 134.9768(5) MeV [3]) consists of 
two entangled spin-1 fundamental gluon loops/circles (FGLs) with antiparallel spins and size 
of ~1 fm. It leads to conclusion that energy of the FGL is mFGL ≈ 67.5 MeV. Two such 
FGLs (they are responsible for the nuclear strong interactions and coupling constant at low 
energy is s = 1 [3]) can collapse to two a spin-0 spacetime condensates Y that are 
responsible for the nuclear weak interactions – there is a transition from circular oscillations (λ 
= 2πr) to radial oscillations (λ* = r) so mass of Y should be 2π times higher than the energy 
of FGL: Y = 2π mFGL ≈ 424 MeV.

We define the coupling constants as follows
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i = Gi Mi mi /(c h) , (1)

where Gi, c and h are the constant values, Mi is mass of a source, and mi is mass of a carrier 
of interactions.

Assume that for the nuclear strong and weak interactions, there are equators for which is

Gi Mi = c2 ri ,                                                           (2)

so we have
i ~ ri mi . (3)

For a loop is ri = const. so we obtain

i ~ mi . (4)

The nuclear weak interactions are responsible for the beta decay of neutrons so from (4) we 
have that value of the coupling constant for such interactions is

w(p) = s (n – p) / mFGL ≈ 0.019 ,      (5)

where n = 939.565413(6) MeV and p = 938.272081(6) MeV [3].
For the spin-0 spacetime condensates we have Mi = mi so from (1) is

i ~ Mi
2 . (6)

Assume that the weak mass of electron interacting with proton is

mw(e) = w(p) me .                        (7)

From (5), (6) and (7) we can estimate the coupling constant for the weak interactions of 
electrons

w(e) = w(p) [w(p) me / (n – p)]2 = w(p)
3 [me / (n – p)]2 ≈ 1·10–6 . (8)

We use also following quantities.
*Fine-structure constant: em = 1 / 137.035999084(21) [3].
*Mass of electron: me = 0.5109989461(31) MeV [3].
*Bare mass of electron: me,bare = me / [1 + 0.00115965218091(26)] ≈ 0.510407

MeV [3].
*Mass of muon: μ± = 105.6583745(24) MeV [3].

2. Number density of quasiparticles normalized by the Cooper-pairs density
Number density, ni, is inversely proportional to energy of field components Ei (heavier 

particles are fewer)

ni ~ 1 / Ei (9)
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We assume that energies of phonons are the electroweak masses of the oscillation masses, 
radiation masses, and masses of the electron-positron pairs – the three different masses in the 
electron-positron pair are denoted by M1 (when interactions occur one after the other, the total 
coupling constant is the product of the coupling constants)

EPhonon = M1 w(p) em w(e) (10)

so for the number density of the Cooper-pairs, nCPs, we have

nCPs ~ 1 / (M1 w(p) em w(e)) . (11)

We assume that for quasiparticles (QPs) is (emphasize that energy of quasiparticle must be 
much higher than energy of the composite phonons)

nQPs ~ 1 / (M2 w(p)) ,                       (12)

i.e. we assume that they are created due to the nuclear weak interactions.
Our definition for number density of quasiparticles normalized by the Cooper-pairs density 

looks as follows

xQPs = nQPs / nCPs = M1 em w(e) / M2 .          (13)

3. Normalized number density of quasiparticles from the ionizing radiation 
background (IRB)

Due to the ionizing radiation background, for M2 = M1, we have

xQPs,IRB = em w(e) ≈ 7·10–9 .      (14)

It is consistent with experimental data [4]. It suggests that the Cooper-pair breaking are 
indeed due to the creations of quasiparticles in the nuclear weak interactions – their energy is 
M2w(p).

4. Most important transitions in superconductors
Assume that following transitions are most important in nucleons (Y ≈ 4μ±)

mFGL 2π mFGL Y 4 μ±  k me,bare (k ≈ 828) ,     (15)

and there is involved at least one electron-positron pair 2me.

5. Relaxation times of bursts
From formula Ei τi = const., where τi is a lifetime of a virtual energy Ei, we have

fminimum = τCooper,mean / τburst,1 = Y / (2 me) ≈ 415 .     (16)

where τCooper,mean is the mean period free from quasiparticles, and τburst,1 is the lifetime for 1-
quasiparticle burst. For τCooper,mean ≈ 0.4 s [5], from (16) the relaxation time for 1-
quasiparticle burst is τburst,1 ≈ 960 μs.
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For two quasiparticles we have Y  2 Y so from (16) we have τburst,2 ≈ 480 μs.
For three quasiparticles we have Y  3 Y so from (16) we have τburst,3 ≈ 320 μs.
For four quasiparticles we have Y  4 Y so from (16) we have τburst,4 ≈ 240 μs.
Our theoretical results are close to experimental data (see Fig.3a in [5]). It validates the 

transitions presented in (15).
Our formula for relaxation times of bursts created by quasiparticles looks as follows

τburst,i ≈ 0.4 [s] / (fminimum NQP) ,                (17)

where NQP denotes number of quasiparticles in a burst. For NQP = 0 we obtain τburst,i  ∞
– it is consistent with [5] (see Fig.3a in [5]). For 4 ≤ NQP ≤ 9, we obtain τburst,4--9 ≈ 210 μs
(see formula (25) in this paper).

6. Lower limit for normalized number density of quasiparticles
The transitions from the circular vibrations to radial vibrations (i.e. M1 / M2 = 1 / (2π)) 

cause that the lower limit for number density of quasiparticles normalized by the Cooper-pair 
density is

xQPs,lower = em w(e) / (2 π) ≈ 1·10–9 .      (18)

It is consistent with experimental data [6]. Equality of the experimental result and 
theoretical result obtained in (18) validates the mFGL  2π mFGL transitions in the core of 
baryons.

But for two interacting FGLs, the transition πo Y gives

xQPs,pion-Y = πo em w(e) / Y ≈ 2·10–9 .           (19)

It is consistent with [5]. It suggests that instead the transitions mFGL  2π mFGL, there 
dominated the transitions πo Y.

7. Function for statistical distribution of the broken Cooper pairs
The statistical distribution of the broken Cooper pairs, n*, is very well described by 

following our function (it is not the exponential function in [5])

Nevents,n* = δ (210 – n*) β ,                      (20)

where δ and β = 3/2 are some factors. Fortunately, for data in [5], there is δ = 1! So we have

n* = 1 gives Nevents,n*=1 ≈ 1.159·104,
n* = 2 gives Nevents,n*=2 = 4096,
n* = 3 gives Nevents,n*=3 ≈ 1448,
n* = 4 gives Nevents,n*=4 = 512,
n* = 5 gives Nevents,n*=5 ≈ 181,
n* = 6 gives Nevents,n*=6 = 64,
n* = 7 gives Nevents,n*=7 ≈ 22.6,
n* = 8 gives Nevents,n*=8 = 8,
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n* = 9 gives Nevents,n*=9 ≈ 2.82,
n* = 10 gives Nevents,n*=10 = 1.                     (21)

The SST results that follow from (20) are in perfect agreement with experimental data (see 
Fig.2b in [5]). It suggests that the Titius-Bode (TB) numbers are very important

210 – n* = 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 (the 10 TB numbers) . (22)

The TB numbers very frequently appear in SST [2].

8. The origin of the function for statistical distribution of the broken Cooper pairs
Formula (20) requires further research. What is the origin of the parameter β = 3/2 ?
We can assume that the decays of the Y spacetime condensate into the entangled electrons-

positron pairs (see (15)) can be realized via two phenomena, i.e. by creating a string or a loop 
both composed of the electron-positron pairs. The jet-like expansion of the string has one 
degree of freedom while the disc-like expansion of the loop has two degrees of freedom.

For a short time, the virtual spacetime condensates Y look like a mini black hole with 
a jet and an accretion disc.

For the same mass of the jet and disc, their abundances should be the same, i.e. 50% - it 
leads to conclusion that the decaying and expanding Y or other spacetime condensates have β 
= 3/2 degrees of freedom and such is the origin of the parameter β in formula (20).

What is the origin of the TB numbers?
The TB numbers, 210 – n*, follow from the successive symmetrical decays of the Y – the 

last decay leads to 512 = 210 – 1 entangled electrons and positrons (so also electrons in 
Cooper pairs; notice that there is one quasiparticle per each electron from the broken Cooper 
pairs) because their number cannot be bigger than 828 that follows from (15). The ratio 
512/828 = 0.618 is very close to the golden ratio. Jets and discs with fewer pairs are more 
numerous.

We can normalize the parameter δ to have opportunity to compare different experimental 
results. If in an experiment, there appear N*events,n*=1 bursts with one broken Cooper pair then 
we have

δ = 29β / N*events,n*=1 .                      (23)

We can see that in [5] is N*events,n*=1 ≈ 29β so δ = 1.
Our normalized function for the statistical distribution of the broken Cooper pairs looks as 

follows

NNorma,events,n* = 213.5 (210 – n*) 3/2 / N*events,n*=1 ,  (24)

Now by applying (21) and (17), we can calculate the mean relaxation time of bursts for 4 ≤ 
NQP ≤ 9

τburst,4--9,mean ≈
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≈ 0.4 [s] / [415 (4·512+5·181+6·64+7·22.6+8·8+9·2.82) / (512+181+64+22.6+8+2.82)] =

= 0.4 [s] / [415 (3584.58 / 790.42)] ≈ 210 μs .     (25)

This SST theoretical result is consistent with the experimental result presented in [5] (see 
Fig.3a in [5]).

Notice also that there is valid following relationship

Nevents,n*=1 / Nevents,n*=10 ≈ 1.16·104 .           (26)

9. Summary
Here we showed that it is impossible to dampen to zero the real and virtual processes in the 

core of baryons so we cannot eliminate the Cooper-pair breaking in superconductors. There is 
the lower limit for the number density of quasiparticles which are responsible for the pair-
breaking.

The theoretical results obtained in this paper, i.e. the normalized number density of 
quasiparticles, relaxation times of bursts, and statistical distribution of the broken Cooper pairs 
per burst, are consistent with experimental results presented in [5].

Emphasize that presented here model is very simple.
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