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Abstract

Investigating conformal metrics on (pseudo-) Riemannian spaces, a ‘scale-invariant’
choice for the Lagrange density leads to homogeneous d’Alembert eqations which
allow for source-free wave phenomena in any number of dimensions.

This suggests to apply a scale-invariant action principle rather than the Hilbert-
Einstein action to general relativity to also find general, non-conformal solutions.
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1 Notation

To reduce the number of letters used for indices, the same letter may be used more than
once when unambiguous, like in

gggΓggc = 1
2
gggggg,c ,

gggΓagg = ggg
(
gag,g − 1

2
ggg,a

)
.

No distinction is made between greek and latin letters for indices. They are always
understood as 4-dimensional.

2 Cartesian Conformal Map

With a constant metric being represented by any square root of the identity matrix,

ηab =

±1
. . .

±1

 = ηab , det(ηab) = ±1 ,

define a positive real function E(xµ) from an arbitrary logarithm function α(xµ),

E : Rn → R+ , α : Rn → R ,
xµ 7→ E(xµ) := eα(x

µ) .
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Metric Tensor

From a metric tensor, describing a conformal metric and constructed as

gab := E2 ηab =

±e
2α

. . .

±e2α

 ⇔ gab := E−2 ηab ,

we find metric derivatives,

gab,c = ∂c e
2α ηab = 2α,c e

2α ηab

= 2E2 ηabα,c ,

and the Christoffel symbol of the first kind,

Γabc = 1
2

(
gbc,a + gac,b − gab,c

)
= E2

(
ηabα,c + ηacα,b − ηbcα,a

)
.

Metric Connection

From that we get the Christoffel symbol of the second kind,

Γabc = gaαΓαbc = E−2 ηaαΓαbc
= δabα,c + δacα,b − ηaαα,αηbc , (1)

with the particular contractions

Γδ δc = nα,c , (2)

Γaggg
gg = E−2 Γaηηη

ηη = −(n− 2)E−2 ηaµα,µ . (3)

Covariant Derivatives

From (1), the covariant derivative of an arbitrary covector Va is given by

∇dVa = Va;d = Va,d − Vγ Γγad

= Va,d − Va α,d − Vd α,a + Vη α,ηη
ηηηad ,

so the contracted second covariant derivative, that is, the Laplace operator (or d’Alembert
operator, in four-dimensional spacetime) of the logarithmic conformal potential is then

∇µ∇µα = α;gg g
gg = E−2 α;ηη η

ηη

= E−2
(
α,ηη + (n− 2)α,ηα,η

)
ηηη . (4)
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From this follows, that in n = 2 dimensions the covariant Laplacian is identical to the
second partial derivative,

n = 2 ⇒ α;gg g
gg = α,gg g

gg . (5)

Connection Derivatives

From (2) and (3) we get the partial derivatives of the contracted connection,

Γλλc,d = nα,cd ,

Γagg,d g
gg = E−2 Γaηη,d η

ηη = −(n− 2)E−2 ηaµ α,µd .

and their second contractions,

Γλλg,g g
gg = nE−2 α,ηη η

ηη , (6)

Γλgg,λ g
gg = E−2 Γληη,λ η

ηη = −(n− 2)E−2 α,ηη η
ηη . (7)

Connection Derivative Difference

So from (6) and (7), the fully contracted connection derivative difference is(
Γλλg,g − Γλgg,λ

)
ggg = 2 (n− 1)E−2 α,ηη η

ηη . (8)

Connection Products

From (2) and (3) we get the fully contracted ‘straight’ connection product,

Γλλγ Γγgg g
gg = −n (n− 2)E−2 α,η α,η η

ηη . (9)

while the calculation of the ‘crossed’ connection product needs a more general calculation
from (1),

Γabγ Γγcd =
(
δabα,γ + δaγα,b − ηaρα,ρηbγ

)
·
(
δγcα,d + δγdα,c − η

γσα,σηcd
)

= δab
(
2α,cα,d − α,ηα,ηηηηηcd

)
+
(
δacα,bα,d + δadα,bα,c

)
− ηaαα,α

(
α,c ηbd + α,d ηbc

)
,

contracting once,

Γλbγ Γγcλ =
(
(n+ 2)α,b α,c − 2α,η α,η η

ηη ηbc
)
E−2 ,

and fully contracted,

Γλgγ Γγgλ g
gg = −(n− 2)E−2 α,η α,η η

ηη . (10)
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Connection Product Difference

From (9) and (10) we get the fully contracted connection product difference,(
Γλλγ Γγgg − Γλgγ Γγgλ

)
ggg = −(n− 1) (n− 2)E−2 α,η α,η η

ηη . (11)

Scalar Curvature

The fully contracted Riemann tensor is now obtained from (11) and (8),

R =
((

Γλλγ Γγgg − Γλgγ Γγgλ
)
−
(
Γλλg,g − Γλgg,λ

))
ggg

= − (n− 1)
(

2α,ηη + (n− 2)α,ηα,η
)
ηηηE−2 , (12)

According to (4), the second partial derivative can be substituted by the covariant deriva-
tive,

α;ηη η
ηη =

(
α,ηη − (n− 2)α,ηα,η

)
ηηη ,

so (12) can be expressed with covariant derivatives,

R = − (n− 1)
(

2α;ηη − (n− 2)α;ηα;η

)
ηηη E−2 . (13)

From (12) follows immediately, that in n = 1 dimensions curvature vanishes identically,
as one-dimensional geometric spaces are trivially always flat.

It also follows, that in (n = 2) dimensions curvature of the conformal space is proportional
to the Laplacian, which in fact turns out to vanish identically,

R(2D) = −6 ∆αE−2 ≡ 0 .

3 Variations

The variational derivative, varying a Lagrangian L over a function f , is given by

δfL : =
δL
δf

=
∂L
∂f
−
(
δL
δf;a

)
;a

(an infinite recursion)

=
∂L
∂f
−
(
∂L
∂f;a

)
;a

+

(
∂L
∂f;ab

)
;ab

− · · · ,

in such a way that the Euler-Lagrange equation reads

δfL
!

= 0 .
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Lagrangians from Scalar Curvature

For the Lagrange density we choose the Ricci scalar,
together with a power of Ea as a scale factor,

L = EaR ,

The totally scale-invariant Ricci scalar, expressed with covariant derivatives, is

R = (n− 1)E−2
(
−2α;ηη + (n− 2)α;ηα;η

)
ηηη .

and so

EaR = (n− 1)Ea−2
(
−2α;ηη + (n− 2)α;ηα;η

)
ηηη .

With

δαE
a =

∂

∂α
eaα = aeaα = aEa ,

δα
(
α;µν

)
=

(
∂α;µν

∂α;ab

)
;ab

=
(
δ a
µ δ

b
ν

)
;ab

= 0 ,

δα
(
α;µα;ν

)
= −

(
∂(α;µα;ν)

∂α;a

)
;a

= −
(
∂α;µ

∂α;a

α;ν + α;µ

∂α;ν

∂α;a

)
;a

= −2α;µν ,

we find in particular

δα
(
Ea−2α;ηηη

ηη
)

= Ea−2 (a− 2)α;ηηη
ηη ,

δα
(
Ea−2α;ηα;ηη

ηη
)

= Ea−2
(
−2α;ηη + (a− 2)α;ηα;η

)
ηηη ,

and the total functional derivative,

δα (EaR) = (n− 1)Ea−2
(
−2
(
(a− 2) + (n− 2)

)
α;ηη + (a− 2)(n− 2)α;ηα;η

)
ηηη ,

which gives a generalized equation of motion,

δα (EaR)
!

= 0 ⇒(
−2
(
(a− 2) + (n− 2)

)
α;ηη + (a− 2)(n− 2)α;ηα;η

)
ηηη = 0 .
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4 Field Equations

By choosing a = 2, all product terms vanish, so the homogeneous d’Alembert operator
on the logarithmic potential remains,

−2(n− 2)E−2α;ηηη
ηη = −2(n− 2)α;ggg

gg = −2(n− 2)�α = 0 ,

which tells that the source density of the logarithmic potential vanishes, and in 4-dimen-
sional spacetime gives a wave equation on the logarithmic potential,

�α = α;ggg
gg = 0 ⇒ E2�α = α;ηηη

ηη = 0 . (14)

Effective Mean Curvature

The remaining part of the scale-invariant Ricci scalar, after vanishing of the source density
of the conformal logarithm according to (14), is then

E2R
?
= (n− 1)(n− 2)α;ηα;η η

ηη , (15)

which reads: Mean curvature is proportional to the squared magnitude of the gradient of
the conformal logarithm function. Thus mean curvature can be seen as an energy density
of the logarithmic conformal field.

Only in 2D (and trivially in 1D), any conformal metric from a source-free conformal loga-
rithm function gives a flat space; those are the well-known holomorphic and meromorphic
functions on the space of complex numbers. The same does not hold true for higher di-
mensions, n ≥ 3, and hence on 4D spacetime, where any conformal metric introduces a
curvature.

In dimension higher than n > 2, any conformal function (which is not simply constant)
curves space; there is no conformal metric which leaves spacetime flat except for a trivial
rescaling of the whole universe.

5 Discussion

In the context of General Relativity, Hilbert chose for the Lagrange density in the 4D
case

L =
√
gR = EnR ,

to account for the volume element in some way, but this would not give a reasonable
wave equation here. Instead, the wave equation arises only when the power E2 exactly

6



Scale-Invariant Conformal Waves January 18, 2022

cancels out any dependence on size of the volume element, which means, the Lagrangian
is ‘scale-free’ or ‘scale invariant’.

So Hilbert’s Lagrangian at least gives the source-free conformal wave equation in the case
of n = 2 dimensions, but this does not describe spacetime as we need it.

For n = 4 dimensions, Hilbert’s Lagrangian is L = E4R, which is not scale-invariant,
that is, not independent on the absolute size of the volume element.

As an assumption of realism, each infinitesimal local volume element can not ‘know’ about
its absolute size in the universal context, so in a ‘general’ relativistic theory, the action
as well as the field equations should not depend on the absolute scale.

The Langrange density which is proposed instead is for n dimensions

L = n
√
gR = E2R ,

which in n = 4 dimensions effectively becomes

L = 4
√
gR = E2R ,

The expressions E2R, E2�α are ‘scale-free’, which means, any infinitesimal volume el-
ement does not ‘know’ about its absolute size. In this sense this is a true near-field
geometry (eine

”
wahre Nahegeometrie“, as Hermann Weyl had asked for). Exactly in this

situation the homogeneous wave equation arises.
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