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Abstract A rapidly convergent series, based on Fourier expansion of the exponential multiplier, is presented for 

highly accurate approximation of the Voigt function (VF). The computational test reveals that with only the first 

33 terms Fourier expansion of the exponential multiplier, this approximation provides accuracy better than 

5.5383×10−19 in the domain of practical interest 0 < x < 40,000 and 10−4 < y < 102 that is needed for applications 

using the HITRAN molecular spectroscopic database. Compared with the typical approximation algorithms, the 

proposed approximation still available even if y is very small and the accuracy in the narrow band domain 0 < x < 

40,000 ∩ 10−10 < y < 10−4 remains high and better than 5.5385×10−13. 

Key words Voigt function, Fourier series, High-accuracy approximation, Boundary-free 

1. Introduction 

The Voigt function (VF) describes emission and absorption properties of the gas molecules in the atmosphere, 

and, consequently, it is widely used in many scientific disciplines[1-4]. Mathematically, the VF can be expressed in 

terms of the real part of the Faddeeva function or complex error function 

 2( ) exp( )erfc( ),w z z iz    (1) 

where z = x + iy and y > 0. In common representation, the VF is given by the following integral 
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where ln 2 /L Gy   ,
0ln 2( ) / Gx v v   ,v is the frequency spanning from the line center v0, αL and αG are 

Lorentz and Doppler HWHM, respectively. 

Applying the Fourier transform, the Eq. (2) can be rewritten in the following form[45] 
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None of the integrals above have analytical solutions, thus many modern “state-of-the art” algorithms for 

evaluating the VF utilizing sophisticated numerical techniques have been discussed in numerous papers. An 

efficient algorithm on the basis of a modified Humlicek algorithm[6] was developed by Wells[7] with relative error 

chosen between 10-2 and 10-5. Although the Wells algorithm is sufficient for the most practical tasks, the more 

accurate calculation of the VF may also be required.  

Recently, Abrarov et al. [8-10] proposed two similar algorithms based on exponential series approximation 

for the rapid and high-accuracy calculation of the VF. Abrarov algorithm I[8-9] which based on Fourier expansion 

of the exponential multiplier is more accurate than 10-9 in the Humlicek regions 3 and 4[6]. Abrarov algorithm II[10] 

which based on rational approximation of the exponential multiplier provides accuracy better than 10-9 over a 

wide domain of practical interest for applications using the HITRAN molecular spectroscopic database. However 
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the accuracy of Abrarov algorithm I or II deteriorates further with decreasing y. Different approaches have been 

implemented to overcome this problem[]. For example, the Chiarella and Reichel approximation (equation (15) in 

[11]), the Weideman’s rational approximation (equation (38-I) in [12]), the exponential series approximation 

(equation (14) in [13]) and the rational approximation (equation (14) in [10]) that provide highly accurate and 

rapid calculation for the VF within narrow band domain 0 ≤ x≤ 15 and 10−6 ≤ y ≤ 15. However the accuracy of 

these algorithms deteriorates significantly while y is small than 10−6. Abrarov and Quine[14] presented two 

approximations for the VF with small y ( y ≤ 10-6 ), however these two approximations need to calculate 

Dawson’s integral which has no analytical solution. Therefore, The highly accurate and simultaneously rapid 

computation of VF at 0 < y << 1 still remains problematic[15] and the high-accuracy approximation with 

boundary-free may also be required. 

In this work we propose a new approximation for the VF based on the Fourier expansion of the exponential 

multiplier for efficient computation and the availability of the algorithm over a wide domain (10−4 ≤ x ≤40,000 

and 10−10 ≤ y ≤ 102) is verified by computational test. This algorithm is based on elementary functions that are 

freely available in a standard library of most programming languages. We applied MATLAB R2014a supporting 

array programming features. A typical desktop computer Intel(R) Quad CPU with RAM 4.00 GB was utilized. 

2. Approximation methods 

2.1 Truncation approximation of the Voigt function 

In the Abrarov algorithm II, the upper integration limit ∞ in Eq. (3) was replaced by T = 12 as sufficient for 

high-accuracy calculation since the exponential multiplier decays very rapidly with increasing t. Here we 

discuss the error caused by this truncation through numerical calculation in detail. 

The truncation approximation of the VF is defined as 
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(where T is a real number), with a relative error given by  
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Fig. 1 show the logarithm relative error log10∆T of the truncation approximation in the domain 0 ≤ x ≤ 15 and 

10-10 ≤ y ≤ 15 (this domain is the most difficult for rapid and accurate computation of the VF, Ref[10]) at T = 10, 

12, 14, and 16 respectively. 
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Fig. 1. Contour plot of log10∆T for domain 0 ≤ x ≤ 15 and 10-10 ≤ y ≤ 15 at (a) T = 10, (b) T = 12, (c) T = 14 and (d) 

T = 16 respectively. The parameter y is using logarithmic axes. 

As we can see from Fig. 1a, the relative error of the truncation approximation is less than 10-5 in the region y 

≥10-4 and the relative error increases rapidly to 0.25 with decreasing y at T = 10. Figs. 1b, 1c and 1d illustrate 

that the maximum relative error is decreases significantly with the increase of T. For example, the maximum 

relative error still less than 10-17 even if y is very small ( y ≥ 10-10 ) at T = 16.  

2.2 Approximation of exponential multiplier in arbitrary interval 

The exponential multiplier exp(-1/4t2) can be approximated by Fourier series within a certain integration 

domain [-τ, τ] as 
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with a relative error given by 

 
2 2

0

( ) [exp( / 4) cos( )] / exp( / 4) ,
N

n

n

n
t t a t t






     (7) 

where the corresponding expansion coefficients are  
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Fig. 2. 

Fig. 2 The relative error δ(t) at N = 23 within the integration domain [0, ]t  , where τ = 12. 
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Fig. 2 illustrates the relative error δ(t) at N = 23 within the integration domain [0, ]t  , where τ = 12. As we 

can see the accuracy of Eq. (6) is better than 10-16 in the smaller domain [0,4]t , however the accuracy 

deteriorates further with decreasing y. This fact explains that the accuracy of Abrarov algorithm I is two orders 

lower than the truncation approximation (T = 12) of the VF. 

In order to achieve the high accuracy of the exponential multiplier in a larger interval, the number of terms of 

Eq. (6) needs to be greatly increased, which will significantly reduce the computational efficiency of VF. In this 

work, piecewise function method is used to approximate the exponential multiplier in arbitrary interval with high 

accuracy as following 
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where T0 is smaller than τ to ensure higher accuracy of exponential multiplier. The accuracy of Eq. (9) is 

determined by the maximum relative error of Eq. (6) in the subdomain 
0[0, ]t T , for example, the maximum 

relative error of Eq. (9) is less than 10-16 in arbitrary interval while N = 23, τ = 12 and T0 = 4. 

2.3 Approximations expressions of Voigt function 

By substituting Eq. (9) into Eq. (3), the following approximations expressions of VF in analytic form is 

yielded (Appendix A) 
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where 2MT0 is the upper integration limit of the truncation approximation of the VF, and 
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and the coefficients in Eq.(11) is defined as follows 
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3. Results and discussion 

3.1 Error Analysis 

In order to quantify accuracy of the series approximation (10), it is convenient to define the relative error as 
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where the highly accurate reference values of K(x, y) can be obtained according to Eq. (1) by using the MATLAB 

that supports error function of complex argument. 

Figures 3a and 3b show the logarithm log10∆P of the relative error of the series approximation (10) at N=33, 

M = 1, T0 = 4.1515, and τ =14.3417 (the corresponding expansion coefficients an with 32-bit significant number 

are shown in Appendix B). The domain required for coverage of the HITRAN molecular spectroscopic database 

is 0 < x < 40,000 and 10−4 < y < 102[16] while the domain y << 1 is the most difficult for accurate and rapid 

computation of the Voigt function. Therefore, we will consider the accuracy behavior within the HITRAN 

domain and narrow band domain 10−4 ≤ x ≤40,000 ∩ 10−4 ≤ y ≤ 102 and 10−4 ≤ x ≤40,000 ∩ 10−10 ≤ y ≤ 10-4 

separately as shown in Figs. 2a and 2b, respectively. 

  

Fig. 3. Logarithms of the relative error log10∆P : (a) for the HITRAN domain 10−4 ≤ x ≤40,000 ∩ 10−4 ≤ y ≤ 102 

and b) for the narrow band domain 10−4 ≤ x ≤40,000 ∩ 10−10 ≤ y ≤ 10−4. The parameters applied in computation 

are N = 33, M = 1, T0 = 4.1515, and τ = 14.3417. 

As we can see from Fig. 3a, within the HITRAN domain the accuracy of the series approximation is better 

than 10−23 over most of this area. The worst accuracies occurs in the HITRAN subdomain 3 ≤ x ≤40,000 ∩ 10−4 ≤ 

y ≤ 10−2, and remains high and better than 5.5383×10−19. In the narrow band shown in the Fig. 2b, the accuracy 

deteriorates further with decreasing y. However, it still remains high and better than 10−15 over most of this area. 

The worst accuracies occurs in the narrow band subdomain 3 ≤ x ≤ 40,000 ∩ 10−10 ≤ y ≤ 10−8, and remains high 

and better than 5.5385×10−13. The increase of log10∆P can be explained from the fact that the decay rate of the 

multiplier exp(-yt) in Eq. (3) decelerates when y→0.  

3.2 Parameter optimization 

Since higher accuracy is unnecessary in some cases, for example, the accuracy of the Voigt function should 

be better than 10−6 in modern applications requiring the HITRAN molecular spectroscopic database, we may 

select the optimal parameters to minimize the number of terms in the series approximation (10) in order to gain 

computational acceleration. By numerical calculation, the optimal parameters under different accuracy levels are 

shown in Table 1. 

Table 1. The optimal parameters N, M, T0, and τ under different accuracy levels ∆. 

N M T0 τ (M+1)×N ∆a 

7 1 2.4716 6.6882 14 3.1334×10−2 
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9 1 2.5397 7.5067 18 2.2091×10−3 

11 1 3.9996 8.2866 22 7.1448×10−4 

13 1 3.0487 8.9895 26 4.5214×10−6 

15 1 3.5094 9.6666 30 4.0066×10−7 

17 1 3.3199 10.2881 34 1.1289×10−8 

19 1 3.7118 10.8779 38 9.9817×10−10 

21 1 4.0616 11.4342 42 8.7514×10−11 

23 1 3.9064 11.9687 46 2.5609×10−12 

25 1 3.5211 12.4853 50 9.2548×10−14 

27 1 4.0921 12.9691 54 6.6239×10−15 

29 1 3.9683 13.4438 58 2.1007×10−16 

31 1 3.8627 13.9084 62 7.7856×10−18 

33 1 4.1515 14.3417 66 5.5383×10−19 

a ∆ represents the worst accuracy within the HITRAN domain 0 < x < 40,000 and 10−4 ≤ y ≤ 102. 

4. Conclusion 

A analytical approximation expressions for rapid and accurate computation of the Voigt function is presented. 

The computational test reveals that with only the first 33 terms Fourier expansion of the exponential multiplier, the 

proposed approximation provides accuracy better than 5.5383×10−19 in the domain of practical interest 0 < x < 

40,000 and 10−4 < y < 102 that is needed for applications using the HITRAN molecular spectroscopic database. 

Compared with the typical approximation algorithms, the proposed approximation still available even if y is very 

small and the accuracy in the narrow band domain 0 < x < 40,000 ∩ 10−10 < y < 10−4 remains high and better than 

5.5385×10−13. Since the approximations Eq. (10) is a general expressions, the desired accuracy can be easily 

achieved by choosing reasonable parameters. In particular, the optimal parameters under different accuracy levels 

from 10−2 to 10−19 are given in Table 1 in order to gain computational acceleration. 

Appendix A  

The infinite integral interval in Eq. (3) can be rewritten in the following form 
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By substituting Eq. (9) into Eq. (A-2) and using the product to sum formulas for cosine functions, the Km(x,y) 

can be approximated in the following form 
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where Imn1(x,y) and Imn2(x,y) are defined as 
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The exact solutions of integral (A-4) and (A-5) can be found analytically by using the following formula 
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Thus the approximations expressions of VF in analytic form is yielded by taking the first M terms of Eq. 

(A-1). 

Appendix B 

Table B-1. The corresponding expansion coefficients an with 32-bit significant number (τ =14.3417). 

an values an values 

a0 0.12358749684139805606487391160845 a17 2.3466322650969412526489681969596×10-7 

a1 0.23559454230112804343225836792199 a18 4.3759194636897685535079448543768×10-7 

a2 0.20400805103788656794943165547129 a19 7.4133582994217752610609063614342×10-9 

a3 0.16049103428021140229749175377995 a20 1.1409905531263872632157815212339×10-9 

a4 0.11470322597572434645667951846306 a21 1.5954033298792293032854019522634×10-10 

a5 7.4476948892917496363156487242415×10-2 a22 2.0266573460572932270002876950548×10-11 

a6 4.3932863215447166381863411516402×10-2 a23 2.3388994291744377839558177607027×10-12 

a7 2.3543906672118550760963661503504×10-2 a24 2.4522466850776632368432116307942×10-13 

a8 1.146275300346992724906273794155×10-2 a25 2.3358134345147566361145467821871×10-14 

a9 5.070149075593823701305136932355×10-3 a26 2.0213128421968580512450842980652×10-15 

a10 2.0373887838353427261395522171592×10-3 a27 1.589096634375971136353317458558×10-16 

a11 7.4378682388632114677997248728108×10-4 a28 1.1349806171786257967268078609795×10-17 

a12 2.4668596299662713098103390410823×10-4 a29 7.3645855515486866359887287230987×10-19 

a13 7.4329597767796741090949063402654×10-5 a30 4.3413419951366507571931138996573×10-20 

a14 2.0347006088142955991546814526266×10-5 a31 2.3255241213458431765895956705523×10-21 

a15 5.0601178890062411229714831791024×10-6 a32 1.1265875172434834603452734623574×10-22 

a16 1.143252454802225683391058961136×10-6 a33 5.4517271064297357038098957239728×10-24 
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