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Abstract 

We propose a solution approach to the so-called Collatz conjecture problem. The iterations of the 

algorithm are represented through the series which convergence analysis is supposed to confirm the 

conjecture. 
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Introduction 

This is a well-known problem in the mathematical community, usually referred to as the "Collatz 

conjecture" or "3n+1" (and sometimes by other names: Kakutani's, Ulam's, Syracuse problem or 

conjecture). The formulation of the problem is attributed to Lothar Collatz, but the exact origin is not 

clearly known [1, 2]. 

The full-fledged problematic discussion, as well as analysis and solution approaches, could be found in 

the works by Jeffrey Lagarias [3-5]. 

The problem is so famous because it is still considered unsolved [6] despite a very simple formulation. 

We believe that the popularization of science on YouTube channels [7] has sparked the interest of a 

wider audience and drawn attention to the problem. 

In this particular work, we would like to propose a representation of the algorithm that can be analyzed 

through a series convergence process. First, we recall the conjecture to be proved: we apply the known 

algorithm to any positive integer; the process will eventually reach the number 1, regardless of which 

positive integer was initially chosen. 

 

Discussion 

1. Algorithm representation form through the series 

For the explanation purpose we will use the following operational notation: 

𝑛1
   3𝑛+1    
→     3𝑛1 + 1, 

𝑛2
       

1

2
𝑛      

→     
1

2
𝑛2;           (1) 

where 𝑛 – the integer number at each iteration step the particular operation to be applied, 𝑛 ∈

ℕ[1;∞), 𝑛1 – an odd number, 𝑛2 – even number. Obviously, 3𝑛1 + 1 – even number, as the operation 

is applied to the odd number only, according to the algorithm rule, while 
1

2
𝑛2 could be odd or even as 

well. 

Let us assume that any positive integer 𝑛0 can be initially represented in the following form: 

𝑛0 = 𝑎2
𝑚0;           (2) 
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where 𝑎 – rational positive number, 𝑎 ∈ ℚ(0; 1], the numerator of 𝑎 is an odd integer; 𝑚0 – integer 

number satisfying the representation form, 𝑚0 ∈ ℕ[0;∞). Examples: 5 =
5

8
∙ 23, 27 =

27

32
∙ 25, 1 = 1 ∙

20 etc.  

Then we will consider the result of applying 3𝑛 + 1 operation: 

𝑎2𝑚0
   3𝑛+1    
→     3𝑎2𝑚0 + 1 =

3

4
𝑎2𝑚0+2 + 1 = 2𝑚0+2 [

3

4
𝑎 +

1

2𝑚0+2
].    (3) 

From this notation, we can see that the expression under the brackets is less than or equal to 1 for any 

positive initial number: [
3

4
𝑎 +

1

2𝑚0+2
] ≤ 1, that could be easily shown: 

4𝑛 ≥ 3𝑛 + 1 ==> 1 ≥
3

4
+

1

4𝑛
; 

for any positive integer 𝑛, where the equal sign holds only for 𝑛 = 1. From this we notice: 

2𝑚0+2[𝑎] ≥ 2𝑚0+2 [
3

4
𝑎 +

1

2𝑚0+2
] ==> 

1

22
𝑎 ≥

1

2𝑚0+2
 ==> 𝑎 ≥

1

2𝑚0
;  (4) 

that corresponds to the applied constraints: 𝑎 ∈ ℚ(0; 1], 𝑚0 ∈ ℕ[0;∞). 

After operation (3), we must necessarily perform a division operation. We represent this in the 

following notation, reducing only the power of two while leaving the expression under the brackets 

unchanged: 

2𝑚0+2 [
3

4
𝑎 +

1

2𝑚0+2
]
       

1

2
𝑛      

→     2𝑚0+1 [
3

4
𝑎 +

1

2𝑚0+2
].      (5) 

We cannot know how many times we need to apply the division operation before we get an odd 

number, so we call the power of two reached as 𝑚1; we can say with certainty that 0 ≤ 𝑚1 ≤ 𝑚0 + 1, 

or through induction 0 ≤ 𝑚𝑖 ≤ 𝑚𝑖−1 + 1. We will say, that we had performed the algorithm cycle, 

where the index of 𝑚 refers to the number of applied cycles. 

Then we apply operation 3𝑛 + 1 again after the first cycle completion: 

2𝑚1 [
3

4
𝑎 +

1

2𝑚0+2
]
   3𝑛+1    
→     2𝑚1+2

3

4
[
3

4
𝑎 +

1

2𝑚0+2
] + 1 = 2𝑚1+2 [(

3

4
)
2
𝑎 +

3

4

1

2𝑚0+2
+

1

2𝑚1+2
]. (6) 

To find the overall result of the algorithm application, we reapply the required number of 
1

2
𝑛 to 

complete the second cycle and provide 3𝑛 + 1 operation: 

2𝑚2 [(
3

4
)
2
𝑎 +

3

4

1

2𝑚0+2
+

1

2𝑚1+2
]
   3𝑛+1    
→     2𝑚2+2 [(

3

4
)
3
𝑎 + (

3

4
)
2 1

2𝑚0+2
+ (

3

4
)

1

2𝑚1+2
+

1

2𝑚2+2
]. (7) 
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We consider the sequence of 3𝑛 + 1 with the connected 
1

2
𝑛 operations as the algorithm cycle. We 

associate the number of cycles applied with the letter “𝑘” corresponding to the lower index of 𝑚 in 

the previous equations. The 𝑘 is taken to be unboundedly high, 𝑘 ∈ ℕ[0;∞): 

𝑎2𝑚0
      lim

𝑘→∞
3𝑛+1,   

1

2
𝑛     

→              lim
𝑘→∞

2𝑚𝑘+2 [
(
3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1 1

2𝑚0+2
+ (

3

4
)
𝑘−2 1

2𝑚1+2
+⋯

…+ (
3

4
)
1 1

2𝑚𝑘−2+2
+ (

3

4
)
0 1

2𝑚𝑘−1+2

].  (8) 

Importantly to note, that we assume an infinite process that starts from any odd integer (including 1) 

which is described through the series (8). 

We assume the possibility to start with initial even number: in that case, the first cycle consists only 

1

2
𝑛 operations. In our notation, we assume cycle operator application for the odd number with the 

resulting odd number. So, we assume the initial even number is brought to the consequent odd before 

the series (8) form application. 

For the demonstration purpose, we provide several cycles application for the start number 1 

(𝑎 = 1, 𝑚0 = 0); for the notation simplification purpose we will write the cycle number above the 

operator arrow. For this particular example 𝑚𝑖 = 𝑚𝑖−1 − 2, as after 3𝑛 + 1 operation application we 

apply strictly two 
1

2
𝑛 operations: 

20[1]
   𝑘=1    
→    2(0−2)+2 [

3

4
1 +

1

20+2
]
   𝑘=2    
→    2(0−2)+2 [(

3

4
)
2
1 + (

3

4
)
1 1

20+2
+

1

20+2
]
             
→   ⋯  (9) 

The form (9) serves to represent the consequence ⋯ → 1 → 4 → 2 → 1 → ⋯ as each cycle of the 

algorithm. 

We could rephrase the (8) formula to produce a series form for the convenient analysis: 

𝑎2𝑚0
      lim

𝑘→∞
3𝑛+1,   

1

2
𝑛     

→              lim
𝑘→∞

2𝑚𝑘+2 [(
3

4
)
𝑘
𝑎 + ∑ (

3

4
)
𝑘−𝑖 1

2𝑚𝑖−1+2
𝑘
𝑖=1 ].    (10) 

The series as algorithm representation form (10), we will use as a basis for the further discourse. 

 

2. The series analysis 

If we apply to the initial number representation form (2), we assume it is easy to show through the 

induction, that algorithm convergence does not depend on the initial power of two, or 𝑚0 equally. 

Suppose, we consider a number 𝑎𝑗2
𝑚0 and it turns out to converge through the algorithm application, 

therefore, we let ourselves conclude 𝑎𝑗2
𝑚0+𝑖 converge for any 𝑖 ∈ ℕ[0;∞): according to the algorithm 
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rule we apply to 𝑎𝑗2
𝑚0+𝑖 𝑖 number of 

1

2
𝑛 operations, the representation forms become equal, as for 

𝑚0, (𝑚0 + 𝑖) ∈ ℕ[0;∞). We apply the proposition “𝑛0 converges through Collatz algorithm to 1” as 

𝐶(𝑛), while assuming 𝑛0 as a function of 𝑎 and 𝑚0 to conclude: 

∃𝑎∃𝑚0𝐶(𝑛0(𝑎,𝑚0)) → ∃𝑎∀𝑚0𝐶(𝑛0(𝑎,𝑚0)).       (11) 

Thus, the Collatz convergence result does not depend from 𝑚0 parameter. 

Then we will analyze the series under the square brackets: 

𝑆𝑘 = ∑ (
3

4
)
𝑘−𝑖 1

2𝑚𝑖−1+2
𝑘
𝑖=1 .         (12) 

We can say, that this series monotonically increases and is finite. We know from the algorithm 

property, that terms in the square brackets do not exceed 1. It could be checked by necessary condition 

for convergence, where the last term corresponds to 𝑖 = 1, as we can choose whatever terms order: 

lim
𝑘→∞

(
3

4
)
𝑘−1 1

2𝑚1−1+2
= 0,         (13) 

this condition allows considering the series as convergent, which we previously confirmed through the 

series construction algorithm property. Thus, the limit of the function in square brackets exists and is 

finite and we can provide the conclusion: 

lim
𝑘→∞

[(
3

4
)
𝑘
𝑎 + ∑ (

3

4
)
𝑘−𝑖 1

2𝑚𝑖−1+2
𝑘
𝑖=1 ] = 𝑔,   𝑔 ∈ ℚ[0;  1].      (14) 

We consider the case when 𝑔 = 0: this situation corresponds to monotonically increasing 𝑚𝑘 =

𝑚𝑘−1 + 1 which is allowable according to the algorithm formulation. To uncover uncertainty, we 

provide transformations of the limit (10), assuming 𝑚𝑘 = 𝑚0 + 𝑘: 

lim
𝑘→∞

2𝑚0+𝑘+2 [(
3

4
)
𝑘
𝑎 + 𝑆𝑘] = lim

𝑘→∞
(2𝑚0+2 (

3

2
)
𝑘
𝑎 + 2𝑚0+𝑘+2𝑆𝑘) = ∞,    (15) 

according to the theorems of the divergent sequence, because: 

lim
𝑘→∞

2𝑚0+2 (
3

2
)
𝑘
𝑎 = ∞.          (16) 

Analyzing such possibility, we conclude, that the limit diverges to infinity regardless of what the value 

of 𝑎 is taken. Important: here we do not provide any conclusions regarding the Collatz algorithm 

realization. 

Then, we consider the case, when 𝑔 ≠ 0; the 2𝑚𝑘+2 sequence therefore converge and we could 

provide the following transformation: 
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lim
𝑘→∞

(2𝑚𝑘+2 [(
3

4
)
𝑘
𝑎 + 𝑆𝑘]) = lim

𝑘→∞
(2𝑚𝑘+2) [ lim

𝑘→∞
((
3

4
)
𝑘
𝑎) + lim

𝑘→∞
(𝑆𝑘)].   (17) 

We will consider the limit, associated with 𝑎, while other terms converge to nonzero numbers: 

lim
𝑘→∞

(
3

4
)
𝑘
𝑎 = 0.          (18) 

We conclude, that the limit associated with 𝑎 converges to zero regardless of what the value of 𝑎 is 

taken. 

According to the provided argumentation, we conclude, that limit (10) is not affected by the value 𝑎. 

The limit (10) in turn is an unambiguous representation of infinite Collatz algorithm applied to any 

initial integer, which is represented as 𝑛(𝑎,𝑚0). Then, we conclude that the Collatz algorithm 

application result is not affected by the value 𝑎. 

Finally, we apply to the previously provided implication (11) to conclude: 

∃𝑎∃𝑚0𝐶(𝑛0(𝑎,𝑚0)) → ∀𝑎∀𝑚0𝐶(𝑛0(𝑎,𝑚0)), or       

∃𝑛0𝐶(𝑛0) → ∀𝑛0𝐶(𝑛0).         (19) 

Obviously, ∃𝑛0𝐶(𝑛0) ∴ ∀𝑛0𝐶(𝑛0), Q.E.D. 

 

Summary 

1. Any initial integer number can be represented through the form (2), 𝑛0(𝑎,𝑚0). 

2. The infinite process of the Collatz algorithm application could be presented through the form 

with initially known properties, consisting of a series (10). 

3. The form result does not depend on parameter 𝑚0. 

4. The series convergence analysis shows that convergence result does not depend on parameter 

𝑎 either. 

5. The form (10) is an unambiguous representation of the Collatz algorithm applied to a number, 

therefore, the Collatz algorithm result does not depend on 𝑎 and 𝑚0. 

6. If we accept proposition 1, the Collatz algorithm result does not depend on what initial number 

is chosen (19). 

7. Therefore, if we show, that the Collatz conjecture satisfies any particular number, the Collatz 

conjecture satisfy any positive integer; that confirm the conjecture. 
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