
  

 

 

 

The relationship between the  ( ) function and solutions of 

Diophantine equations 
 

By Shazly abdullah 
 

ABSTRACT.In this work we used an algebraic method that uses elementary algebra . To 

create   series. We used the series and Euler function  ( ) to find solutions to some 

types of Diophantine equations such as           . We found a relationship 

between the solutions of the Diophantine equations and solutions of some types of 

congruences  that use the  ( ) function. This relationship is the results that relate the 

solutions of congruence to the solution of the equations.  
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1.INTRODUCTION 
 

According binomial theorem and difference of tow nth power theorem if  n  a positive integer  and 

x y real numbers  then  
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2.basic series 
 

Theorem.1 let                                       then 
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Theorem.2 let  ( )                       ( )   (   ) where n in an odd  where    
 (     ) , (   )           then 
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Theorem.3 if                               where n is odd   (   )     then 
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Theorem.4 let p prime number and    a positive integer   
   

         then  

 

     

    
 
  

 
  

  
   

  
(       ) 

 

   In this section  we will create the basic  series  

Basic series. Let n is an odd         real numbers then 
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Proof. let       real number then  according to difference of tow nth power theorem we have that 
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 let           where m constant then by multiplying m and  adding     (   )  from both 

sides 
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According difference nth power theorem  if n is odd we have  
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By subtracting   (
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By extracting the common factor  between the terms we find that 

( )                   
   (   ) 

     
  (

    

   
)                              

        (    (   )    )  (    (   )     )
 (    (   )     )    ((   )         ) 

 

So we note in equation (2) term (1) equal         and term(2) equal     (   )     and tem 

(3) equal     (   )      so From equation (1) we have  
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From equation (3) and term (1) in equation (2) 
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From equation (3) and term (2) in equation (2) 
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Term (3) and equation (2) 
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Last term in equation (2) 

(   )                  
   (     ) 

Then we have that 
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We note from equation (3) 
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From equation (3) and (4) we have 
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Then we have  



  

5 
( )                                                                         (    )    

 (     )    (   )  
                                        

Note     (  )  (  )       ( ) and (  ) (  )    (  )     (  )  if j and r is odd or 

even note we find in    (   )   
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By analyzing all the complex terms of the   (   ) we find that 
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In   (   ) a all compound terms have been dismantled note if we add for every first term in the 

complex term we find that  (           ) then we adding the terms to include that (   ) 

finding that (          )  then the terms that include (   )  we find that ( (  

         )) if the method is equal all the terms can be added          until we reach the 

last terms (   )    then 
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Using the binomial theorem it is possible to abbreviate all the terms that include, (   )      
(   )  and (   ) until we reach the last term (   )   , we notice that  
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3.proof theorem.1  

 
In this section we will use the basic series   (     )   

 
 (     )    (   ) in prove the 

theorem.1 and use the theorem.1 to prove  theorem.2 let in   
 (     )              then we 

find 
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According to the equations, (            )   we find that  
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Proof.theorem.2 and theorem.3 
 According to Euler’s theorem (   )            ( )                         ( )  

 (     ) see [       ]  
 

proof. Theorem.2 from theorem.1  if n is odd and k g real number we have  
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Let in theorem.1                    then        so we have 
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From equation (10) and (11) we have that 
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Let  ( )   (   )        ( )                     we note in rigor side equation 
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According Euler theorem  
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From equation (13) and Euler theorem  if     (     ) we have  
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Proof. Theorem.3 from equation (13) we have that 
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Then If      (   )  we n is odd we have 
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Proof. Theorem.4  according theorem.2 if  ( )   (   )                         
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let in theorem.1                                               (  )      (  
 )                                   we have that 
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