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Prior studies have focused on the overall behavior of randomly moving particle swarms. However, the character-6

istics of ubiquitous special particle swarms that form in these swarms remain unknown. This study demonstrates a7

generalized diffusion equation for randomly moving particles that considers the velocity and location aggregation8

effects in a special circumstance (that is, in a moving reference frameRu relative to a stationary reference frame9

R0). This equation can be approximated as the Schrödinger equation in the microcosmic case and describes the10

kinetics of the total mass distribution in the macrocosmic case. The predicted density distribution of the particle11

swarm in the stable aggregation state is consistent with the total mass distribution of massive, relaxed galaxy clus-12

ters (at least in the range of r < rs), preventing cuspy problems in the empirical Navarro-Frenk-White (NFW)13

profile. This article is helpful for inspiring people to think about the essence of universal gravitation.14
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1. Introduction17

The kinetics of randomly moving particles have been extensively studied in the past. However, previ-18

ous studies have been based on the case in which the means (velocity and density) of the particles in19

the target (sub-) domain are equal to those in the total (parent) domain (Fig. 1) or the particle swarm in20

the sub- and parent domains are not distinguished[1, 2, 3]. In fact, there are some special subparticle21

swarms with low probabilities in the particle swarm that are formed by randomly moving particles.22

For example, during a certain period, the subparticle swarm (Ru) with a constant velocity relative to23

the parent particle swarm[4] belongs to this category (Fig. 1). These special subparticle swarms are24

accidental phenomena for the particles in the parent domain, but for the observers near these subpar-25

ticle swarms, they are determined "gifts" from nature (survivor bias). These cases are also the more26

common existences we see and are meaningful to human beings (if the whole universe is regarded as27

composed of very small particles, the galaxy in the galaxy cluster, the solar system in the Milky Way,28

and the atoms on the earth are similar to this kind of phenomenon). Therefore, it is necessary to study29

particle swarms in common but special cases.30

These special particle swarms, as a portion of the total particle swarm in a completely random state,31

may be in a variety of different states. In a certain period and a fixed target domain (the volume is32

fixed and the location can move with the average velocity of the target particle swarm, the same is done33

below), when a subparticle swarm is in a completely random (free) state, the location distribution of34

the particles in that state follows the Poisson distribution based on time with the same strength as the35

Poisson distribution of the population based on location. The velocity direction distribution is also con-36

sistent with the population (the norm of the average velocity follows the same Maxwell distribution).37

When a subparticle swarm remains in a special accidental state for a certain period, it is equivalent to38

the subparticle swarm being subject to some constraints and being in a non-completely random state.39

According to the constraint situation of the subparticle swarm, we divide it into the following three40
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Figure 1. Relationship between the Total (Parent/Background) Domain (Red), Target (Sub-) Domain (Blue) and
Microdomain (Green).

types of constrained states: For the first type of constrained state, in a certain period and a fixed target41

domain, the location distribution of the particles follows a Poisson distribution based on time with the42

same strength as the Poisson distribution of the population based on location, but the norms of the43

average velocities do not follow the Maxwell distribution. The special case of this state is that the aver-44

age velocity norms of all counted particles are constant at u under the unchanged location distribution45

condition, which is called Iu (Fig. 2a). For the second type of constrained state, in a certain period and46

a fixed target domain, the norms of the average particle velocities follow the Maxwell distribution, but47

the location distribution of the particles in the domain does not follow the Poisson distribution based on48

time with the same strength as the Poisson distribution of the population based on location. The special49

case of this state is that the number of particles in the fixed target domain is fixed under the condition50

that the velocity direction distribution remains unchanged. For the third type of constrained state, in a51

certain period and a fixed target domain, the norms of the average particle velocities do not follow the52

Maxwell distribution, and the location distribution of the particles in the domain does not follow the53

Poisson distribution based on time with the same strength as the Poisson distribution of the population54

based on location. The special case of this state is that the number of particles is fixed and the average55

velocity norm of all particles is fixed as u in the fixed target domain, which is called IIIu (Fig. 2b).56

The abovementioned subparticle swarm (Ru) with a constant average velocity during a certain period57

belongs to IIIu.58

When a subparticle swarm in the constrained state of IIIu (Ru or the target domain) is observed in59

the total domain (R0), it has the characteristics of location aggregation and velocity direction aggre-60

gation, which affect the diffusion rate constant of the particles. Therefore, the kinetic phenomena of61

this type of particle swarm exhibit some special properties. This article focused on the particle swarm62

in the constrained state of IIIu, deduced the diffusion equation of the particles in this case and iden-63

tified the formation conditions of a non-diffusion particle swarm. The basic structure of this article is64

as follows. The mathematical model was deduced step-by-step based on the defined physical model.65

Before derivation, two verifications were performed. First, it was confirmed that the physical model66

contained special relativistic effects; second, the Schrödinger equation was derived from the physical67

model under certain conditions. The process of the two checks also clarified how to derive the math-68

ematical model, that is, the generalized diffusion equation. The process of deriving the generalized69
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Figure 2. Relationships between the target (sub-) particles/domain and the total particles/domain. a, The con-
strained state of Iu: the number of blue particles follows the Poisson distribution based on time with the same
strength as the Poisson distribution of the red particles based on location. b, The constrained state of IIIu: the
number of blue particles is fixed.

diffusion equation includes the following: (i) vector decomposition. The decomposition of nonmoving70

particles in space is extended to the decomposition of a 2-dimensional vector representing the sum of71

the 3-dimensional vector of moving particles at a certain point in space, which is the core of the whole72

derivation. (ii) The classic diffusion coefficient is reinterpreted and the essential key information is73

obtained. (iii) Based on (i) and (ii), the equations are assembled according to the classical diffusion74

principle to obtain the generalized diffusion equation. In addition, some important parts related to the75

equation are discussed and verified. The following is a detailed description.76

2. Methods77

In this study, a mathematical model was obtained by logical derivation based on a physical model.78

Mathematica 13.0.1.0 for Mac (Wolfram Research Inc.) was used for all of the mathematical calcula-79

tions, and the hardware was a Mac mini (Z12P) with a macOS Monterey 12.3.1 operating system. The80

solutions to each specific problem can be found in Supplementary Information.81

3. Results and Discussions82

3.1. Physical Model83

It is assumed that there are countless identical point particles with certain masses in an infinite 3-84

dimensional space. Their speed is c, the motion directions of each particle are evenly distributed in a85

3-dimensional space, and there is no interaction between these particles. Our research object is a subset86

of such particles. The particles in this subset are in the special case of the third type of constrained state87

(i.e., IIIu, the blue domain in Fig. 2b).88
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3.2. Special Relativistic Effects in the Constrained State of Iu89

In this article, the "point particles" described above are called "particles" or "1-particles", while larger90

finite-mass-level particles composed of k particles are called "k-particles". The k-particles or aggre-91

gates mentioned in this section are k-generalized-particles or aggregates. The k-particle term means92

that only k particles are counted, but it does not matter whether they truly gather together. The 1-93

particles can be represented by random vectors with equal norms that are equal to the same movement94

speeds in Euclidean space. Thus, the "random vectors" and "randomly moving particles (or velocities)"95

mentioned in this article have the same meaning.96

My previous study[3] has proven that the vector group in the constrained state of IIIu formed by97

random vectors with equivalent norms has a special relativistic effect. That is, because of the statistical98

effect, when the centroid of the subparticle swarm moves at a speed of u in one direction, the parti-99

cles or the generalized k-particles formed by the subparticles either lose a certain degree of freedom100

in other directions or the movement trends in other directions decrease, resulting in the effect of spe-101

cial relativity. Here, the slowing ratio

√
c2 − u2
c

of the particles in Ru or generalized aggregates they102

form is recorded as Γ[·] or Γ (we call it the Γ, or Γ[·], effect). Although the particles in Ru are in the103

constrained state of Iu when observed fromR0, they are in a completely random state when observed104

from Ru. Moreover, my previous study[3] has confirmed that all the physical laws are the same as105

when studying a k-generalized-particle in R0 observed from R0 and in Ru observed from Ru. In106

the constrained state of Iu, the particles themselves or the generalized particles formed by the particles107

show the effect of special relativity; in the constrained state of IIIu, the aggregation effect also includes108

location aggregation (but they are not related to each other). Here, these two (aggregation) effects com-109

bined with the simultaneous effects of the velocity direction and location aggregation are collectively110

called the statistical effect of randomly moving particles; such particles are in the constrained state of111

IIIu. When these statistical effects work together, the generation conditions of a non-diffusion particle112

swarm can be obtained. This is explained in detail below.113

114

3.3. Establishment of the Classical Diffusion Equation in the Constrained State115

of Iu116

Regardless of how these particles move in 3-dimensional space, their trajectories are continuous, which117

leads to diffusion (or agglomeration) behavior, which is the generalized diffusion of randomly moving118

particles in the constrained state of IIIu. Considering particles of the same mass and speed, the gen-119

eralized diffusivity of the corresponding random vectors is equivalent to the generalized diffusivity of120

random momenta (which are also vectors). It is considered that the scale of the "generalized diffusiv-121

ity of vectors" is simply the scale that is most suitable for describing the invariant laws for randomly122

moving particles. More information will be lost if the scale is even slightly more macroscopic (e.g.,123

the scale can be approximately described by real diffusion), and there will be no invariant statistical124

law to follow if the scale is even slightly more microscopic (for example, the scale described at the125

beginning of this paragraph). At this scale, the external behavior of the vectors in a tiny space cannot126

be considered isotropic. Before studying the particles in the constrained state of IIIu, we first study the127

particles in the constrained state of Iu. For the time being, the Γ effect is not considered here; this is128

consistent with the scenario of a completely free state. Compared with the IIIu case, there is only diffu-129

sion without agglomeration, and the other cases are consistent. According to the Maxwell distribution,130

the total vector in a certain domain always points in an uncertain direction, and the norm is directly131



Theoretical Study on the Kinetics of a Special Particle Swarm 5

Figure 3. Illustration of the principle of the generation of a mutual diffusion potential in microdomains VA and
VB.

proportional to
√
k, where k is the number of vectors (see Part 1 of the Supplementary Information132

for details). Although the direction of the total vector in a tiny space cannot be determined from the133

Maxwell distribution, we hope to use appropriate constraints to obtain the distribution rules governing134

the norm and direction of the total vector at any location in space.135

First, we determine the constraints acting on spatial vectors (norms and directions). Let the density136

of the vector sum at some point P in space be denoted by X , which is a function of location and time,137

that is, X (x, y, z, t). It is defined as follows: at a certain time t, let Y(V) be a function of the sum of all138

vectors in the closed domain V containingP(x, y, z); and X (x, y, z, t) = lim
V→P

Y(V)

V
[in the following,139

X is also a function of the spatial coordinates (x, y, z) and the time coordinate t].140

X is the statistical average vector. The relationship between X and the number of vectors follows141

a Maxwell distribution. As illustrated in Fig. 3a, it is assumed that there are two microdomains VA142

and VB of the same size along the normal direction on both sides of the segmentation surface Φ. If143

the sum of all vectors in VA is⇀OA and the sum of all vectors in VB is⇀OB, then their sum is⇀OC, and144

their difference is ⇀BA. Let the sum and difference vectors intersect at point M (Fig. 3b). Because the145

velocity direction distribution is homogeneous and there is no need to consider the statistical effects146

due to location aggregation here, considering the previous assumption that the domains VA and VB147

on both sides of Φ are equal, after the particles randomly move and mix, both vectors must tend to148

approach their average value⇀OM; that is, both⇀OA and⇀OB tend toward⇀OM. The change rate of⇀OA149

or⇀OB to⇀OM depends on the difference between⇀OA and⇀OB and the diffusion (motion) rate of par-150

ticles. Accordingly, the rate of change in X along the normal direction at a particular point should be151

related to the time-dependent rate of change in X . This time-dependent rate of change is also affected152

by another inherent factor (i.e., the velocity of the particles forming X ), the concrete value of which is153

temporally uncertain. Therefore, the above two rates of change should be directly proportional when154

the differences between particles caused by density (location aggregation of particles) are neglected.155

In view of the similar calculus properties of vector and scalar, the derivation method for real diffusion156

is imitated here. If a domainW is enclosed by a closed surface Σ , then during the infinitesimal period157

dt, the directional derivative
∂X
∂N

of X along the normal direction of an infinitesimal area element158

dS on the surface Σ is directly proportional to the vector dX flowing through dS along the normal159
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Figure 4. Illustration of the diffusion of the vector sum density X .

direction in the closed domainW enclosed by Σ (Fig. 4), under the assumption that the coefficient is160

a positive real number D.161

From time ta to time tb, when the influence of the vector density on D is not considered (i.e., the162

diffusion coefficient is the same at every location), the variation of the vector sum A inside the closed163

surface Σ is164

δA =

ˆ tb

ta

‹
Σ

D
∂X
∂N

dS

dt. (1)

According to the Gaussian formula, Eq. 1 can also be written in the form165

δA =

ˆ tb

ta

˚
W

D∆Xdxdydz

dt, (2)

where ∆ is the Laplace operator, which describes the second derivative with respect to location166

(x, y, z). The left-hand side of Eq. 1 (δA) can also be written as167

δA =

˚

W

(ˆ tb

ta

∂X
∂t

dt

)
dxdydz. (3)

By setting the right of Eq. 3 equal to the right of Eq. 2 and transforming the order of integration, we168

can obtain169

ˆ tb

ta

˚

W

∂X
∂t

dxdydzdt=

ˆ tb

ta

˚

W

D∆Xdxdydzdt. (4)

Based on the observation that ta, tb and domain W are all arbitrary, the following equation can be170

written:171

∂X
∂t

=D∆X . (5)

To facilitate the task of vector decomposition in the constrained state of IIIu, a 3-dimensional vector172

needs to be converted into a plane vector. Next, we determine the constraints acting on plane vectors.173
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Although the operation in Eq. 5 is performed using 3-dimensional vectors, when differential operations174

are performed on a spatial vector, the (sum or) difference operations are always performed at two175

points on the vectors that are separated by an infinitesimal distance; thus, all 3-dimensional vectors can176

exhibit only relative 2-dimensional characteristics. Consequently, by solving this differential equation,177

only 2-dimensional constraints can be obtained. Therefore, only the derivatives of plane vectors are178

needed to act as the derivatives of the 3-dimensional vectors (in this case, plane vectors can retain179

the important information, such as the norms of the vectors and the included angle between them).180

Moreover, according to the Sturm-Liouville theory, the function of plane vectors obtained by solving181

the partial differential equation expressed in terms of plane vectors is unique and corresponds to the182

3-dimensional vectors obtained from a differential equation of the same form. It is assumed that the183

function of plane vectors describing the density of the vectors or momenta is M(x, y, z, t), which184

corresponds to X at the point (x, y, z, t) [unless otherwise stated, in the following, M is a function185

of the spatial coordinates (x, y, z) and the time coordinate t]. Thus, X can be replaced with M. After186

this replacement, it is obvious that the norm of the plane vector does not change, but its direction will187

be reoriented. Finally, Eq. 5 can be written as188 ∥∥∥∥∂M∂t
∥∥∥∥=D ‖∆M‖ . (6)

Now, let us determine the constraints on the direction of the plane vector M. In view of the conti-189

nuity of the trajectories of point particles, because M is also characterized in terms of the statistical190

properties of an enormous number of particles, it should also be smooth. According to the theory of191

plane curves, the first and second derivatives of a plane vector in any direction in space are vertical. If192

an equation relating these derivatives is established according to the above derivative relationship (Eq.193

6), the direction needs to be adjusted to be consistent; otherwise, the equations cannot be equal; then,194

the unique and definite relationship can be written in the form195

∂M
∂t

= iD∆M, (7)

where i is an imaginary unit. By multiplying both sides of Eq. 7 by i, the form of the Schrödinger196

equation (without an external field) can be obtained as197

i
∂M
∂t

=−D∆M. (8)

Eq. 8 describes the distribution of a moving particle swarm (including the direction of movement) in198

the constrained state of Iu (not considering the Γ effect) or in a completely free state following the same199

diffusion coefficient; in other words, it is the classical (vector) diffusion equation. When u is small, the200

constrained state of Iu can also be approximated to a completely free state (the Γ effect can be ignored).201

However, when u is large or there is both a location-constrained state (i.e., the constrained state of IIIu),202

the effect on diffusion is not clear. To more comprehensively describe this type of diffusion process203

(which is called generalized diffusion), further analysis is needed.204

3.4. Construction of the Generalized Diffusion Equation in the Constrained205

State of IIIu206

To construct the generalized diffusion equation in the constrained state of IIIu, we need to consider207

many aspects, including whether the generalized diffusion coefficient Ð should vary and how to de-208

scribe it to include the characteristics of the two types of constrained states.209
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When particles are in the constrained state of Iu (not considering the Γ effect) or in a completely free210

state, they follow a diffusion equation with the same diffusion coefficient (the Schrödinger equation).211

However, when such particles are in the constrained state of IIIu, the effect of location aggregation212

on Ð should be considered, and Ð should vary with the value of the target vector. Suppose that, as213

illustrated in Fig. 3a, the vector sum density in the microdomain VA is greater than that in the VB. If214

both cases are in the constrained state of IIIu, there is a greater consumption of degrees of freedom215

for the higher density in the VA. In terms of probability, less uncertainty is introduced into the unit216

volume, which inevitably affects the (average) particle movement speed. Therefore, the overall particle217

movement speed in the VA decreased. As mentioned above (or in Eq. 27 below), the particle speed is218

what determines D; therefore, the law governing the diffusion rate towards the right (DA) is not the219

same as the law governing the diffusion rate in the VB towards the left (DB) (under the assumption that220

Ð is a combination of DA and DB). Therefore, it is necessary for the generalized diffusion coefficient221

to vary in time with the vector sum density to reflect this inequality.222

In view of the above considerations, choosing the appropriate quantitative function to describe this223

phenomenon (with different laws) is the main problem to be solved in this study. First, the sum of the224

momentum vectors in the microdomain is decomposed as follows:225

3.4.1. Vector Decomposition226

First, let us determine the distribution function for a certain number of nonmoving particles with equal227

probability (randomly) distributed in a certain domain, as follows: Suppose that the entire domain228

contains n particles in total. For convenience of description, the entire domain is also partitioned into229

n boxes of equal size. The gaps between the boxes and the wall thickness are both 0. Now, let us230

determine the probability of k (k ∈ N+; the same is done below) particles in a local area containing231

M boxes (suppose that the particles are small enough to fall into the box, not the wall). In view232

of the statement described above, the probability of particles existing in each domain is the same.233

Accordingly, the total number of possible cases describing how n particles can be randomly distributed234

among n boxes is nn, there are
(
n

k

)
total ways that k particles can be randomly chosen from among235

n particles, there are Mk total ways in which the k chosen particles can be randomly distributed236

among M boxes, and there are (n−M)n−k total ways in which the remaining n− k particles can237

be randomly distributed among the remaining n−M boxes. Therefore, the probability P (M, k) of k238

particles existing inM boxes can be expressed as239

P (M, k) =

(
n

k

)
Mk (n−M)n−k

nn
. (9)

Suppose that the number n of particles in the entire domain is infinite; then, by taking the limit of Eq.240

9 as x→+∞, we find that241

P (M, k) =
e−MMk

k!
, (10)

again, whereM denotes the number of boxes comprising the local domain of interest (the size of the242

volume in 3-dimensional space), k denotes the number of particles in that domain of M boxes, and243

P denotes the probability that k particles exist in that domain. Eq. 10 is the (location-based) Poisson244

distribution.245

It is considered that this is the most appropriate method of partitioning a whole domain (the domain246
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can be the whole universe or simply a broad range including the objects of investigation) into uniform247

boxes with the same number as that of particles. In addition to reducing the parameters involved and248

facilitating discussion, the reasons are as follows: if the boxes are slightly larger, they will not ensure249

the accuracy of the following vector decomposition; if they are slightly smaller, they will not adequately250

reflect the grouping effect of the particles. Therefore, in this article, the whole domain is divided into251

a number of uniform boxes equal to the number of particles it contains, and this partitioning serves as252

the basis for all of the following discussions. In this article, the whole domain (environment) is called253

the T-domain (it is the sub-domain of sub-domain in Fig. 1), and the local domain (target) is called254

the S-domain; the set of all particles contained in the T-domain is called the T-particle swarm (it is the255

subparticle swarm of subparticles in Fig. 2), and the subset of particles contained in the S-domain is256

called the S-particle swarm.257

Next, we will investigate the equiprobability distribution of the nonmoving particle swarm in the258

abovementioned S-domain V . In Eq. 10,M denotes the number of boxes (volume) spanned by some259

S-domain (which belonged to the domain in which the target particles are distributed). Put another260

way, when the T-domain is partitioned into uniform boxes following the above method, M can also261

denote the average relative density of the particles in the S-domain V , where the reference density is the262

average density of the T-particle swarm in the T-domain.M represents the corresponding multiple of263

the average density, k denotes the number of particles in one box, and P is the probability of k particles264

existing in that box. Thus, the distribution of the S-particle swarm in V is a Poisson distribution with265

density intensityM. Next, we will analyze the Poisson distribution formula given in Eq. 10. In fact,266

it is the proportion of each term determined by k (when eM is expanded as a power series) to the267

value of eM. The meaning here is that it is also the proportion of the number of boxes containing k268

particles each to the total number of boxes in V when the S-particle swarm of relative density M is269

distributed among the reference boxes determined by the above criteria and spanned by the S-domain270

V (supposing that the number of boxes spanned by V is sufficiently large). According to mathematical271

analysis, we can see that the power series expansion for this case is unique, and obviously, this ratio272

distribution is also unique. If the right-hand side of Eq. 10 is multiplied by k, the result, denoted by273

R(M, k), takes the following form:274

R(M, k) =
e−MMk

(k− 1)!
. (11)

In this way, termwise addition (by k) based on this expression offers a possible form for the decomposi-275

tion ofM into infinite items. Because the power series expansion above is unique, this decomposition276

form of the containing power series is also unique. According to the previous statement of physical277

meaning, the meaning of Eq. 11 is the relative density contributed by the particles in the boxes that278

contain k particles each to the total relative density M (the average relative density in V) after the279

particles of relative densityM are dispersed among the (infinitely many) reference boxes spanned by280

V with equal probability. Multiplying Eq. 11 by the number of boxes contained in V yields the total281

number of particles in the boxes containing k particles each. Since the distribution of particles in this282

form is definite (following the Poisson distribution), from this point of view, the decomposition of the283

relative densityM in this (containing power series) form is also unique.284

If M is a complex number (or plane vector), Eq. 11 can be written in vector form as follows:285

R(M, k) =
e−MMk

(k− 1)!
. (12)

The form obtained by dividing Eq. 12 by k is still the ratio of each term (complex) determined by k286

(when eM is expanded as a power series) to the complex of eM. There is one more dimension here,287
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Figure 5. Illustration of the physical meaning of Yk (k = 1,2,3, · · · ) in the S-domain V (a planar figure is used to
represent the stereo figure). The vector sum of the red particles (k = 1) is Y1, the vector sum of the green particles
(k = 2) is Y2 and the vector sum of the blue particles (k = 3) is Y3, · · · .

and the power series expansion is still unique. Similarly, the termwise addition of Eq. 12 also provides288

a decomposition form for the vector M. This decomposition form of the containing power series is289

also unique.290

Now, we study the distribution of the velocity of the moving S-particle swarm in the abovementioned291

S-domain V . If the particles in the T-particle swarm move randomly in the T-domain, the distribution292

of the S-particle swarm in one time slice in a sufficiently small S-domain (when the particle speed293

is fast enough) can also be approximated as an equiprobable distribution. At the human scale (it will294

be proven with self-consistency that, in fact, at any scale range), the number of S-particles in almost295

every "microdomain" of the universe can be regarded as approaching infinity; therefore, the number296

distribution of particles in the moving S-particle swarm in a certain microdomain V can be described297

by Eq. 10. The moving particles in each type of box partitioned by k in one S-domain V can form a298

component vector (denoted by Yk, as shown schematically in Fig. 5), and these components can be299

added together to generate the total 3-dimensional vector Y in V , that is300

Y =

∞∑
k=1

Yk. (13)

Once Y formed by the moving S-particle swarm in V , which includes the specific number of (equiv-301

alent) particles, is determined (i.e., the average speed u of the S-particles or T-particles is determined302

observed from R0), the norm (mathematical expectation) of each component vector should be (ap-303

proximately) directly proportional to the number of particles forming it when the number of particles304
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is large (see Part 2 of the Supplementary Information for details). Note that the number of samples in305

V is very large even when k = 1. Therefore, the ratios between the norms (mathematical expectations)306

of the component vectors in various boxes partitioned by k are uniquely determined by the form of307

(containing) the power series determined by Eq. 11. In other words, whenM represents the relative308

density of the particles in V , we have the following relationship:309

‖Y1‖ : ‖Y2‖ : · · ·=R(M,1) :R(M,2) : · · · . (14)

As the limiting value X of the quotient of Y and V , it can still be considered as a sum of 3-310

dimensional vectors in the S-domain V . Therefore, there is also a form of component vectors with311

the ratios of norms determined by Eq. 11 spanning various boxes partitioned by k. When the 3-312

dimensional component vectors (spanning various boxes partitioned by k) of the 3-dimensional vector313

X are mapped to the 2-dimensional component vectors (spanning various boxes partitioned by k) of314

the plane vector M, it is obvious that there is also a corresponding 2-dimensional form of component315

vectors with the ratios of norms determined by Eq. 11 (namely, the ratios of norms follow a Poisson316

distribution corresponding to the number of particles), but the direction is not determined. That is,317

when X 1, X 2, · · · represent the component vectors of X respectively and M1, M2, · · · represent318

the component vectors of M respectively, we have319

‖Y1‖ : ‖Y2‖ : · · ·= ‖X 1‖ : ‖X 2‖ : · · ·= ‖M1‖ : ‖M2‖ : · · · . (15)

According to Eqs. 14 and 15, we can obtain the following relationship:320

‖M1‖ : ‖M2‖ : · · ·=R(M,1) :R(M,2) : · · · . (16)

According to the conclusion in Part 2 of the Supplementary Information, the norm (mathematical321

expectation) of each component vector is the product of the number of particles forming it and the322

speed of the system it located. Therefore, we can obtain323

‖M‖=M· u. (17)

Note that whenM represents a relative scalar, M represents a relative vector. Therefore, ‖M‖=M324

is always true when u= 1, where u is the average speed of the T-particles. As a result, we have325

‖M1‖ : ‖M2‖ : · · ·=R(‖M‖ ,1) :R(‖M‖ ,2) : · · · . (18)

In other words, when u= 1, the ratios of norms of the component vectors of M are the ratios of the326

power series (determined by the Poisson distribution) forms of its own norm.327

When M is decomposed into M1, M2, · · · denoted by itself (i.e., u= 1), the relationship between328

‖M1‖, ‖M2‖, · · · must satisfy Eq. 18. In view of the uniqueness of R(‖M‖ , k) which is the power329

series form of the norms, Mk must be expressed in the form of R(M, k) (Eq. 12, or at least the form330

of R(M, k) · eM) to satisfy Eq. 18. At this point, the direction of Mk is uniquely determined. In331

view of the termwise addition (by k) of Eq. 12 is the unique decomposition of M, therefore, the plane332

mapping of the sum of all the vectors in the boxes containing the same number k of particles is the333

component vector determined by k in Eq. 12. When k takes all values in N+, the termwise sum of334

these terms is the unique decomposition of M (spanning various boxes partitioned by k), namely,335

M =

∞∑
k=1

e−MMk

(k− 1)!
. (19)
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The above analysis shows that two conditions must be satisfied for M to be uniquely decomposed336

into components divided by k. On the one hand, u= 1 (or ‖M‖=M) must be satisfied; on the other337

hand, ‖M‖ must be a relative value asM. Therefore, it is obvious that M should also be a relative338

vector. Furthermore, M should be not only a multiple of the number of reference boxes but also a mul-339

tiple of the speed of the system (that is, the norm of the average velocity of the counted particles. u= 1340

can be satisfied only if u is regarded as a relative value u∗). Therefore, the reference value of vector M341

is nu (where u is the absolute speed of the target domain in the background domain). Accordingly, M342

in Section 3.3 should be exactly the relative vector sum density, which has the same direction as the343

absolute sum of the vectors located at that place observed fromR0. As mentioned above, the sum and344

difference operations between two spatial vectors are performed in their shared plane. In this plane,345

they can be decomposed respectively into a sum of plane vectors, as described in Eq. 19. Therefore,346

the two sets of plane component vectors can also serve as their respective spatial component vectors to347

correspondingly perform sum, difference or derivative operations.348

349

3.4.2. Description of Diffusion350

Suppose that the standard deviation of the projection (treated as a random variable; the same is done351

below) of the velocities of the k equivalent particles forming a k-particle (that is the k-generalized-352

particle; the same is done below) onto each equivalent coordinate axis is σ. As mentioned earlier,353

the speeds of k-particles follow the Maxwell distribution with scale parameter
σ√
k

(When it is in the354

constrained state of Iu not considering the Γ effect or in a completely free state, the speed of particle355

diffusion to uniform mixing in Fig. 3a is determined by the statistical average of the particle velocities,356

which is the inherent property of the system. Here, the particles in the target domain is regarded as a357

system with uniform distribution in the velocity direction, that is, the speeds of generalized particles358

follow the Maxwell distribution, and the average speed can be obtained according to the Maxwell359

distribution). Then, the average speed of k-particles is360

v = 2

√
2

π
· σ√

k
. (20)

For ka- and kb-particles, the ratio of their average speeds is361

va
vb

=

√
kb√
ka
. (21)

Because the sizes, or masses, of all 1-particles (forming k-particles) are the same, if the masses of a362

ka-particle and a kb-particle are ma and mb, respectively (m∝ k), then according to the relationship363

shown in Eq. 21, the ratio of their average speeds can also be written as364

va
vb

=

√
mb√
ma

. (22)

See Part 1 of the Supplementary Information for the detailed calculation and derivation process. Ac-365

cording to Eq. 22, for any-particles, the product of the square root of mass and the average speed is a366

constant (suppose it is κa). Then, when the mass of a k-particle is m, its average speed is367

v =
κa√
m
. (23)
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The diffusion coefficient can be defined as follows: it is the mass or mole number of a substance that368

diffuses vertically through a unit of area along the diffusion direction per unit time and per unit concen-369

tration gradient. Therefore, it is believed that classical real diffusion is consistent with the essence of370

vector diffusion described here (the two diffusions that are achieved both require the random displace-371

ment of k-particles). According to the Einstein-Brown displacement equation, the diffusion coefficient372

is373

D =
x2

2t
, (24)

where x is the average displacement of k-particles along the direction of the x-axis. To replace the av-374

erage displacement x in Eq. 24 with the average velocity (namely, V ) of k-particles along the direction375

of the x-axis, this diffusion coefficient can be transformed into376

D =

∥∥V ∥∥2
2

t1. (25)

The unit of the diffusion coefficient D is m2 · s−1. By combining Eq. 24 and Eq. 25 (where t1 and377

the t implied in
∥∥V ∥∥2 are consistent, so t1 = 1 s), the abovementioned diffusion coefficient can also378

be regarded as follows: it is the average area over which k-particles spread out on a plane per unit379

time. This average area is related to the speed of a single k-particle. If the (average) speed of a single380

k-particle is v, then the statistical average speed of these particles in one direction is381 ∥∥V ∥∥=
v

2
. (26)

The k-particle swarm spreads in the plane at this rate. By substituting Eq. 26 into Eq. 25 and combining382

t1 = 1 s into the coefficient, which we then denote by κb, we can obtain383

D = κb v
2, (27)

where κb is a constant coefficient with units of seconds (s).384

By substituting Eq. 23 into Eq. 27, the diffusion coefficient of a (k-)particle swarm of (average) mass385

m is obtained:386

D = κb

(
κa√
m

)2
=
κa

2κb
m

. (28)

In view of the diffusion coefficient D only affecting the diffusion rate, the above equation (Eq. 28)387

can also be thought of as the apparent diffusion coefficient of particle(s) with mass m described by the388

1-particle swarm (which forms a particle of mass m after collapse) in the constrained state of Iu. Here,389

we suppose that390

κa
2κb =

~
2
. (29)

As the situation in Ru observed from R0, D should also be affected by the Γ[·] effect, which is391

abbreviated as392

D =
~Γ2

2m
. (30)
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3.4.3. Construction of the Generalized Diffusion Equation393

Previously, we adopted the assumption that there is no interaction between point particles. Accordingly,394

in a time slice of a microdomain, the decomposition of the vector given by Eq. 19 must be exhibited,395

and all boxes containing the same number of particles in different microdomains containing different396

densities of vectors are equivalent. This is because there should be no differences between boxes of the397

same type (i.e., containing the same number of particles) when (the whole target domain is expressed398

as a system with a relative average speed of 1 and) the Poisson distribution determines the numbers of399

boxes of different types in different microdomains of different vector densities. Although the moving400

particles in the second or third constrained state can be distributed in a time slice of the microdomains401

with the same probability, when the overall behavior of k particles is counted, their average speed402

will inevitably slow down. At this time, there will be more or fewer particles in the unit volume of403

the domain in which they are located (or each box in the microdomain of the domain in which they404

are located), and the "slow down" effect will be retained according to the location characteristics; in405

other words, the degrees of freedom of particles will be reduced or affected by the second or third406

kind of constraint effect. The particles in various boxes partitioned by k move at their average relative407

speed, and the centroids of boxes containing k particles each are, on average, located at the center of408

each box. Among all boxes of the same type (i.e., containing k particles), the average relative speed409

of each k-particle is the same and must conform to the diffusion form of the Schrödinger equation410

(Eq. 8) determined by the diffusion coefficient for particles of this type. Therefore, according to the411

particle numbers k in the previously partitioned boxes, from 1 to∞, we study the corresponding term412

R(M, k), which is the component vector of M. First, we investigate the diffusion of individual terms,413

and then, we add them together to characterize the overall slowing behavior of diffusion.414

Here, all the particles in each box containing k particles are regarded as forming a k-particle of a415

larger mass level, and together, all k-particles in all boxes containing k particles in microdomain V are416

called the k-particle swarm in that microdomain. Based on the above discussion, it can be considered417

that the average relative speed of each (k-)particle in the k-particle swarm is the same, and all of418

them have the same diffusion coefficient. According to the relationship given in Eq. 28 (the diffusion419

coefficient is inversely proportional to the mass of a k-particle, or the number of 1-particles forming a420

k-particle), if the diffusion coefficient of a 1-particle swarm is D1, then the diffusion coefficient of a421

k-particle swarm is422

Dk =D1 ·
1

k
, (31)

where
1

k
is called the diffusion coefficient factor.423

When the particles are in the constrained state of Iu or in a completely random state, the diffusion424

behavior of interest is that of a 1-particle swarm. It is consistent with the Schrödinger equation when425

the target particle swarm moves along the average speed of u. Therefore, the diffusion coefficient is426

D1 =−~Γ2

2m
. (32)

The diffusion equation determined by this coefficient describes the kinetics of the probabilistic dif-427

fusion of a target object (or the aggregation after collapse) of mass m on the basis of the apparent428

diffusion rate (after deceleration) determined by the 1-particles forming it (before collapse); however,429

the distribution characteristics of the target object in its dispersion space is determined by the diffusion430

behavior of the 1-particles in the background field. When the particles are in the constrained state of431
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IIIu, according to the above discussion, the case of k > 1 must be considered. Then, the diffusion432

coefficient of a k-particle swarm can be obtained by substituting Eq. 32 into Eq. 31, namely,433

Dk =−~Γ2

2m
· 1

k
. (33)

This is equivalent to the proportional decline in the apparent diffusion rate of a target object (or the434

aggregation after collapse) of mass m due to the slowdown in the speed of the k-particles forming the435

target object. The meaning of the diffusion equation determined by this diffusion coefficient is similar436

to the case for 1-particles as considered above, that is, the kinetics of the probabilistic diffusion of a437

target object (or the aggregation after collapse) of mass m are described on the basis of the apparent438

diffusion rate (after deceleration) determined by the k-particles forming it (before collapse); however,439

the distribution characteristics of the target object in its dispersion space is determined by the diffusion440

behavior of the k-particles in the background field.441

By taking the second partial derivative of R(M, k) (this is the plane vector sum in the boxes con-442

taining k moving particles, namely, the k-particle swarm, which is one of the component vectors in443

the whole microdomain V) with respect to location (x, y, z), ∆R(M, k) can be obtained. It should444

be emphasized that the absolute sizes of the two (infinitesimal) microdomains VA and VB, which are445

selected to compare their differences, are equal when calculating the derivative of the vector M. After446

multiplying ∆R(M, k) by the diffusion coefficient for the k-particle swarm (Eq. 33) and then adding447

the products together from k = 1 to∞, the complete generalized diffusion expression (including coef-448

ficients) can be obtained as follows:449

−~Γ2

2m

∞∑
k=1

[
1

k
·∆R (M, k)

]
. (34)

The diffusion calculated in this way is the generalized diffusion from the whole (infinitesimal) mi-450

crodomain VA to VB. Eq. 34 can be simplified as follows:451

− ~Γ2

2m eM

[
∆M− T 2(M)

]
, (35)

where T 2(M) =

(
∂M
∂x

)2
+

(
∂M
∂y

)2
+

(
∂M
∂z

)2
. By combining the left-hand side of Eq. 8 with452

Eq. 35, a complete expression for the generalized diffusion equation for vectors is obtained:453

i
∂M
∂t

=− ~Γ2

2m eM

[
∆M− T 2(M)

]
. (36)

Therefore, the expression for the generalized diffusion coefficient with the two kinds of special con-454

strained effects is455

Ð =− ~Γ2

2m eM
. (37)

The diffusion coefficient here is not a constant but rather a natural exponential function that varies456

with the relative vector density of moving particles. Hence, the generalized diffusion equation and the457

generalized diffusion coefficient Ð for vectors in the constrained state of IIIu have been determined.458

In this constrained state, the ratios of norms of the spatial equivalent vectors in a microdomain can be459

determined in accordance with the Poisson distribution, while the norms and directions of the spatial460
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equivalent vectors in the complex plane can be determined in accordance with Eq. 36. Thus, the basic461

effective information for a spatial (moving) particle swarm in the constrained state of IIIu has been462

derived.463

The slowing down of diffusion based on spatial location is the only manifestation of the statistical464

effect of location aggregation (the second kind of constrained state) in diffusion. Obviously, the second465

kind of special constrained state effect of particles can be reflected according to the treatment method466

in Eq. 34. As mentioned above, the statistical effects include the location and direction aggregation.467

For the case of velocity direction aggregation, because the particles are in the system with a speed of468

u, the diffusion coefficient will be affected by the Γ effect, and the statistical effect of this case is also469

added to the equation. In summary, all of the statistical (constrained) effects have be incorporated into470

Eq. 34.471

3.5. Verification of Eq. 36472

The derivation process of Eq. 36 shows that M is a relative vector, and the square of its first derivative473

is the higher-order infinitesimal of its second derivative. If the norm of the initial value (namely, the474

initial norm) is sufficiently small, Eq. 36 can be approximated as the Schrödinger equation without an475

external field when the Γ effect is not considered. For example, when solving the diffusion problem476

of a 3-dimensional Gaussian wave packet formed by randomly moving particles, if the initial norm477

is less than 10−2, the solutions of the two equations are almost the same (Fig. 6a, and the relative478

difference is less than 1%. Note that the values of ‖M‖ are compared here to maintain consistency479

with the subsequent sections). When the initial norm is sufficiently large, the particle swarm exhibits480

a certain degree of aggregation with time from the initial Gaussian wave packet. As shown in Fig. 6b,481

this aggregation is apparent at approximately t= 0.276. As the the initial norm increases, increasingly482

evident aggregation processes appear. When the initial norms was 0.250, 0.500, 0.625 and 0.750, the483

radial distribution profile at the time of the most visible aggregation in each process (such as the red484

line in Fig. 6b) was taken to obtain the profile set, as shown in Fig. 6c (each profile is normalized485

according to the initial norm). It is speculated that when the initial norm increases to a certain value, a486

completely non-diffusive particle swarm may arise. As a result, we have487

∆M− T 2(M) = 0, (38)

and M does not vary with time t at this point. In the case of spherical symmetry, the boundary condi-488

tions of Eq. 38 can be given by489 {
M(r) =Mc, r = rc,

M(r) = 0, r = re,
(39)

where r is the distance to the spherical center; rc, re and Mc are constants and rc < re. Then, the490

analytical solution can be obtained by solving the simultaneous equations of Eq. 38 and Eq. 39:491

M(r) = ln r− ln

[
r
(
rc − re eMc

)
rcre

(
eMc − 1

) + 1

]
+ ln

[
eMc (rc − re)
rcre

(
eMc − 1

)] . (40)

See Part 3 of the Supplementary Information for the detailed Mathematica code of the solution process.492

Thus, given rc =
1

6000
, re = 30 andMc = 3 + i, the radial distribution of the mass density (‖M‖)493

projected on the plane can be obtained, as illustrated in Fig. 6d.494
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Figure 6. The prediction results (‖M‖) of our equations in different cases. a, The differences in the density
between the values calculated with Eq. 36 and the Schrödinger equation when the initial norm is 10−2. b, The

diffusion pattern of the Gaussian wave packet with time predicted by Eq. 36 when the initial norm is
1

2
. c, Com-

parison of the radial distributions for different initial norms. d, The radial distribution of the density (projected on

the plane) integrated according to Eq. 40. e, Comparison of the NFW profile and Eq. 40 (rc =
1

6000
, re = 30 and

Mc = 3+ i) when r < rs. f, The logarithmic profile of c as r varies from 0∼ 4.

In the universe, one of the scenarios corresponding to the particles in the constrained state of IIIu495

is the galaxies or galaxy clusters which are affected only by gravitation. The results predicted by Eq.496

40 are consistent with the observation results of relaxed galaxies and galaxy clusters (multiple images497

method). The Navarro-Frenk-White (NFW) profile[5], as an empirical formula, is universally regarded498
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as in good agreement with the observational results, which is given by499

ρ(r) =
ρc

r/rs(1 + r/rs)2
. (41)

Eq. 41 shows that the shape of the profile is not affected by the parameters ρc and rs. The NFW profile500

was obtained by adjusting the two parameters, and the result was compared to the profile obtained with501

Eq. 40. The two profiles are almost consistent within the scale radius of rs (Fig. 6e). Therefore, Eq.502

40 is in good agreement with the observational results of relaxed galaxy clusters within rs, as men-503

tioned in the literatures[6, 7]; however, Eq. 40 is not consistent with the results in the range r > rs. It is504

speculated that the inconsistency of these peripheral regions occurs because these galaxy clusters are505

not in completely non-diffusive states (diffusion is extremely slow when galaxy clusters are in these506

"relaxed" states because the principle masses are almost in non-diffusive states). The trend in Fig. 6f507

shows that when the initial norm increases to a certain value, the radial distribution profiles of particle508

swarms diffusing from Gaussian wave packets in the range of r > rs are consistent with the observa-509

tion results of the gravitational lens method. Furthermore, there are no cuspy problems in Eq. 40. The510

central part of the particle swarm described by Eq. 40 can be a structure with a specific volume and a511

finite concentration. The peripheral distribution forms a stable "shell" to protect the central structure512

from diffusion.513

Traditionally, the formation of such a mass distribution of relaxed galaxies or galaxy clusters is the514

result of gravitations and velocities. However, there is no interaction in the randomly moving parti-515

cle swarm described in Eq. 40, which generates the same effect (the particles have the same speed516

throughout the swarm and only when they form more massive swarms does the swarms’ speed de-517

crease to some degree). A previous study[4] proved that randomly moving particles also experience518

the effects of special relativity. In addition, such particles can produce non-diffusive particle swarms519

of different scales. Accordingly, it is speculated that galaxies or galaxy clusters (at least dark matter520

halos) can be formed by randomly moving particles and the essence of gravitation is the production521

of a third/second type of constrained state. In these constrained states, particles have less degrees of522

freedom in denser domains. And the apparent phenomenon of universal gravitation occurs between523

domains with less degrees of freedom and domains with more degrees of freedom.524

525

4. Conclusions526

Previous studies have focused on the overall behavior of randomly moving particle swarms[1, 2].527

However, the characteristics of ubiquitous special particle swarms that form in these swarms remain528

unknown. In these special particle swarms, particular phenomena, such as the velocity or location529

aggregation effects, need to be considered. Based on these, this study demonstrated a generalized dif-530

fusion equation for randomly moving particles in the constrained state of IIIu. When the norm of the531

initial value is small, the equation can be approximated as the Schrödinger equation; when the norm532

is large, the equation can be used to describe the aggregation process of particles. Although our model533

describes a noninteracting particle swarm, it includes the apparent phenomena of universal gravitation.534

The consistency with the observational results make us have a certain reason to believe that the essence535

of universal gravitation is the change of the free degree caused by the location aggregation of particles536

in the third/second constrained state.537

In the more general case, that is, in the third kind of general constrained state, we can divide the538

whole system into countless fragments according to the time and domain. Each fragment can be ap-539

proximated as in the constrained state of IIIu. We use Eq. 36 to determine the results for each segment540
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and splice them together. Thus, the whole problem of the third kind of general constraint can be solved.541

In a future study, we will further explore the properties of Eq. 36 and deduce the corresponding rela-542

tionship between M and the absolute physical quantity to extend this equation to more specific fields.543

Furthermore, we will solve Eq. 36 on a larger scale and explore the relationship between galactic jets544

and electromagnetic fields.545
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NOTE:
1. The "Euclid Math One" regular and bold fonts are needed to display the contents correctly in this 
Notebook.
2. If there is no special case, the Mathematica code starts with gray "In["] :=" and is bold by default 
according to Mathematica's rules.

Part 1. The Square of the Norm of the Average Velocity is Proportional to the 
Number of Vectors

As described in the main text, the k-particle is a general particle composed of k 1-particles. Each 1-
particle is moving at the same speed c and in a random direction in the 3-dimensional Cartesian coordi-
nate system (they are in a completely free state or in the constrained state of Iu not considering the Γ 
effect). Suppose that the standard deviation of the projection of the velocity of any one of the k equiva-
lent 1-particles forming a k-particle onto each equivalent coordinate axis is σ. According to the my 
previous study[1], the speed of k-particles (or k particles in a certain domain) follows the Maxwell 

distribution with scale parameter σ
k .

Then, the average velocity of the k-particles (or k particles in a certain domain) is

In["]:= v =MeanMaxwellDistribution
σ

k


Out["]=

2 2
π
σ

k

For ka- and  kb-particles, the ratio of their average velocity va / vb =

In["]:=

2 2
π
σ

ka

2 2

π
σ

kb

Out["]=
kb

ka

And because: ma = μ ka and mb = μ kb, where μ is the scale factor or the  mass of 1-particle. va / vb is 
also equal to

In["]:= Simplify

mb
μ

ma
μ

, Assumptions→ μ > 0

Out["]=
mb

ma

Therefore, the square of the average velocity of particles is directly proportional to the mass of parti-
cles or the number of 1-particles forming it.
References
[1] Guo, T. Study on the average speed of particles from a particle swarm derived from a stationary 
particle swarm. Sci. Rep. 11, 13290 (2021). https://doi.org/10.1038/s41598-021-92402-w
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Part 2. The Norm of the Component Vector is Proportional to the Number of 
Vectors Forming It

When the total vector value of a specified vector swarm is determined, the mean norms between 
different component vectors should be proportional to the number forming them in the constrained 
state of IIIu. The following proves this viewpoint in detail.

According to my previous study[1], let ℳk being the norm of momentum of k particles observed from 
Ru, the probability density of momentum norm formed by k particles in Ru observed in R0 can be 
expressed as (This code takes approximately 71 seconds):

In["]:= Clear["Global`*"];

-= TransformedDistribution (k u)2 +ℳk2 - 2 k uℳkCos[ArcCos[η]] ,

ℳk 5MaxwellDistribution
k c2 - u2

3
, η 5UniformDistribution[{-1, 1}];

FullSimplify[PDF[-, x], Assumptions→ c > u > 0 ∧ k > 0]

Out["]=

3 x ⅇ
6 u x

c2-u2 -1 ⅇ
-
3 k u+x2

2 k c2-u2

k u 2 π c2 k-2 π k u2
(x > 0 ∧ k u > x) ∨ k u < x

-
6 π c2 k-u x 5 u x-2 c2 k erf 6 x

c2 k-u x
+4 x ⅇ

6 x2

u x-c2 k c2 6 k+2-u 2 u+3 x-8 x (c-u) (c+u)

4 6 π k52 u ((c-u) (c+u))32
k u5 x

The first branch is selected as valid.

In view of the above conclusions, we find the mean value of this distribution (This code takes approxi-
mately 50 seconds).

In["]:= Y k = FullSimplify

MeanProbabilityDistribution
3 x ⅇ

6 u x

c2-u2 - 1 ⅇ
-
3 k u+x2

2 k c2-u2

k u 2 π c2 k - 2 π k u2
, {x, 0, +∞}, Assumptions→ c > u > 0 ∧ k > 0

Out["]=

c2 + (3 k - 1) u2 erf
3

2
k u

k (c-u) (c+u)
+ 6

π
u ⅇ

3 k u2

2 u2-c2 k (c - u) (c + u)

3 u

We find the limit of the ratio of this mean value Y k and k when k approaches +∞.

In["]:= SimplifyLimit
Y k

k
, k→+∞, Assumptions→ u > 0

Out["]=
-u argc2 - u2 ≥ π
u True

The second brunch is meaningful. Therefore, when k is a large number, the norm of the mean value 
Y k is directly proportional to the number k forming Y k, namely, Y k = k ·u.

Eq. 11 in the main text determines the proportion of particle number distributed in various boxes 
partitioned by k, and these particles are distributed in each box of V with equal probability. That is, the 
particles are randomly extracted from the microdomain V to be distributed in each box. When the 
number of extractions is large enough, the norm of each component vector partitioned by k should be 
directly proportional to the number of particles according to the probability and the scale factor is u.
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Eq. 11 in the main text determines the proportion of particle number distributed in various boxes 
partitioned by k, and these particles are distributed in each box of V with equal probability. That is, the 
particles are randomly extracted from the microdomain V to be distributed in each box. When the 
number of extractions is large enough, the norm of each component vector partitioned by k should be 
directly proportional to the number of particles according to the probability and the scale factor is u.
The unique expansion of scalar M in the form of including power series is

M = 
k=1

∞ ⅇ-MMk

(k - 1) !

If the corresponding terms marked by k are directly proportional between the expansion of the norm 
;M< of vector M and the expansion of the scalar M representing the number of particles, or the 
numbers of particles are allowed to be proportional to the norms of vectors they form, the number M 
of particles must be equal to the norm ;M< of the vector M they form besides they are required to 
obey Poisson distribution. According to the above conclusion Y k = k ·u, the average speed u = 1 is 
needed in the system.
References
[1] Guo, T. Study on the average speed of particles from a particle swarm derived from a stationary 
particle swarm. Sci. Rep. 11, 13290 (2021). https://doi.org/10.1038/s41598-021-92402-w

Part 3. Solving Process of Eq. 38 in the Main Text
To solve the partial differential equation Eq. 38 in the main text, it is assumed that the system is 
spherically symmetric because it is isotropic at a huge scale. Therefore, we make the conversion from 
rectangular to spherical coordinates (note that φ is used to denote the azimuthal angle, whereas θ is 
used to denote the polar angle), namely, x = r sin θ cos φ, y = r sin θ sin φ and z = cos θ.
In the case of spherical symmetry, the change of function M(r) does not depend on θ and φ, but is 
related to r. Therefore, after the coordinate transformation, and the first and the second derivatives are 
obtained, to omit the terms that depends on angles θ and φ, we can obtain (subject to the character 
limitation of Mathematica, ℳ is used instead of M in the code cell; the same is done below):

In["]:= Simplify
2

r
D[ℳ[r], {r, 1}] + D[ℳ[r], {r, 2}] -

(D[ℳ[r], {r, 1}])2  (Sin[θ]Cos[φ])2 + (Sin[θ] Sin[φ])2 + (Cos[θ])2

Out["]= ℳ′′(r) -ℳ′(r)2 +
2ℳ′(r)

r

To solve the abovementioned differential equation under the boundary condition M(re) = 0.

In["]:= DSolveℳ′′[r] - (ℳ′[r])2 +
2

r
ℳ′[r] ⩵ 0, ℳ[re] ⩵ 0, ℳ[r], r

Out["]= {{ℳ(r) → log(r) - log(1 + c1 r) - log(re) + log(1 + c1 re)}}

Suppose another boundary condition is M(rc) =Mc, then

In["]:= r = rc;
Solve[Log[r] - Log[1 + c1 r] - Log[re] + Log[1 + c1 re] ⩵ℳc, c1]

Out["]= c1→
rc - re ⅇℳc

rc re ⅇℳc - 1


Therefore, the solution of the above differential equation is as follows:
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In["]:= Clear["Global`*"];

c1 =
rc - re ⅇℳc

rc re ⅇℳc - 1
;

Simplify[Log[r] - Log[1 + c1 r] - Log[re] + Log[1 + c1 re]]

Out["]= -log
r rc - re ⅇℳc

rc re ⅇℳc - 1
+ 1 + log(r) + log

ⅇℳc (rc - re)

rc ⅇℳc - 1
- log(re)

To restore the above solution in spherical to the solution in 3-dimensional rectangular coordinates, then

In["]:= r = x2 + y2 + z2 ;

FullSimplify-Log
r rc - re ⅇℳc

rc re ⅇℳc - 1
+ 1 + Log[r] + Log

ⅇℳc (rc - re)

rc ⅇℳc - 1
 - Log[re],

Assumptions→ re > rc > 0

Out["]= -log
rc - re ⅇℳc x2 + y2 + z2

ⅇℳc - 1
+ rc re + log

ⅇℳc (rc - re)

ⅇℳc - 1
+
1

2
logx2 + y2 + z2

To verify the above results:

In["]:= ℳ[x, y, z] := -Log
c - re ⅇℳc x2 + y2 + z2

ⅇℳc - 1
+ rc re + Log

ⅇℳc (rc - re)

ⅇℳc - 1
 +

1

2
Logx2 + y2 + z2;

FullSimplify

∂2ℳ(x, y, z)

∂x2
+

∂2ℳ(x, y, z)

∂ y2
+

∂2ℳ(x, y, z)

∂ z2
-

∂ℳ(x, y, z)

∂x

2

-
∂ℳ(x, y, z)

∂ y

2

-
∂ℳ(x, y, z)

∂ z

2



Out["]= 0

Therefore, the above equation is the solution of Eq. 38 in the main text (only when Im[M0] ∈ [-π, π) 
and the principal values of arguments are taken in the calculation process).

Similarly, the 2-dimensional case can also be solved.

In["]:= Clear["Global`*"];

SimplifyD[ℳ[r], {r, 2}] +
1

r
D[ℳ[r], {r, 1}] - (D[ℳ[r], {r, 1}])2

Out["]= ℳ′′(r) -ℳ′(r)2 +
ℳ′(r)

r

In["]:= DSolveℳ′′[r] -ℳ′[r]2 +
ℳ′[r]

r
⩵ 0, ℳ[re] ⩵ 0, ℳ[r], r

Out["]= {{ℳ(r) → log(-log(re) + c1) - log(-log(r) + c1)}}

In["]:= r = rc;
Solve[Log[-Log[re] + c1] - Log[-Log[r] + c1] ⩵ℳc, c1]

Out["]= c1→
ⅇℳc log(rc) - log(re)

ⅇℳc - 1

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In["]:= Clear["Global`*"];

c1 =
ⅇℳc Log[rc] - Log[re]

ⅇℳc - 1
;

Simplify[Log[-Log[re] + c1] - Log[-Log[r] + c1]]

Out["]= log
ⅇℳc (log(rc) - log(re))

ⅇℳc - 1
- log

ⅇℳc log(rc) - log(re)

ⅇℳc - 1
- log(r)

In["]:= r = x2 + y2 ;

FullSimplifyLog
ⅇℳc (Log[rc] - Log[re])

ⅇℳc - 1
 - Log

ⅇℳc Log[rc] - Log[re]

ⅇℳc - 1
- Log[r],

Assumptions→ re > rc > 0

Out["]= log
ⅇℳc log rc

re


ⅇℳc - 1
- log

log rc
re


ⅇℳc - 1
+ log(rc) -

1

2
logx2 + y2

In["]:= ℳ[x, y] := Log
ⅇℳc Log rc

re


ⅇℳc - 1
 - Log

Log rc
re


ⅇℳc - 1
+ Log[rc] -

1

2
Logx2 + y2;

FullSimplify
∂2ℳ(x, y)

∂x2
+

∂2ℳ(x, y)

∂ y2
-

∂ℳ(x, y)

∂x

2

-
∂ℳ(x, y)

∂ y

2



Out["]= 0

To verify the above conclusion, the results of analytical solution and the numerical solution under the 
same conditions are plotted (This code takes approximately 38 seconds):

In["]:= Clear["Global`*"];

ℳa[x_, y_] := Log
ⅇℳc Log rc

re


ⅇℳc - 1
 - Log

Log rc
re


ⅇℳc - 1
+ Log[rc] -

1

2
Logx2 + y2;

rc =
4

100
;

re = 4;
ℳc = 1 + 2 ⅈ;
Ω= ImplicitRegionrc2 ≤ x2 + y2 ≤ re2, {x, y};

G1 = ShowPlot3DNorm[ℳa[x, y]], {x, y} ∈ Ω, PlotRange→ 0, 8 ,
ColorFunction→ (Hue[0.65, #3]&), MeshStyle→None, BoundaryStyle→None, PlotPoints→ 300,

AxesLabel→ Style["x ", Italic], Style["y", Italic], RotateStyle["Density "],
π

2
,

AxesStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 15], TicksStyle→ Black,
BoxStyle→Directive[Black, Thickness→ 0.0018], BoxRatios→Automatic, ViewPoint→ {15, -26, 16},
Epilog→ Text[Style["a", 15, FontFamily→ "Arial", Bold, Black], {-0.07, 0.92}, {-1, 1}],

TableΩ1 = ImplicitRegion
9

100
≤ x2 + i2 ≤ 16, {x}; Ifi2 ≤

9

100
, xx =

9

100
- i2 , xx = 0;

ParametricPlot3D{x, i, Norm[ℳa[x, i]]}, {x} ∈ Ω1, PlotStyle→ Thickness[0.0018], PlotPoints→ 300,

ColorFunction→ GrayLevel0.4, 1 - #3×
Norm[ℳa[xx, i]]

Normℳa0, 3
10

& , {i, -3.5, 3.5, 0.5},

25



In["]:=

TableΩ1 = ImplicitRegion
9

100
≤ j2 + y2 ≤ 16, {y}; If j2 ≤

9

100
, yy =

9

100
- j2 , yy = 0;

ParametricPlot3D{ j, y, Norm[ℳa[ j, y]]}, {y} ∈ Ω1, PlotStyle→ Thickness[0.0018],

PlotPoints→ 300, ColorFunction→ GrayLevel0.4, 1 - #3×
Norm[ℳa[ j, yy]]

Normℳa0, 3
10

& ,

{ j, -3.5, 3.5, 0.5}, ParametricPlot3D[{4 Cos[ϕ], 4 Sin[ϕ], 0}, {ϕ, 0, 2 π},

PlotStyle→Directive[Gray, Thickness[0.0018]], PlotPoints→ 300];
Needs["NDSolve`FEM`"];
mesh = ToElementMeshΩ, MeshRefinementFunction→

Function{vertices, area}, area >
3

100 000

1

10
+ 80 Norm[Mean[vertices]] ;

ℳn =NDSolveValue
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂ y2
-

∂u(x, y)

∂x

2

-
∂u(x, y)

∂ y

2

⩵ 0, DirichletCondition

u[x, y] ⩵ℳc, x2 + y2⩵ rc2, DirichletConditionu[x, y] ⩵ 0, x2 + y2⩵ re2, u, {x, y} ∈mesh;

G2 = ShowPlot3DNorm[ℳn[x, y]], {x, y} ∈mesh, PlotRange→ 0, 8 ,
ColorFunction→ (Hue[0.65, #3]&), MeshStyle→None, BoundaryStyle→None,

AxesLabel→ Style["x ", Italic], Style["y", Italic], RotateStyle["Density "],
π

2
,

AxesStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 15], TicksStyle→ Black,
BoxStyle→Directive[Black, Thickness→ 0.002], BoxRatios→Automatic, ViewPoint→ {15, -26, 16},
Epilog→ Text[Style["b", 15, FontFamily→ "Arial", Bold, Black], {-0.07, 0.92}, {-1, 1}],

TableΩ2 = ImplicitRegion
9

100
≤ x2 + i2 ≤ 16, {x}; Ifi2 ≤

9

100
, xx =

9

100
- i2 , xx = 0;

ParametricPlot3D{x, i, Norm[ℳn[x, i]]}, {x} ∈ Ω2, PlotStyle→ Thickness[0.0018], PlotPoints→ 300,

ColorFunction→ GrayLevel0.4, 1 - #3×
Norm[ℳn[xx, i]]

Normℳn0, 3
10

& , {i, -3.5, 3.5, 0.5},

TableΩ2 = ImplicitRegion
9

100
≤ j2 + y2 ≤ 16, {y}; If j2 ≤

9

100
, yy =

9

100
- j2 , yy = 0;

ParametricPlot3D{ j, y, Norm[ℳn[ j, y]]}, {y} ∈ Ω2, PlotStyle→ Thickness[0.0018],

PlotPoints→ 300, ColorFunction→ GrayLevel0.4, 1 - #3×
Norm[ℳn[ j, yy]]

Normℳn0, 3
10

& ,

{ j, -3.5, 3.5, 0.5}, ParametricPlot3D[{4 Cos[ϕ], 4 Sin[ϕ], 0}, {ϕ, 0, 2 π},

PlotStyle→Directive[Gray, Thickness[0.0018]], PlotPoints→ 300];
s1 =GraphicsRow[{G1, G2}, ImageSize→ 500, Spacings→ Scaled[-0.06]];
Pane[s1, {500, 200}, ImageMargins→ {{50, -30}, {-18, -25}}]
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Out["]=

Figure S1 | Distribution of the mass density of a particle swarm meeting conditions (M(x, y) = 1 + 2ⅈ 
∧ x2 + y2 = 16

10 000
) ∧ (M(x, y) = 0 ∧ x2 + y2 = 42). a, The analytical solution. b, The numerical solution.

It can be seen from Fig. S1b that the numerical solution and the analytical solution achieve a perfect 
agreement (only when Im[Mc] ∈ [-π, π) and the principal values of arguments are taken in the calcula-
tion process).

Part 4. Figures Used in the Main Text
NOTE: To run these codes correctly, the contents in "MyDirection = **" in the next cell should be 
modified. It is similar to MyDirection = "/Users/yourdirection/". Then, run it (Shift+Enter) 
beforehand.

MyDirection = **;
Protect[MyDirection];
Off[General::wrsym];

###################### Figure1##############################

In["]:= Clear["Global`*"];

head =GraphicsPolygon0.13*-1,
8.09

25
, {0, 0}, -1, -

8.09

25
, -

8.09

10
, 0, -1,

8.09

25
;

aa =GraphicsBlue, Thickness[0.003], Circle0,
1

2
, 1.04,

{Red, Thickness[0.003], Circle[{0, 0}, 2]}, {RGBColor[0, 0, 1, 1],
Arrowheads[{{.3, 1, {head, 0.06}}}], {Thickness[0.006], Arrow[{{0, 0.5}, {1.4, 0.5}}]}},

Green, PointSize[0.01], Point0,
1

5
, Text[Style["R", 18, FontFamily→ "Euclid Math One",

Blue], {0, 1.07}], Text[Style["u", Italic, 12, FontFamily→ "Arial", Blue], {0.132, 1.03}],

TextStyle["Target (Sub-) domain", 18, FontFamily→ "Arial", Blue], 0.01,
2

3
,

TextStyle["Total (Parent/Background) domain", 18, FontFamily→ "Arial", Red], 0, -
4

5
,

Text[Style["R", 18, FontFamily→ "Euclid Math One", Red], {0, -1.25}],
Text[Style["0", 12, FontFamily→ "Arial", Red], {0.132, -1.3}],
Text[Style["Microdomain", 18, FontFamily→ "Arial", Green], {0, 0}],

Text[Style["u", Italic, 18, FontFamily→ "Arial", Blue], {1.53, 0.51}];
Export[MyDirection <> "figure1.eps", aa, Background→None];

###################### Figure1##############################

###################### Figure2##############################
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In["]:= Clear["Global`*"];
{rr1, bb1} = Last@Reap@

ScanIf#[[1]]2 + #[[2]]2 < 1, Sow[#, "Red"], Sow[#, "Blue"]&, RandomReal[{-2, 2}, {2000, 2}];
ℛ1 = ImplicitRegionx2 + y2 > 1, {{x, -2, 2}, {y, -2, 2}};
ℛ2 = ImplicitRegionx2 + y2 < 1, {{x, -2, 2}, {y, -2, 2}};
{rr2, bb2} = {RandomPoint[ℛ1, 1000], RandomPoint[ℛ2, 600]};

head =GraphicsPolygon0.1*-1,
8.09

25
, {0, 0}, -1, -

8.09

25
, -

8.09

10
, 0, -1,

8.09

25
;

bb =Graphics{{Blue, Dashed, Thickness[0.0016], Circle[{0, 0}, 1]}, {Red, Point[rr1]}, {Blue, Point[bb1]},
{Blue, Dashed, Thickness[0.0016], Circle[{4.5, 0}, 1]}, {RGBColor[0, 0, 1, 1],
Arrowheads[{{0.2, 1, {head, 0.03}}}], {Thickness[0.004], Arrow[{{0, 0}, {1.37, 0}}]}},

Text[Style["u", 20, Italic, FontFamily→ "Arial", Blue], {1.53, 0.01}],
Text[Style["a", 20, Bold, FontFamily→ "Arial", Black], {-2, 2}],
{Red, Point[rr2 + Table[{4.5, 0}, {i, Length[rr2]}]]},
{Blue, Point[bb2 + Table[{4.5, 0}, {i, Length[bb2]}]]},
{Blue, Arrowheads[{{.2, 1, {head, 0.03}}}], {Thickness[0.004], Arrow[{{4.5, 0}, {5.87, 0}}]}},
Text[Style["u", 20, Italic, FontFamily→ "Arial", Blue], {6.03, 0.01}],
Text[Style["b", 20, Bold, FontFamily→ "Arial", Black], {2.5, 2}]},

Epilog→ InsetLineLegend[{Directive[Blue, Thickness[0.004]], Directive[Red, Thickness[0.004]]},
{Style["Particles included in statistics", FontFamily→ "Arial", FontSize→ 20],
Style["Particles not included in statistics", FontFamily→ "Arial", FontSize→ 20]},

Joined→ {False, False}, LegendLayout→ "Row", LegendFunction→
(Framed[#, RoundingRadius→ 4, Background→White, FrameStyle→GrayLevel[0.58]]&)],

Scaled
1

2
, 0.11, ImageSize→ 700;

Export[MyDirection <> "figure2.eps", bb, Background→None];

###################### Figure2##############################

###################### Figure3##############################

28



In["]:= Clear["Global`*"];

head =GraphicsPolygon0.3*-1,
8.09

25
, {0, 0}, -1, -

8.09

25
, -

8.09

10
, 0, -1,

8.09

25
;

cc =GraphicsRGBColor
178

255
,
252

255
,
61

255
, Rectangle[{0, 0}, {1, 1}],

RGBColor
178

255
,
252

255
,
61

255
, 0.5, Rectangle[{1, 0}, {2, 1}], RGBColor

250

255
,
200

255
, 0,

Arrowheads[{{0.2, 1, {head, 0.06}}}], {Thickness[0.006], Arrow[{{0.7, 0.54}, {1.3, 0.54}}]},

RGBColor
250

255
,
200

255
, 0, Arrowheads[{{0.2, 1, {head, 0.06}}}],

{Thickness[0.006], Arrow[{{1.3, 0.46}, {0.7, 0.46}}]}, RGBColor
178

255
,
252

255
,
61

255
, 0.5,

Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {1.2, -1.3}}]},

RGBColor
178

255
,
252

255
,
61

255
, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {0.8, -0.3}}]},

{Orange, {Thickness[0.0036], DotDashed, Line[{{1, -0.05}, {1, 1.05}}]}},
{Orange, {Thickness[0.004], Dashed, Line[{{0.8, -0.3}, {2, -0.3}}]}},
{Orange, {Thickness[0.004], Dashed, Line[{{1.2, -1.3}, {2, -0.3}}]}},
{Blue, Arrowheads[0.06], {Thickness[0.006], Arrow[{{1.2, -1.3}, {0.8, -0.3}}]}},
{Blue, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {2, -0.3}}]}},
{Blue, Arrowheads[0.06], {Thickness[0.006], Arrow[{{0, -1.3}, {1, -0.8}}]}},
Text[Style["V", 24, FontFamily→ "Euclid Math One", White], {0.45, 0.5}],
Text[Style["A", 17, FontFamily→ "Arial", White], {0.513, 0.456}],
Text[Style["V", 24, FontFamily→ "Euclid Math One", White], {1.55, 0.5}],
Text[Style["B", 17, FontFamily→ "Arial", White], {1.616, 0.455}],
Text[Style["D", 24, FontFamily→ "Arial", Orange, Italic], {0.982, 0.63}],
Text[Style["A", 17, FontFamily→ "Arial", Orange], {1.063, 0.59}],
Text[Style["D", 24, FontFamily→ "Arial", Orange, Italic], {0.982, 0.38}],
Text[Style["B", 17, FontFamily→ "Arial", Orange], {1.065, 0.34}],
Text[Style["Φ", 24, FontFamily→ "Arial", Orange], {1.06, 1.08}],
Text[Style["O", 24, FontFamily→ "Arial", Orange], {0, -1.39}],

TextStyle"B", 24, FontFamily→ "Arial", RGBColor
178

255
,
252

255
,
61

255
, 0.5, {1.2, -1.39},

TextStyle"A", 24, FontFamily→ "Arial", RGBColor
178

255
,
252

255
,
61

255
, {0.7, -0.28},

Text[Style["C", 24, FontFamily→ "Arial", Orange], {2.02, -0.4}],
Text[Style["M", 24, FontFamily→ "Arial", Orange], {0.973, -0.932}],
Inset[Style["a", Black, Bold, FontFamily→ "Arial", FontSize→ 24], {0.034, 1.12}],

Inset[Style["b", Black, Bold, FontFamily→ "Arial", FontSize→ 24], {0.034, -0.2}];
Export[MyDirection <> "figure3.png", cc, Background→None, ImageResolution→ 1200];

###################### Figure3##############################

###################### Figure4##############################
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In["]:= Clear["Global`*"];
text =Graphics{Gray, Line[{{1, 0}, {1, 10}}], Line[{{2, 0}, {2, 10}}],

Line[{{3, 0}, {3, 10}}], Line[{{4, 0}, {4, 10}}], Line[{{5, 0}, {5, 10}}],
Line[{{6, 0}, {6, 10}}], Line[{{7, 0}, {7, 10}}], Line[{{8, 0}, {8, 10}}], Line[{{9, 0}, {9, 10}}],
Line[{{0, 1}, {10, 1}}], Line[{{0, 2}, {10, 2}}], Line[{{0, 3}, {10, 3}}], Line[{{0, 4}, {10, 4}}],
Line[{{0, 5}, {10, 5}}], Line[{{0, 6}, {10, 6}}], Line[{{0, 7}, {10, 7}}], Line[{{0, 8}, {10, 8}}],

Line[{{0, 9}, {10, 9}}], Orange, Rectangle[{6, 4}, {7, 5}]}, PlotRangePadding→
1

1000
;

dd = Show[{Plot3D[Sin[x +Cos[y]], {x, -3, 3}, {y, -3, 3}, PlotPoints→ 60, MaxRecursion→ 3,
PlotStyle→ Texture[text], Mesh→None, Lighting→ "Neutral", PlotLabels→ Placed["", {0, 0}],
BoundaryStyle→None, Boxed→ False, Axes→None, ViewPoint→ {1, -1.9, 1.4}],

Graphics3D[{{Thickness[0.007], Black,
Arrow[{{0, 0, 0}, {-Evaluate[D[Sin[x +Cos[y]], x] /. {x→ 0.88, y→-0.3}],

-Evaluate[D[Sin[x +Cos[y]], y] /. {x→ 0.88, y→-0.3}], 1}} +
{{0.88, -0.3, Sin[0.88 +Cos[-0.3]]}, {0.88, -0.3, Sin[0.88 +Cos[-0.3]]}}]},

{Text[Style["N", 14, FontFamily→ "Arial", Bold, Italic, Black],
{-Evaluate[D[Sin[x +Cos[y]], x] /. {x→ 0.88, y→-0.3}],

-Evaluate[D[Sin[x +Cos[y]], y] /. {x→ 0.88, y→-0.3}], 1} +
{0.88, -0.3, Sin[0.88 +Cos[-0.3]]} + {0.02, 0.03, 0.23}]},

{Thickness[0.007], Blue, Arrow[{{0.88, -0.3, Sin[0.88 +Cos[-0.3]]}, {1.88, -0.5, 2}}]},
{Text[Style["X", 14, FontFamily→ "Euclid Math One", Bold, Blue], {2.01, -0.5, 2.01}]},
{Text[Style["Σ", 14, FontFamily→ "Arial", Italic, Gray], {-2.14, -1.5, 0.7}]},
{Text[Style["dS", 14, FontFamily→ "Arial", Orange], {0.55, -0.8, 1.39}]}}]}];

dd = Pane[dd, {400, 300}, ImageMargins→ {{-8, -52}, {-74, -39}}];
Export[MyDirection <> "figure4.png", dd, Background→None, ImageResolution→ 1200];

###################### Figure4##############################

###################### Figure5##############################

In["]:= Clear["Global`*"];

head =GraphicsPolygon0.3*-1,
8.09

25
, {0, 0}, -1, -

8.09

25
, -

8.09

10
, 0, -1,

8.09

25
;

headv =GraphicsPolygon0.3*-1,
8.09

25
, {0, 0}, -1, -

8.09

25
, -1,

8.09

25
;

p =
{{RandomReal[{1.1, 1.9}], RandomReal[{3.1, 3.9}]}, {RandomReal[{5.1, 5.9}], RandomReal[{7.1, 7.9}]},
{RandomReal[{6.1, 6.9}], RandomReal[{5.1, 5.9}]}, {RandomReal[{8.1, 8.9}], RandomReal[{5.1, 5.9}]},
{RandomReal[{8.1, 8.9}], RandomReal[{1.1, 1.9}]}, {RandomReal[{2.1, 2.5}], RandomReal[{6.1, 6.9}]},
{RandomReal[{2.6, 2.9}], RandomReal[{6.1, 6.9}]}, {RandomReal[{3.1, 3.5}], RandomReal[{1.1, 1.9}]},
{RandomReal[{3.6, 3.9}], RandomReal[{1.1, 1.9}]}, {RandomReal[{3.1, 3.5}], RandomReal[{8.1, 8.9}]},
{RandomReal[{3.6, 3.9}], RandomReal[{8.1, 8.9}]}, {RandomReal[{4.1, 4.5}], RandomReal[{4.1, 4.9}]},
{RandomReal[{4.6, 4.9}], RandomReal[{4.1, 4.9}]}, {RandomReal[{7.1, 7.5}], RandomReal[{7.1, 7.9}]},
{RandomReal[{7.6, 7.9}], RandomReal[{7.1, 7.9}]}, {RandomReal[{4.1, 4.3}], RandomReal[{2.1, 2.9}]},
{RandomReal[{4.4, 4.6}], RandomReal[{2.1, 2.9}]}, {RandomReal[{4.7, 4.9}], RandomReal[{2.1, 2.9}]},
{RandomReal[{5.1, 5.3}], RandomReal[{6.1, 6.9}]}, {RandomReal[{5.4, 5.6}], RandomReal[{6.1, 6.9}]},
{RandomReal[{5.7, 5.9}], RandomReal[{6.1, 6.9}]}, {RandomReal[{6.1, 6.3}], RandomReal[{3.1, 3.9}]},
{RandomReal[{6.4, 6.6}], RandomReal[{3.1, 3.9}]}, {RandomReal[{6.7, 6.9}], RandomReal[{3.1, 3.9}]},
{RandomReal[{8.1, 8.3}], RandomReal[{3.1, 3.9}]}, {RandomReal[{8.4, 8.6}], RandomReal[{3.1, 3.9}]},
{RandomReal[{8.7, 8.9}], RandomReal[{3.1, 3.9}]}};

ee =GraphicsGray, Line[{{1, 0}, {1, 10}}], Line[{{2, 0}, {2, 10}}], Line[{{3, 0}, {3, 10}}],
Line[{{4, 0}, {4, 10}}], Line[{{5, 0}, {5, 10}}], Line[{{6, 0}, {6, 10}}],
Line[{{7, 0}, {7, 10}}], Line[{{8, 0}, {8, 10}}], Line[{{9, 0}, {9, 10}}], Line[{{0, 1}, {10, 1}}],
Line[{{0, 2}, {10, 2}}], Line[{{0, 3}, {10, 3}}], Line[{{0, 4}, {10, 4}}], Line[{{0, 5}, {10, 5}}],
Line[{{0, 6}, {10, 6}}], Line[{{0, 7}, {10, 7}}], Line[{{0, 8}, {10, 8}}], Line[{{0, 9}, {10, 9}}],

{PointSize[0.02], Red, Point[p[[1]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

,
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In["]:=

Arrowp[[1]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[1]],

{PointSize[0.02], Red, Point[p[[2]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[2]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[2]],

{PointSize[0.02], Red, Point[p[[3]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[3]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[3]],

{PointSize[0.02], Red, Point[p[[4]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[4]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[4]],

{PointSize[0.02], Red, Point[p[[5]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[5]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[5]],

{PointSize[0.02], Green, Point[p[[6]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[6]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[6]],

{PointSize[0.02], Green, Point[p[[7]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[7]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[7]],

{PointSize[0.02], Green, Point[p[[8]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[8]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[8]],

{PointSize[0.02], Green, Point[p[[9]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[9]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[9]],

{PointSize[0.02], Green, Point[p[[10]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[10]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[10]],

{PointSize[0.02], Green, Point[p[[11]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[11]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[11]],

{PointSize[0.02], Green, Point[p[[12]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[12]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[12]],

{PointSize[0.02], Green, Point[p[[13]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[13]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[13]],

{PointSize[0.02], Green, Point[p[[14]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[14]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[14]],

,  , Black,

,
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In["]:=

{PointSize[0.02], Green, Point[p[[15]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[15]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[15]],

{PointSize[0.02], Blue, Point[p[[16]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[16]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[16]],

{PointSize[0.02], Blue, Point[p[[17]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[17]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[17]],

{PointSize[0.02], Blue, Point[p[[18]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[18]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[18]],

{PointSize[0.02], Blue, Point[p[[19]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[19]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[19]],

{PointSize[0.02], Blue, Point[p[[20]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[20]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[20]],

{PointSize[0.02], Blue, Point[p[[21]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[21]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[21]],

{PointSize[0.02], Blue, Point[p[[22]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[22]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[22]],

{PointSize[0.02], Blue, Point[p[[23]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[23]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[23]],

{PointSize[0.02], Blue, Point[p[[24]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[24]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[24]],

{PointSize[0.02], Blue, Point[p[[25]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[25]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[25]],

{PointSize[0.02], Blue, Point[p[[26]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[26]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[26]],

{PointSize[0.02], Blue, Point[p[[27]]]}, Arrowheads[{{0.06, 1, {head, 0.06}}}], Black,

Arrowp[[27]], ReplaceAll[θ ->RandomReal[2 π]] cos(θ) -sin(θ)
sin(θ) cos(θ)

.
2

5
, 0 + p[[27]],

{Arrowheads[{{0.11, 1, {headv, 0.06}}}], Gray, Thickness[0.003],
Arrow[{{5.28, -0.78}, {9.3, -0.78}}]}, {Arrowheads[{{0.11, 1, {headv, 0.06}}}],
Gray, Thickness[0.003], Arrow[{{4.72, -0.78}, {0.7, -0.78}}]},

;
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In["]:=

Text[Style["V", 15, FontFamily→ "Euclid Math One", Gray], Scaled[{0.5, 0.01634}]];
Export[MyDirection <> "figure5.png", ee, Background→None, ImageResolution→ 1200];

###################### Figure5##############################

###################### Figure6##############################

This code takes approximately 32 minutes.

In["]:= Clear["Global`*"];
usol = Block{ϵ = $MachineEpsilon},

NDSolveValueⅈ D[ℳ[r, t], t] == -ⅇ-ℳ[r,t] D[ℳ[r, t], r, r] - (D[ℳ[r, t], r])2 +
2 D[ℳ[r, t], r]

r
,

ℳ[r, 0] ⩵ 10-2 ⅇ-
r2

2 , ℳ(1,0)[ϵ, t] == 0, ℳ[1000, t] ⩵ 0, ℳ, {r, ϵ, 3}, {t, 0, 3}, Method→

{"MethodOfLines", "SpatialDiscretization"→ {"TensorProductGrid", "MinPoints"→ 12 000}};

vsol = Block{ϵ = $MachineEpsilon}, NDSolveValue

ⅈ D[ℳ[r, t], t] ==
2

r
D[ℳ[r, t], {r, 1}] + D[ℳ[r, t], {r, 2}], ℳ[r, 0] ⩵ ⅇ-

r2

2 ,

ℳ(1,0)[ϵ, t] == 0, ℳ[1000, t] ⩵ 0, ℳ, {r, ϵ, 3}, {t, 0, 3}, Method→

{"MethodOfLines", "SpatialDiscretization"→ {"TensorProductGrid", "MinPoints"→ 8000}};

G1 = Plot3D102 Norm[usol[r, t]] -Norm[vsol[r, t]], {t, 0, 3}, {r, 0, 3}, PlotPoints→ 60,
MaxRecursion→ 3, PlotRange→ {{0, 3}, {0, 3}, {-0.003, 0.0075}},
MeshStyle→GrayLevel[0.4], BoundaryStyle→GrayLevel[0.4],

AxesLabel→ Style["t ", Italic], Style["r", Italic], Rotate"Δρ ",
π

2
,

AxesStyle→Directive[Black, Thickness→ 0.002],
BoxStyle→Directive[Black, Thickness→ 0.0021], TicksStyle→ Black,
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20], ViewPoint→ {1, -2, 2.1};

FindMaxValue102 Norm[usol[r, t]] -Norm[vsol[r, t]], r > 0, t > 0, {r, t}
Norm[vsol[r, t]] /. LastFindMaximum102 Norm[usol[r, t]] - Norm[vsol[r, t]], r > 0, t > 0, {r, t}

vsol = Block{ϵ = $MachineEpsilon},

NDSolveValueⅈ D[ℳ[r, t], t] == -ⅇ-ℳ[r,t] D[ℳ[r, t], r, r] - (D[ℳ[r, t], r])2 +
2 D[ℳ[r, t], r]

r
,

ℳ[r, 0] ⩵
1

2
ⅇ-

r2

2 , ℳ(1,0)[ϵ, t] == 0, ℳ[1000, t] ⩵ 0, ℳ, {r, ϵ, 4}, {t, 0, 2}, Method→

{"MethodOfLines", "SpatialDiscretization"→ {"TensorProductGrid", "MinPoints"→ 21 000}};
xv =NArgMax[Norm[vsol[0, t]], {t, 0.1, 0.5}];
G2 = ShowPlot3D2 Norm[vsol[r, t]], {r, 0, 3}, {t, 0, 2},

PlotRange ->All, MeshStyle→GrayLevel[0.4], BoundaryStyle→GrayLevel[0.4],

AxesLabel→ Style["r ", Italic], Style["t", Italic], Rotate"ρ",
π

2
,

AxesStyle→Directive[Black, Thickness→ 0.002], BoxStyle→Directive[Black, Thickness→ 0.002],
TicksStyle→ Black, LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20],
ViewPoint→ {3, -2.2, 4.1}, ParametricPlot3D[{r, xv, 2 Norm[vsol[r, xv]]},

{r, 0, 3}, PlotStyle→Directive[Red, Thickness→ 0.005]];

usol = Block{ϵ = $MachineEpsilon}, NDSolveValue
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In["]:=

ⅈ D[ℳ[r, t], t] == -ⅇ-ℳ[r,t] D[ℳ[r, t], r, r] - (D[ℳ[r, t], r])2 +
2 D[ℳ[r, t], r]

r
,

ℳ[r, 0] ⩵
1

4
ⅇ-

r2

2 , ℳ(1,0)[ϵ, t] == 0, ℳ[1000, t] ⩵ 0, ℳ, {r, ϵ, 4}, {t, 0, 2}, Method→

{"MethodOfLines", "SpatialDiscretization"→ {"TensorProductGrid", "MinPoints"→ 12 000}};
xu =NArgMax[Norm[usol[0, t]], {t, 0, 0.2}];
wsol = Block{ϵ = $MachineEpsilon},

NDSolveValueⅈ D[ℳ[r, t], t] == -ⅇ-ℳ[r,t] D[ℳ[r, t], r, r] - (D[ℳ[r, t], r])2 +
2 D[ℳ[r, t], r]

r
,

ℳ[r, 0] ⩵
5

8
ⅇ-

r2

2 , ℳ(1,0)[ϵ, t] == 0, ℳ[1000, t] ⩵ 0, ℳ, {r, ϵ, 4}, t, 0,
11

20
, Method→

{"MethodOfLines", "SpatialDiscretization"→ {"TensorProductGrid", "MinPoints"→ 11 000}};
xw =NArgMax[Norm[wsol[0, t]], {t, 0.1, 0.5}];
xsol = Block{ϵ = $MachineEpsilon},

NDSolveValueⅈ D[ℳ[r, t], t] == -ⅇ-ℳ[r,t] D[ℳ[r, t], r, r] - (D[ℳ[r, t], r])2 +
2 D[ℳ[r, t], r]

r
,

ℳ[r, 0] ⩵
3

4
ⅇ-

r2

2 , ℳ(1,0)[ϵ, t] == 0, ℳ[1000, t] ⩵ 0, ℳ, {r, ϵ, 4}, t, 0,
11

20
, Method→

{"MethodOfLines", "SpatialDiscretization"→ {"TensorProductGrid", "MinPoints"→ 12 000}};
xx =NArgMax[Norm[xsol[0, t]], {t, 0.1, 0.5}];

G3 = Plot4 Norm[usol[r, xu]], 2 Norm[vsol[r, xv]],
8

5
Norm[wsol[r, xw]],

4

3
Norm[xsol[r, xx]],

{r, 0, 3}, PlotRange→ {{0, 3}, {-0.02, 1.42}}, PlotStyle→ {{Black, Thickness→ 0.005},
{Red, Thickness→ 0.005}, {Green, Thickness→ 0.005}, {Blue, Thickness→ 0.005}},

Frame→ {{True, False}, {True, False}}, FrameStyle→Directive[Black, Thickness→ 0.002],
FrameLabel→ {Style["r", Italic], Style["ρ", Plain]},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20],
Epilog→ Inset[LineLegend[{Directive[Blue, Thickness[0.005]], Directive[Green, Thickness[0.005]],

Directive[Red, Thickness[0.005]], Directive[Black, Thickness[0.005]]}, {Style["0.750", 20,
FontFamily→ "Arial", Blue], Style["0.625", 20, FontFamily→ "Arial", Green], Style[
"0.500", 20, FontFamily→ "Arial", Red], Style["0.250", 20, FontFamily→ "Arial", Black]},

LegendFunction→ (Framed[#, RoundingRadius→ 5, FrameStyle→GrayLevel[0.58]]&)],
Scaled[{0.773, 0.667}]];

ℳ[x_, y_, z_] := -log
rc - re ⅇℳc x2 + y2 + z2

ⅇℳc - 1
+ rc re + log

ⅇℳc (rc - re)

ⅇℳc - 1
+
1

2
logx2 + y2 + z2;

rc =
1

6000
;

re = 30;
ℳc = 3 + ⅈ;
Ω= ImplicitRegionrc2 ≤ x2 + y2 ≤ re2, {x, y};

G4 =DensityPlot

NIntegrateNorm[ℳ[x, y, z]], z, - re2 - x2 - y2 , re2 - x2 - y2 , MaxRecursion→ 15, {x, y} ∈ Ω,

PlotRange→ {-30.07, 30.07}, {-30.07, 30.07}, 0, 10 , ColorFunction→ (Hue[0.65, #1]&),

Frame→ False, PlotPoints→ 1000, Epilog→ {Directive[Thickness[0.0014], Gray], Circle[{0, 0}, 30]};
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ℳ[r_] := -log
r rc - re ⅇℳc

rc re ⅇℳc - 1
+ 1 + log(r) + log

ⅇℳc (rc - re)

rc ⅇℳc - 1
- log(re);

ℳc = 3 + ⅈ;

rc =
1

6000
;

re = 30;

A =
1

26 300
;

B =
22

5
;

G5 = LogLogPlotNorm[ℳ[r]],
A

r
B
1 + r

B
2
, r,

1

6000
, 3, PlotRange→ {{0, 3}, {0, 3}},

PlotStyle→ {Directive[Orange, Thickness[0.005]], Directive[Green, Dashed, Thickness[0.005]]},
Frame→ {{True, False}, {True, False}}, FrameLabel→ {Style["r", Italic], " ρ"},
FrameStyle→Directive[Black, Thickness→ 0.0021],
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20],
Epilog→ Inset[LineLegend[{Directive[Orange, Thickness[0.004]], Directive[Green, Thickness[0.004]]},

{Style["this study", FontFamily→ "Arial", FontSize→ 20],
Style["NFW", FontFamily→ "Arial", FontSize→ 20]}, LegendFunction→
(Framed[#, RoundingRadius→ 4, FrameStyle→GrayLevel[0.58]]&)], Scaled[{0.73, 0.74}]];

G6 = LogLogPlot4 Norm[usol[r, xu]], 2 Norm[vsol[r, xv]],
8

5
Norm[wsol[r, xw]],

4

3
Norm[xsol[r, xx]],

{r, 0, 4}, PlotRange→All, PlotStyle→ {{Black, Thickness→ 0.005},
{Red, Thickness→ 0.005}, {Green, Thickness→ 0.005}, {Blue, Thickness→ 0.005}},

Frame→ {{True, False}, {True, False}}, FrameStyle→Directive[Black, Thickness→ 0.002],
FrameLabel→ {Style["r", Italic], Style["ρ", Plain]},
LabelStyle→Directive[Black, FontFamily→ "Arial", FontSize→ 20],
FrameTicks→ {{{0.004, "", {0.007, 0}, Thickness→ 0.0017}, {0.005, "", {0.007, 0}, Thickness→ 0.0017},

{0.006, "", {0.007, 0}, Thickness→ 0.0017}, {0.007, "", {0.007, 0}, Thickness→ 0.0017},
{0.008, "", {0.007, 0}, Thickness→ 0.0017}, {0.009, "", {0.007, 0}, Thickness→ 0.0017},
{0.01, "0.01", {0.01, 0}, Thickness→ 0.0017}, {0.02, "", {0.007, 0}, Thickness→ 0.0017},
{0.03, "", {0.007, 0}, Thickness→ 0.0017}, {0.04, "", {0.007, 0}, Thickness→ 0.0017},
{0.05, "", {0.007, 0}, Thickness→ 0.0017}, {0.06, "", {0.007, 0}, Thickness→ 0.0017},
{0.07, "", {0.007, 0}, Thickness→ 0.0017}, {0.08, "", {0.007, 0}, Thickness→ 0.0017},
{0.09, "", {0.007, 0}, Thickness→ 0.0017}, {0.1, "0.1", {0.01, 0}, Thickness→ 0.0017},
{0.2, "", {0.007, 0}, Thickness→ 0.0017}, {0.3, "", {0.007, 0}, Thickness→ 0.0017},
{0.4, "", {0.007, 0}, Thickness→ 0.0017}, {0.5, "", {0.007, 0}, Thickness→ 0.0017},
{0.6, "", {0.007, 0}, Thickness→ 0.0017}, {0.7, "", {0.007, 0}, Thickness→ 0.0017},
{0.8, "", {0.007, 0}, Thickness→ 0.0017}, {0.9, "", {0.007, 0}, Thickness→ 0.0017},
{1, "1", {0.01, 0}, Thickness→ 0.0017}, {2, "", {0.007, 0}, Thickness→ 0.0017},
{3, "", {0.007, 0}, Thickness→ 0.0017}, {4, "", {0.007, 0}, Thickness→ 0.0017}},

{{0.0001, "", {0.007, 0}, Thickness→ 0.0017}, {0.0002, "", {0.007, 0}, Thickness→ 0.0017},
{0.0003, "", {0.007, 0}, Thickness→ 0.0017}, {0.0004, "", {0.007, 0}, Thickness→ 0.0017},
{0.0005, "", {0.007, 0}, Thickness→ 0.0017}, {0.0006, "", {0.007, 0}, Thickness→ 0.0017},
{0.0007, "", {0.007, 0}, Thickness→ 0.0017}, {0.0008, "", {0.007, 0}, Thickness→ 0.0017},
{0.0009, "", {0.007, 0}, Thickness→ 0.0017}, {0.001, "0.001", {0.01, 0}, Thickness→ 0.0017},
{0.002, "", {0.007, 0}, Thickness→ 0.0017}, {0.003, "", {0.007, 0}, Thickness→ 0.0017},
{0.004, "", {0.007, 0}, Thickness→ 0.0017}, {0.005, "", {0.007, 0}, Thickness→ 0.0017},
{0.006, "", {0.007, 0}, Thickness→ 0.0017}, {0.007, "", {0.007, 0}, Thickness→ 0.0017},
{0.008, "", {0.007, 0}, Thickness→ 0.0017}, {0.009, "", {0.007, 0}, Thickness→ 0.0017},
{0.01, "0.01", {0.01, 0}, Thickness→ 0.0017}, {0.02, "", {0.007, 0}, Thickness→ 0.0017},
{0.03, "", {0.007, 0}, Thickness→ 0.0017}, {0.04, "", {0.007, 0}, Thickness→ 0.0017},
{0.05, "", {0.007, 0}, Thickness→ 0.0017}, {0.06, "", {0.007, 0}, Thickness→ 0.0017},

, ,
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{0.07, "", {0.007, 0}, Thickness→ 0.0017}, {0.08, "", {0.007, 0}, Thickness→ 0.0017},
{0.09, "", {0.007, 0}, Thickness→ 0.0017}, {0.1, "0.1", {0.01, 0}, Thickness→ 0.0017},
{0.2, "", {0.007, 0}, Thickness→ 0.0017}, {0.3, "", {0.007, 0}, Thickness→ 0.0017},
{0.4, "", {0.007, 0}, Thickness→ 0.0017}, {0.5, "", {0.007, 0}, Thickness→ 0.0017},
{0.6, "", {0.007, 0}, Thickness→ 0.0017}, {0.7, "", {0.007, 0}, Thickness→ 0.0017},
{0.8, "", {0.007, 0}, Thickness→ 0.0017}, {0.9, "", {0.007, 0}, Thickness→ 0.0017},
{1, "1", {0.01, 0}, Thickness→ 0.0017}, {2, "", {0.007, 0}, Thickness→ 0.0017}}};

ff =GraphicsGrid[{{G1, G2}, {G3, G4}, {G5, G6}}, Spacings→ {10, 10}, ImageSize→ 800,
Epilog→ {Text[Style["a", 21, FontFamily→ "Arial", Black, Bold], Scaled[{-0.41, 1.2}]],

Text[Style["b", 21, FontFamily→ "Arial", Black, Bold], Scaled[{0.6, 1.2}]],
Text[Style["c", 21, FontFamily→ "Arial", Black, Bold], Scaled[{-0.41, 0.72}]],
Text[Style["d", 21, FontFamily→ "Arial", Black, Bold], Scaled[{0.6, 0.72}]],
Text[Style["e", 21, FontFamily→ "Arial", Black, Bold], Scaled[{-0.41, 0.212}]],
Text[Style["f", 21, FontFamily→ "Arial", Black, Bold], Scaled[{0.6, 0.212}]]}];

Export[MyDirection <> "figure6.png", ff, Background→None];
Out["]= 0.00362328

###################### Figure6##############################

36


	Introduction
	Methods
	Results and Discussions
	Physical Model
	Special Relativistic Effects in the Constrained State of iu
	Establishment of the Classical Diffusion Equation in the Constrained State of iu
	Construction of the Generalized Diffusion Equation in the Constrained State of iiiu
	Vector Decomposition
	Description of Diffusion
	Construction of the Generalized Diffusion Equation

	Verification of Eq. 36

	Conclusions
	Acknowledgements
	Supplementary Material
	References

