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ABSTRACT

This publication contains a mathematical approach for a reinterpretation of the "Maxwell

equations" under the assumption of a magnetic field density. The basis for this is Faraday's

unipolar induction, which has proven itself in practice, in combination with the calculation

rules of vector analysis. The theoretical approach here is the assumption, according to Paul

Dirac, that there is a magnetic field density.

In this publication, the "Maxwell equations" are recalculated in their entirety. It is shown that

both the temporal change in the magnetic field and the temporal change in the electric field

can each be derived from a second-order tensor (matrix), which can be interpreted as a spatial

field distortion tensor. Likewise, both the magnetic field density and the electric field density

are derived from the unipolar induction, according to Faraday. The magnetic field density re-

sults from the fact that the div B⃗  is equal to the (Sp)grad B⃗ .

In addition to the two field distortion tensors grad B⃗  and grad D⃗ , the velocity gradient

grad v⃗ , which can also be derived from Faraday's unipolar induction, plays an important

role in the interpretation of spatially distorted fields.

1. INTRODUCTION

The “Maxwell equations” were defined in their present form in a simplified way by Oliver

Heaviside (1850-1925). Since vector mathematics was still  in its infancy at that time, the

"Maxwell equations" were simplified by Oliver Heaviside using the methods of differential

calculus and integral calculus of the time. He assumed that no magnetic field density existed.

This was later questioned by Paul Dirac, through a theoretical consideration. Therefore, this
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elaboration deals with the reinterpretation of the "Maxwell equations", under the mathemati-

cal requirement of a magnetic field density and with the help of vector analysis. The basis for

this is the unipolar induction according to Faraday.

2. IDEAS AND METHODS

2.1 IDEA FOR REINTERPRETATION OF THE “MAXWELL EQUATIONS”

The basic idea for the reinterpretation of the "Maxwell equations" is based on the discovery

of magnetic "quasi-monopoles" that cause a magnetic field density. These were demonstrated

in the following experiments:

1. Castelnovo, Moessner und Sondhi, 2009, Helmholz-Zentrum Berlin, Formation of “quasi-

monopoles” through neutron diffraction of a dysprosium titanate crystal.

2.  2010,  Paul-Scherrer-Institut,  Formation  of  “quasi-monopoles”  through  synchronous

radiation.

3. 2013, Technische Universitäten Dresden und München,  Formation of “quasi-monopoles”

when mining Skyrmion crystals.

 

4.  David Hall  und Mikko Möttönen,  2014, University of  Amherst  und Universität  Aalto,

Formation of “quasi-monopoles” in a ferromagnetic Bose-Einstein condensate.

Starting from the unipolar induction according to Faraday (equation 2.1.1) and the associated

analogous equation (equation 2.1.2), the "Maxwell equations" can now be derived and refor-

mulated under the mathematical requirement of a magnetic field density and with the help of

vector analysis become.

All physical and mathematical descriptions used in this elaboration are listed below.

E⃗ =  electric field strength 

v⃗  =  velocity

B⃗  =  magnetic flux density

H⃗ =  magnetic field strength

D⃗ =  electrical flux density
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× =  Cross product

s⃗  =  distance

t   =  time 

ρel = electrical space charge density

ρm = magnetic space charge density

j = electric current density

jm = magnetic current density

δ   = Delta

rot = rotation/curl

div = divergence 

grad = gradient 

Faradys unipolar induction:

E⃗=  v⃗  ×  B⃗                                                                                                                  (2.1.1)

Unipolar induction for magnetic fields:

H⃗ = −( v⃗  ×  D⃗)                                                                                                           (2.1.2)

2.2 BASICS OF VECTOR CALCULATION

In order to be able to derive the set of equations of the “Maxwell equations” from vector cal-

culation, the basics of vector calculation used for this are described in this chapter.

First, three meta-vectors  a⃗ ,  b⃗  and  c⃗  are introduced at this point. The three meta-

vectors will be used in the following basic mathematical description. In Equation 2.2.1, these

three meta-vectors are used to map the cross product.

c⃗  = a⃗  × b⃗                   (2.2.1)

In equation 2.2.1, the rot-operator is now used on both sides of the equation. This results in

equation 2.2.2.

rot  c⃗  = rot  (a⃗  × b⃗ )                               (2.2.2)

Now the right side of equation 2.2.2 is rewritten according to the calculation rules of vector

calculation. This results in equation 2.2.3.
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rot c⃗  =  rot (a⃗×b⃗)  =  (grad a⃗)  b⃗  −  (grad b⃗)  a⃗  +  a⃗  div b⃗  − b⃗  div a⃗                     (2.2.3)

Two vector gradients (grad) and two vector divergences (div) now appear on the right-hand

side of equation 2.2.3.

If a minus sign is now applied to all sides of Equation 2.2.3, this Equation changes to Equa-

tion 2.2.4. 

rot (−a⃗× b⃗)  =  - rot (a⃗× b⃗)  = - (grad a⃗ )  b⃗  + (grad b⃗)  a⃗  − a⃗  div b⃗  +  b⃗  div a⃗     (2.2.4)

The two equations 2.2.3 and 2.2.4 are analogous to the equations 2.1.1 and 2.1.2.

2.3 UNIPOLAR INDUCTION FOR DESCRIBING ELECTRIC AND MAGNETIC
FIELDS

The rot operator is applied to equations 2.1.1 and 2.1.2 according to the calculation rules

from equation 2.2.2. Taking Equations 2.2.3 and 2.2.4 into account, the two expressions from

Equations 2.3.1 and 2.3.2 arise.

rot E⃗  =  rot( v⃗  ×  B⃗)                                                                                                   (2.3.1)

rot H⃗  =  −rot ( v⃗  × D⃗)                                                                                               (2.3.2)

In a next step, the right-hand side from equations 2.3.1 and 2.3.2 is rearranged according to

the calculation rules from equations 2.2.3 and 2.2.4.  This results in the expressions from

equations 2.3.3 and 2.3.4.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot H⃗  =  −((grad v⃗)  D⃗  − (grad D⃗) v⃗  + v⃗  div D⃗  − D⃗  div v⃗ )                                (2.3.4)

Equation 2.3.4 is further simplified, resulting in equation 2.3.5.

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)
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In principle, Equations 2.3.3 and 2.3.5 can already be described as a reinterpretation of the

"Maxwell equations", since these describe a large part of the electrodynamics. For better un-

derstanding, the "Maxwell equations" are derived from equations 2.3.3 and 2.3.5 in the next

chapters.

2.4 DERIVATION OF THE “MAXWELL EQUATIONS”

In the following chapters, the well-known "Maxwell equations" are derived from Equations

2.3.3 and 2.3.5 in order to create the conditions for being able to reinterpret and reformulate

precisely those "Maxwell equations".

The derivation is based on the physical assumption that there is no magnetic field density, as

given by the interpretation according to Heaviside. Here, too, it is assumed that no distortions

occur in the velocity vector field, in the magnetic field, or in the electric field. As a result, the

(grad v⃗ )  and the (div v⃗ )  have no influence on the overall result. Furthermore, the two

expressions v⃗ (grad B⃗)  and v⃗ (grad D⃗)  become 
δ B⃗
δ t

 and 
δ D⃗
δ t

.

2.4.1 “MAXWELL EQUATIONS”

From the prerequisites formulated in chapter 2.4, the simplified forms of the "Maxwell equa-

tions" can now be listed by equations 2.4.1, 2.4.2, 2.4.3 and 2.4.4.

Gaussian law:

div D⃗  = −ρel                                                                                                               (2.4.1)

Gaussian law for magnetic fields:

div B⃗  = 0                                                                                                                    (2.4.2)

Induction law:

rot E⃗  = −
δ B⃗
δ t

                                                                                                             (2.4.3)

Flooding law:

rot H⃗  =  
δ D⃗
δ t

 +  j⃗                                                                                                       (2.4.4)
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The following chapters explain how equations 2.4.1, 2.4.2, 2.4.3 and 2.4.4 can be derived

from equations 2.3.3 and 2.3.5 under the assumptions from chapter 2.4.

2.4.2   DERIVATION OF GAUSS' LAW FOR MAGNETIC FIELDS AND THE LAW
OF INDUCTION

In this chapter, both Gauss's law for magnetic fields and the law of induction are derived from

equation 2.3.3, under the assumptions from chapter 2.4.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

First, the individual components from Equation 2.3.3 are considered under certain assump-

tions. Assuming a homogeneous velocity vector field,  (grad v⃗ )  and  (div v⃗ )  have no

influence on the overall result and therefore assume the value 0. The (div B⃗)  also assumes

the value 0, assuming that there is no magnetic field density. Equations 2.4.5, 2.4.6 and 2.4.2

follow from this. Equation 2.4.2 describes Gauss' law for magnetic fields.

(grad v⃗ )  = 0                                                                                                               (2.4.5)

(div v⃗ )  =  0                                                                                                                 (2.4.6)

Gaußsches Gesetz für magnetische Felder:

div B⃗  = 0                                                                                                                    (2.4.2)

Under the assumptions from Equations 2.4.5, 2.4.6 and 2.4.2, Equation 2.3.3 can now be sim-

plified to Equation 2.4.7.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot E⃗  =  0  ⋅B⃗  −  (grad B⃗) v⃗  +  v⃗  ⋅0  − B⃗   ⋅0                                                             (2.4.7)

If the terms that do not contribute to the overall result in Equation 2.4.7 are now eliminated,

the overall expression from Equation 2.4.7 can be further simplified. Equation 2.4.8 results

from this.
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rot E⃗  = - (grad B⃗) v⃗         (2.4.8)

(grad B⃗) v⃗  from equation 2.4.8 can be rewritten in column notation. The changed notation

is shown in Equation 2.4.9.

 −(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ B x

δ x
δ B x

δ y
δ B x

δ z
δ B y

δ x
δ B y

δ y
δ B y

δ z
δ B z

δ x

δ B z

δ y

δ B z

δ z
) ⋅ (

vx

v y

vz
)                               (2.4.9)

If, in Equation 2.4.9, the velocity vector v⃗  is offset against (grad B⃗) , Equation 2.4.10

results.

−(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ Bx

δ x
 ⋅ v x  + 

δ B x

δ y
 ⋅ v y  + 

δ B x

δ z
 ⋅ v z

δ B y

δ x
 ⋅ v x  + 

δ B y

δ y
 ⋅ v y  + 

δ B y

δ z
 ⋅ vz

δ B z

δ x
 ⋅ vx  + 

δ B z

δ y
 ⋅ v y  + 

δ B z

δ z
 ⋅ v z

)  = − x⃗
(grad B⃗) v⃗                 (2.4.10)

The velocity vector  v⃗  can now be rewritten as  
δ s⃗
δ t

. Equation 2.4.11 shows this rela-

tionship.

v⃗  = (
v x

v y

v z
)  = 

δ s⃗
δ t

 = (
δ x
δ t
δ y
δ t
δ z
δ t

)                                                                                            (2.4.11)

Substituting the modified expression from Equation 2.4.11 into Equation 2.4.10 gives Equa-

tion 2.4.12.
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−(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ Bx

δ x
 ⋅ 

δ x
δ t

 + 
δ B x

δ y
 ⋅ 

δ y
δ t

 + 
δ Bx

δ z
 ⋅ 

δ z
δ t

δ B y

δ x
 ⋅ 

δ x
δ t

 + 
δ B y

δ y
 ⋅ 

δ y
δ t

 + 
δ By

δ z
 ⋅ 

δ z
δ t

δ B z

δ x
 ⋅ 

δ x
δ t

 + 
δ B z

δ y
 ⋅ 

δ y
δ t

 + 
δB z

δ z
 ⋅ 

δ z
δ t

)                               (2.4.12)

Assuming a distortion-free magnetic field, the magnetic flux density B⃗  can only change in

the  respective  effective  direction.  This  simplifies  the  expression  from equation  2.4.12  to

equation 2.4.13.

  −(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ B x

δ x
 ⋅ 

δ x
δt

 + 0  + 0

0  + 
δ By

δ y
 ⋅ 

δ y
δ t

 + 0

0  + 0  + 
δ Bz

δ z
 ⋅ 

δ z
δ t

)                                                           (2.4.13)

Now δ x , δ y  and , δ z  in Equation 2.4.13 can be reduced and the overall expression

from Equation 2.4.14 results.

−(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ Bx

δ t
δ B y

δ t
δ B z

δ t
) =   −

δ B⃗
δ t

                                                                     (2.4.14)

Equation 2.4.14 depicts part of the law of induction. If Equation 2.4.14 is now inserted into

Equation 2.4.8, Equation 2.4.15 results.

rot E⃗  = −(grad B⃗)  ⋅ v⃗  =   −
δ B⃗
δ t

                                                                             (2.4.15)

Equation 2.4.15 can now be simplified to equation 2.4.3, resulting in the law of induction ac-

cording to Heaviside.
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law of induction:

rot E⃗  = −
δ B⃗
δ t

                                                                                                             (2.4.3)

At this point, the note is inserted that the trace of the magnetic flux density gradient, i.e.

(Sp)(grad B⃗) , corresponds to the divergence of the magnetic flux density, i.e.  div B⃗ .

From this mathematical requirement arises the fact that if the div B⃗  is equated to 0, as re-

quired by Gauss' law for magnetic fields (equation 2.4.2), then the (Sp)(grad B⃗)  must also

be equated to 0. However, since the (Sp)(grad B⃗)  consists of the individual components

that ultimately become the expression  
δ B⃗
δ t

 in the law of induction (equation 2.4.3), the

question arises, which values do the individual components of the expression 
δ B⃗
δ t

 assume

under these conditions? And what is the physical result of this conclusion? From chapter 2.5

these questions will be dealt with.

2.4.3 DERIVATION OF GAUSS' LAW AND FLOOD LAW

In analogy to chapter 2.4.2, in this chapter, from equation 2.3.5, both Gauss's law and the law

of flooding are derived.

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

As in chapter 2.4.2, it is also assumed in this chapter that neither the velocity vector field

v⃗  nor the vector field of the electric flux density  D⃗  experience any distortion. This

means that the (grad v⃗ )  and the (div v⃗ )  have no influence on the overall result. Unlike

in Chapter 2.4.2, however, the field divergence, i.e. (div D⃗) , makes a contribution to the

overall result. This results in the requirement that, unlike the magnetic field, there is a field

density here.  These  physical  assumptions  are  shown in  Equations  2.4.5,  2.4.6 and 2.4.1.

Equation 2.4.1 describes Gauss' law.

(grad v⃗ )  = 0                                                                                                               (2.4.5)

(div v⃗ )  =  0                                                                                                                 (2.4.6)
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Gauss' law:

div D⃗  = −ρel                                                                                                               (2.4.1)

                                                                                                   

Under the assumptions of Equations 2.4.5, 2.4.6 and 2.4.1, Equation 2.3.5 can now be simpli-

fied to Equation 2.4.16.

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

rot H⃗  =  −0  ⋅D⃗  + (grad D⃗) v⃗  − v⃗  div D⃗  +  D⃗   ⋅0                                               (2.4.16)

If the terms that do not contribute to the overall result are now eliminated, equation 2.4.16

can be further simplified. The result is equation 2.4.17.

rot H⃗  =  (grad D⃗) v⃗  − v⃗  div D⃗                                                                                (2.4.17)

The term  (grad D⃗) v⃗ ,  from Equation 2.4.17,  can be rewritten in  the form of  Equation

2.4.18.

 (grad D⃗)  ⋅ ( v⃗ )  =  (
δ Dx

δ x
δ D x

δ y
δ D x

δ z
δ D y

δ x
δ D y

δ y
δ D y

δ z
δ D z

δ x

δ Dz

δ y

δ D z

δ z
) ⋅ (

vx

v y

vz
)                                         (2.4.18)

If, in Equation 2.4.18, the velocity vector v⃗  is offset against (grad D⃗) , Equation 2.4.19

results.

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ D x

δ x
 ⋅ v x  + 

δ Dx

δ y
 ⋅ v y  + 

δ D x

δ z
 ⋅ v z

δ D y

δ x
 ⋅ v x  + 

δ D y

δ y
 ⋅ v y  + 

δ D y

δ z
 ⋅ vz

δ D z

δ x
 ⋅ vx  + 

δ D z

δ y
 ⋅ v y  + 

δ D z

δ z
 ⋅ v z

) = x⃗
(grad D⃗ ) v⃗                        (2.4.19)
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The velocity vector v⃗  can be rewritten as 
δ s⃗
δ t

 according to Equation 2.4.11. This fact

results in Equation 2.4.20 from Equation 2.4.19.

v⃗  = (
v x

v y

v z
)  = 

δ s⃗
δ t

 = (
δ x
δ t
δ y
δ t
δ z
δ t

)                                                                                            (2.4.11)

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ D x

δ x
 ⋅ 

δ x
δ t

 + 
δ D x

δ y
 ⋅ 

δ y
δ t

 + 
δ D x

δ z
 ⋅ 

δ z
δ t

δ D y

δ x
 ⋅ 

δ x
δ t

 + 
δ D y

δ y
 ⋅ 

δ y
δ t

 + 
δ D y

δ z
 ⋅ 

δ z
δ t

δ D z

δ x
 ⋅ 

δ x
δ t

 + 
δ D z

δ y
 ⋅ 

δ y
δ t

 + 
δ Dz

δ z
 ⋅ 

δ z
δ t

)                                  (2.4.20)

Assuming that the electric field effect only changes in the respective effective direction, i.e. a

distortion-free electric flux density field is assumed, the expression from Equation 2.4.20

changes to Equation 2.4.21.

  (grad D⃗)  ⋅ ( v⃗ )  =  (
δ D x

δ x
 ⋅ 

δ x
δ t

 + 0  + 0

0  + 
δ D y

δ y
 ⋅ 

δ y
δ t

 + 0

0  + 0  + 
δ D z

δ z
 ⋅ 

δ z
δ t

)                                                                (2.4.21)

Now the components  δ x ,  δ y  and  δ z  can be reduced from Equation 2.4.21 and

Equation 2.4.22 emerges.

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ Dx

δ t
δ D y

δ t
δ D z

δ t
) =   

δ D⃗
δ t

                                                                           (2.4.22)
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Equation 2.4.22 depicts part of the flux law, namely 
δ D⃗
δ t

, and can later be used in equa-

tion 2.4.4.

flooding law:

rot H⃗  =  
δ D⃗
δ t

 +  j⃗                                                                                                       (2.4.4)

If the relationships from Equations 2.4.1 and 2.4.22 are now inserted into Equation 2.4.17,

Equation 2.4.23 results.

  div D⃗  =  −ρel                                                                                                             (2.4.1)

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ Dx

δ t
δ D y

δ t
δ D z

δ t
) =   

δ D⃗
δ t

                                                                           (2.4.22)

rot H⃗  =  (grad D⃗) v⃗  − v⃗  div D⃗                                                                                (2.4.17)

rot H⃗  =  (grad D⃗) v⃗  − v⃗  div D⃗  =  
δ D⃗
δ t

 −  v⃗  ⋅ (−ρel)                                            (2.4.23)

The  velocity  vector  v⃗  multiplied  by  the  electrical  space  charge  density  −ρel ,  i.e.

v⃗  ⋅ (−ρel ) , results in the electrical current density  − j⃗ . This relationship is shown in

equation 2.4.24.

− j⃗  =  v⃗  ⋅ (−ρel)                                                                                                       (2.4.24)

If Equation 2.4.24 is used together with Equation 2.4.22 into Equation 2.4.23, the simplified

variant of the flooding law in Equation 2.4.4 arises.
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flooding law:

rot H⃗  =  
δ D⃗
δ t

 +  j⃗                                                                                                       (2.4.4)

The difference between the law of induction (equation 2.4.3) and the flooding law (equation

2.4.4) is that the flooding law includes an electric current density  j⃗ . The problems that

arise from the general assumption that there is no magnetic current density j⃗ m  in the law

of induction will be examined in the following chapters in the reinterpretation of the "Max-

well equations".

 2.5 THE REINTERPRETATION OF THE “MAXWELL EQUATIONS”

 

In order to be able to reinterpret the "Maxwell equations", the framework conditions are first

redefined. The first condition is that it cannot be ruled out that both the vector field of the ve-

locity v⃗  and the two vector fields of the magnetic flux density B⃗  and the electric flux

density D⃗  can be subject to deformation or distortion. Accordingly, the velocity gradient

grad ( v⃗ )  cannot be equated with 0. In addition, the two field gradients  grad( B⃗)  and

grad( D⃗)  cannot be simplified as in Chapters 2.4.3 and 2.4.4. All three the div ( v⃗ )  and

the div( B⃗)  and the div( D⃗)  are dependent on the Spur (Sp) of the respective associated

gradient. From a mathematical point of view, equations 2.5.1, 2.5.2 and 2.5.3 result from

these framework conditions.

Equations 2.3.3 and 2.3.5 are the starting point for the reinterpretation of the “Maxwell equa-

tions”.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

(Sp)(grad v⃗)  = div ⃗(v )                                                                                                  (2.5.1)

(Sp)(grad B⃗)  = div ⃗( B)                                                                                                (2.5.2)

(Sp)(grad D⃗)  = div ⃗( D)                                                                                               (2.5.3)
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The velocity gradient grad ( v⃗ )  makes a contribution to the overall result of equations 2.3.3

and 2.3.5 when substances are deformed, i.e. wherever the velocity vector field v⃗  is not

homogeneous, in the form given in equation 2.5.4 is shown.

(grad v⃗ )  =  (
δv x

δ x
δ v x

δ y
δ v x

δ z
δv y

δ x
δ v y

δ y
δ v y

δ z
δ vz

δ x

δ v z

δ y

δ v z

δ z
)                                                                                   (2.5.4)

In Equation 2.3.3 as well as in Equation 2.3.5, the velocity gradient grad( v⃗ )  is multiplied

by the respective field magnitude vector. For Equation 2.3.3 this is  B⃗  and for Equation

2.3.5 this is D⃗ . For the second term from Equation 2.3.3, Equation 2.5.5 can therefore be

written. Equation 2.5.6 can be written analogously for the second term from Equation 2.3.5.

rot E⃗  = (grad v⃗ )  B⃗  −  (grad B⃗) v⃗  +  v⃗  div B⃗  − B⃗  div v⃗                                       (2.3.3)

(grad v⃗ )  ⋅ (B⃗)  =  (
δv x

δ x
δv x

δ y
δ vx

δ z
δv y

δ x
δv y

δ y
δv y

δ z
δv z

δ x

δv z

δ y

δv z

δ z
)  ⋅ (

B x

B y

B z
)                                                            (2.5.5)

rot H⃗  =  −(grad v⃗ )  D⃗  + (grad D⃗) v⃗  −  v⃗  div D⃗  +  D⃗  div v⃗                                  (2.3.5)

(grad v⃗ )  ⋅ (D⃗)  =  (
δv x

δ x
δv x

δ y
δ vx

δ z
δv y

δ x
δv y

δ y
δv y

δ z
δv z

δ x

δv z

δ y

δv z

δ z
) ⋅ (

D x

D y

D z
)                                                           (2.5.6)

If the velocity gradient grad ( v⃗ )  is now offset against the respective field vector, equation

2.5.5 results  in the expression from equation 2.5.7 and equation 2.5.6 results  in equation

2.5.8.

14

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409



(grad v⃗ )  ⋅ ( B⃗)  =  (
δv x

δ x
 ⋅B x  + 

δvx

δ y
 ⋅B y  +  

δ vx

δ z
 ⋅B z

δ v y

δ x
 ⋅B x  + 

δ v y

δ y
 ⋅B y  +  

δv y

δ z
 ⋅B z

δ v z

δ x
 ⋅B x  + 

δv z

δ y
 ⋅B y  +  

δ v z

δ z
 ⋅B z

)  = x⃗
(grad v⃗) B⃗                             (2.5.7)

−(grad v⃗ )  ⋅ (D⃗)  =  −(
δ v x

δ x
 ⋅D x  +  

δ vx

δ y
 ⋅D y  +  

δv x

δ z
 ⋅D z

δv y

δ x
 ⋅D x  +  

δv y

δ y
 ⋅D y  +  

δ v y

δ z
 ⋅Dz

δv z

δ x
 ⋅D x  +  

δvz

δ y
 ⋅D y  + 

δv z

δ z
 ⋅D z

) = − x⃗
(grad v⃗) D⃗                  (2.5.8)

Under the assumption of Equation 2.5.1, Equation 2.5.4 yields a statement about the diver-

gence of the velocity vector div v⃗ . This results in Equation 2.5.9.

(Sp)(grad v⃗)  = div v⃗                                                                                                    (2.5.1)

(grad v⃗ )  =  (
δv x
δ x

δ vx

δ y
δ vx

δ z
δv y

δ x
δ v y
δ y

δ v y

δ z
δv z

δ x

δv z

δ y

δvz
δ z

)                                                                                   (2.5.4)

(Sp)(grad v⃗)  = div v⃗  = 
δv x
δ x

 +  
δv y
δ y

 +  
δvz
δ z

                                                            (2.5.9)

If Equation 2.5.9 is now multiplied by the respective field vector  B⃗  or  D⃗ , Equation

2.5.10 arises for the fifth term from Equation 2.3.3 and Equation 2.5.11 arises for the fifth

term from Equation 2.3.5.

rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)
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−B⃗  div v⃗  = −(
Bx (

δv x

δ x
 + 

δv y

δ y
 +  

δv z

δ z
)

By (
δv x

δ x
 +  

δv y

δ y
 +  

δ vz

δ z
)

B z (
δ vx

δ x
 + 

δ v y

δ y
 +  

δv z

δ z
)
)  = − x⃗ B⃗ div v⃗                                              (2.5.10)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

D⃗  div v⃗  = (
D x(

δv x

δ x
 +  

δ v y

δ y
 + 

δv z

δ z
)

D y (
δ vx

δ x
 +  

δv y

δ y
 +  

δv z

δ z
)

D z(
δv x

δ x
 +  

δv y

δ y
 +  

δvz

δ z
)
) = x⃗ D⃗div v⃗                                                     (2.5.11)

The mathematical requirement from Equation 2.5.3 results in an electric field density from

div D⃗ . This relationship is shown in Equation 2.5.12.

(Sp)(grad D⃗)  = div D⃗                                                                                                  (2.5.3)

(Sp)(grad D⃗)  = div D⃗  = 
δ D x

δ x
 +  

δ D y

δ y
 +  

δ D z

δ z
                                                    (2.5.12)

In order to get the fourth term from Equation 2.3.5, the expression div D⃗  from Equation

2.5.12 must now be multiplied by the velocity vector v⃗ . The result is the electric current

density − j⃗ . This fact is shown in Equation 2.5.13.

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

 v⃗  div D⃗  = (
v x(

δ D x

δ x
 +  

δ D y

δ y
 + 

δ D z

δ z
)

v y (
δ D x

δ x
 +  

δ D y

δ y
 +  

δ D z

δ z
)

v z(
δ D x

δ x
 +  

δ D y

δ y
 + 

δ Dz

δ z
)
) = − j⃗                                                      (2.5.13)
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Since in Equation 2.5.13 only the field vector  D⃗  has to be replaced by the field vector

B⃗  in order to obtain a mathematically correct statement, it must also follow that there is a

magnetic current density − jm .

2.5.1 THE MAGNETIC FIELD DENSITY

In this chapter, the magnetic field density is treated separately because it is the core of this

elaboration.  It  is  shown here why the divergence of  the  magnetic  flux  density  div B⃗ ,

which can be interpreted as just that magnetic field density, can only be equated with 0 from a

mathematical point of view under certain circumstances.

From the mathematical requirement of equation 2.5.14 it follows that the divergence of the

magnetic flux density div B⃗  is directly related to the gradient of the magnetic flux density

grad B⃗ , as can be seen in combination with equation 2.4.9. The sum of the diagonals, from

top left to bottom right, of the magnetic flux density gradient grad B⃗  represents the diver-

gence of the magnetic flux density div B⃗ . This sum is called (Sp)(grad B⃗ ) . This affects

the following matrix elements of the grad B⃗ : 
δB x

δ x
, 

δB y

δ y
 and 

δB z

δ z
. According to

the "Maxwell equations", the sum of these three elements must therefore be 0, as can be seen

from Equation 2.5.14. However, since these three elements are an important part of Equation

2.5.15, the following problem arises. Either  
δ B⃗
δ t

 or the sum of the individual elements

δB x

δ x
, 

δB y

δ y
 and 

δB z

δ z
 must become 0. Both are a contradiction to the law of induc-

tion. The reason for this is that the result, which emerges from the law of induction, is neither

0 nor the sum of its individual elements must be 0.

(Sp)(grad B⃗)  = div ⃗(B)  = 
δ Bx
δ x

 +  
δB y

δ y
 + 

δ B z
δ z

 = 0                                             (2.5.14)

 −(grad B⃗)  ⋅ ( v⃗ )  =  −(
δBx
δ x

δ Bx

δ y
δ Bx

δ z
δ By

δ x
δ By
δ y

δ By

δ z
δ B z

δ x

δ Bz

δ y

δBz
δ z

) ⋅ (
v x

v y

vz
)                               (2.4.9)
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−(
δBx
δ x

 ⋅ 
δ x
δ t

δB y

δ y
 ⋅ 

δ y
δ t

δB z
δ z

 ⋅ 
δ z
δ t

) =   −
δ B⃗
δ t

                                                                                          (2.5.15)

The contradiction to the law of induction just formulated is shown in equations 2.5.16, 2.5.17,

2.5.18 and 2.5.19.

 
δ B⃗
δ t

 = 0                                                                                                                    (2.5.16)

(Sp)(grad B⃗)  = div ⃗( B)  = −
δ B x

δ x
 =  −

δ By

δ y
 − 

δB z

δ z
 = 0                                         (2.5.17)

(Sp)(grad B⃗)  = div ⃗( B)  = −
δ B y

δ y
 =  −

δ Bx

δ x
 − 

δB z

δ z
 = 0                                         (2.5.18)

(Sp)(grad B⃗)  = div ⃗( B)  = −
δ B z

δ z
 =  −

δ B y

δ y
 −  

δ B x

δ x
 = 0                                         (2.5.19)

The detailed description of the problem is as follows: Either 
δ B⃗
δ t

 is set equal to 0 (equa-

tion 2.5.16) or in the theoretical movement of a point particle through a magnetic flux density

B⃗ , there is, in three-dimensional space, a dimensional direction of movement in which the

flux density changes positively and two-dimensional directions of movement, which together

describe  a  negative  change  in  the  magnetic  flux  density.  This  is  evident  from equations

2.5.17, 2.5.18, 2.5.19. However, the condition for this is that the sum of all three magnetic

flux density changes in the three possible dimensional directions of movement results in 0.

The resulting idea of the magnetic flux density B⃗  and, ultimately, the idea of a magnetic

field does not correspond to the current physical idea of the magnetic field and the empirical

values that result from practical inventions, such as the three-phase generator.

A solution to this problem results from an approach by Paul Dirac that there is a magnetic

current density − j⃗m . The calculation of this magnetic field density is shown in Equation

2.5.20, which is analogous to Equation 2.5.13. Since Equation 2.5.13 already describes the
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electric current density − j⃗ , only the field vector D⃗  has to be replaced by the field vec-

tor B⃗  there in order to derive Equation 2.5.20 from it.

  v⃗  div D⃗  = (
v x(

δD x

δ x
 +  

δD y

δ y
 + 

δDz
δ z

)

v y (
δ Dx
δ x

 +  
δD y

δ y
 +  

δD z

δ z
)

v z(
δD x

δ x
 + 

δD y

δ y
 + 

δ Dz
δ z

)
)  = − j⃗                                                     (2.5.13)

  v⃗  div B⃗  = (
v x(

δBx
δ x

 +  
δB y
δ y

 +  
δBz
δ z

)

v y(
δBx
δ x

 +  
δB y

δ y
 + 

δB z
δ z

)

v z(
δBx
δ x

 + 
δB y
δ y

 +  
δB z
δ z

)
) = − j⃗m                                                    (2.5.20)

Equation 2.5.20 shows that at least one of the three expressions 
δB x

δ x
, 

δB y

δ y
 or 

δB z

δ z

must have a value so that the magnetic current density − j⃗m  can also have a value. This

also has a direct impact on equation 2.5.15. Because at least one of the three expressions list-

ed has a value, the expression 
δ B⃗
δ t

 now also has a value.

−(
δBx
δ x

 ⋅ 
δ x
δ t

δB y

δ y
 ⋅ 

δ y
δ t

δB z
δ z

 ⋅ 
δ z
δ t

) =   −
δ B⃗
δ t

                                                                                         (2.5.15)

From this it follows that the expression  
δ B⃗
δ t

 is always associated with a magnetic field

density  div B⃗ , with the exception of equations 2.5.17, 2.5.18 and 2.5.19. In addition, a

magnetic  current  density  − jm  also requires  a magnetic  charge  −ρm ,  which results

from the magnetic field density div B⃗ . Analogously to Equation 2.4.24, in which the elec-

19

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521



tric current density − j  is described, the assumption from Equation 2.5.21 can now also be

made. A magnetic current density − jm  is described therein.

− j⃗  =  v⃗  ⋅ (−ρel)                                                                                                       (2.4.24)

− j⃗m  =  v⃗  ⋅ (−ρm)                 (2.5.21)

v⃗  div B⃗  = (
vx(

δ Bx

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
)

v y(
δ Bx

δ x
 +  

δ B y

δ y
 +  

δ B z

δ z
)

v z(
δ Bx

δ x
 +  

δ B y

δ y
 +  

δ B z

δ z
)
) = − j⃗ m                                                       (2.5.20)

Equation 2.5.21 in combination with Equation 2.5.20 shows that the magnetic field density

div B⃗  cannot have the value 0, but instead has the value −ρm . It follows that Equation

2.5.14 can only be interpreted as a special case of Equation 2.5.22.

(Sp)(grad B⃗)  = div ⃗(B)  = 
δ Bx

δ x
 +  

δ B y

δ y
 +  

δ Bz

δ z
 = 0                                              (2.5.14)

(Sp)(grad B⃗)  = div ⃗(B)  = 
δ Bx

δ x
 +  

δ B y

δ y
 +  

δ Bz

δ z
 = (−ρm)                                      (2.5.22)

Equation 2.5.22 can now also be converted into equation 2.5.23.

div ⃗(B)  = −ρm                                                                                                            (2.5.23)

Since a magnetic field density also results in the possibility of calculating certain field config-

urations, the "Maxwell equations" are reformulated in the following chapter.

2.5.2 REFORMULATION OF THE “MAXWELL EQUATIONS”

First, Equations 2.3.3 and 2.3.5 are written again, since these two equations depict the funda-

mental statements for the reformulation of the “Maxwell Equations”.
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rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

Equations 2.4.10, 2.4.19, 2.5.7, 2.5.8, 2.5.10, 2.5.11, 2.5.13 and 2.5.20 are now written one

below the other for better clarity. The reason for this is that, in a next step, these equations are

substituted as individual components in equations 2.3.3 and 2.3.5. This set of equations has

general validity, since it can also be used under the assumption that both the velocity vector

field v⃗  and the two vector fields of the magnetic flux density B⃗  and the electric flux

density D⃗  can be subject to deformation. In addition, in equation 2.5.20, the mathematical

requirement from chapter 2.5.1 is fulfilled that there is a magnetic field density.

−(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ Bx

δ x
 ⋅ v x  + 

δ B x

δ y
 ⋅ v y  + 

δ B x

δ z
 ⋅ v z

δ B y

δ x
 ⋅ v x  + 

δ B y

δ y
 ⋅ v y  + 

δ B y

δ z
 ⋅ vz

δ B z

δ x
 ⋅ vx  + 

δ B z

δ y
 ⋅ v y  + 

δ B z

δ z
 ⋅ v z

)  = − x⃗
(grad B⃗) v⃗                 (2.4.10)

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ D x

δ x
 ⋅ v x  + 

δ Dx

δ y
 ⋅ v y  + 

δ D x

δ z
 ⋅ v z

δ D y

δ x
 ⋅ v x  + 

δ D y

δ y
 ⋅ v y  + 

δ D y

δ z
 ⋅ vz

δ D z

δ x
 ⋅ vx  + 

δ D z

δ y
 ⋅ v y  + 

δ D z

δ z
 ⋅ v z

) = x⃗
(grad D⃗ ) v⃗                        (2.4.19)

(grad v⃗ )  ⋅ ( B⃗)  =  (
δv x

δ x
 ⋅B x  + 

δvx

δ y
 ⋅B y  +  

δ vx

δ z
 ⋅B z

δ v y

δ x
 ⋅B x  + 

δ v y

δ y
 ⋅B y  +  

δv y

δ z
 ⋅B z

δ v z

δ x
 ⋅B x  + 

δv z

δ y
 ⋅B y  +  

δ v z

δ z
 ⋅B z

)  = x⃗
(grad v⃗) B⃗                             (2.5.7)
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−(grad v⃗ )  ⋅ (D⃗)  =  −(
δ v x

δ x
 ⋅D x  +  

δ vx

δ y
 ⋅D y  +  

δv x

δ z
 ⋅D z

δv y

δ x
 ⋅D x  +  

δv y

δ y
 ⋅D y  +  

δ v y

δ z
 ⋅Dz

δv z

δ x
 ⋅D x  +  

δvz

δ y
 ⋅D y  + 

δv z

δ z
 ⋅D z

) = − x⃗
(grad v⃗) D⃗                  (2.5.8)

−B⃗  div v⃗  = −(
B x (

δv x

δ x
 + 

δv y

δ y
 +  

δv z

δ z
)

B y (
δv x

δ x
 +  

δv y

δ y
 +  

δ vz

δ z
)

B z (
δ vx

δ x
 + 

δv y

δ y
 +  

δv z

δ z
)
)  = − x⃗B⃗ div v⃗                                              (2.5.10)

D⃗  div v⃗  = (
D x(

δv x

δ x
 +  

δv y

δ y
 + 

δ v z

δ z
)

D y (
δ vx

δ x
 +  

δv y

δ y
 +  

δ v z

δ z
)

D z(
δv x

δ x
 +  

δv y

δ y
 +  

δ vz

δ z
)
)  = x⃗ D⃗div v⃗                                                      (2.5.11)

v⃗  div D⃗  = (
v x(

δ D x

δ x
 +  

δ D y

δ y
 + 

δ D z

δ z
)

v y (
δ D x

δ x
 +  

δ D y

δ y
 +  

δ D z

δ z
)

v z(
δ D x

δ x
 +  

δ D y

δ y
 +  

δ Dz

δ z
)
)  = (− j⃗)                                                    (2.5.13)

v⃗  div B⃗  = (
v x(

δ Bx

δ x
 +  

δ B y

δ y
 +  

δ B z

δ z
)

v y (
δ Bx

δ x
 +  

δ B y

δ y
 +  

δ B z

δ z
)

v z(
δ Bx

δ x
 +  

δ B y

δ y
 +  

δ B z

δ z
)
)  = (− j⃗m)                                                    (2.5.20)

Equations 2.4.10, 2.4.19, 2.5.7, 2.5.8, 2.5.10, 2.5.11, 2.5.13 and 2.5.20 are now substituted

into Equations 2.3.3 and 2.3.5. The result is Equations 2.5.33 and 2.5.34. Equations 2.5.35

and 2.5.36 show another result.
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rot E⃗  = (grad v⃗ )  B⃗  − (grad B⃗) v⃗  +  v⃗  div B⃗  −  B⃗  div v⃗                                         (2.3.3)

rot E⃗  = x⃗
(grad v⃗) B⃗  −  x⃗

(grad B⃗ ) v⃗  + (− j⃗ m)  − x⃗ B⃗div v⃗                                                       (2.5.33)

rot H⃗  =  −(grad v⃗ )  D⃗  +  (grad D⃗) v⃗  −  v⃗  div D⃗  + D⃗  div v⃗                                   (2.3.5)

rot H⃗  =  − x⃗
(grad v⃗) D⃗  +  x⃗

(grad D⃗) v⃗  − (− j⃗)  + x⃗D⃗ div v⃗                                                     (2.5.34)

v⃗  div ⃗(D)  = (− j⃗)                                                                                                       (2.5.35)

v⃗  div ⃗(B)  = (− j⃗m)                                                                                                     (2.5.36)

Equations 2.5.33, 2.5.34, 2.5.35 and 2.5.36 therefore represent the simplified reformulation of

the "Maxwell equations". Equation 2.5.36 is the mathematical-physical expression of a mag-

netic current density.

3. DISCUSSION

1. It remains to be discussed whether the expression from Equation 2.4.2 ( div( B⃗)  = 0 ) is

physically  admissible,  since  the  mathematical  requirement  consists  of  Equation  2.5.2  (

(Sp)(grad B⃗)  = div ⃗( B) ).  And  if  div( B⃗)  = 0  is  feasible,  what  does  this  mean  for

equation 2.5.14?

(Sp)(grad B⃗)  = div ⃗( B)  = 
δ Bx

δ x
 +  

δ B y

δ y
 + 

δ B z

δ z
 = 0                                              (2.5.14)

2.  Which effects would a possible distortion of the velocity vector field  v⃗  have on the

velocity gradient grad v⃗  and what are the consequences for the rot D⃗  and the rot B⃗ ?

3. What effects would a possible distortion of the two flux density vector fields, the magnetic

flux density B⃗  and the electric flux density D⃗ , have on their field gradients grad B⃗

and grad D⃗ ? What follows from this for the rot D⃗  and the rot B⃗ ?

4. How do questions 1 through 3 affect Equations 2.4.10, 2.4.19, 2.5.7, and 2.5.8?
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−(grad B⃗)  ⋅ ( v⃗ )  =  −(
δ Bx

δ x
 ⋅ v x  + 

δ B x

δ y
 ⋅ v y  + 

δ B x

δ z
 ⋅ v z

δ B y

δ x
 ⋅ v x  + 

δ B y

δ y
 ⋅ v y  + 

δ B y

δ z
 ⋅ vz

δ B z

δ x
 ⋅ vx  + 

δ B z

δ y
 ⋅ v y  + 

δ B z

δ z
 ⋅ v z

)  = − x⃗
(grad B⃗) v⃗                 (2.4.10)

(grad D⃗)  ⋅ ( v⃗ )  =  (
δ D x

δ x
 ⋅ v x  + 

δ Dx

δ y
 ⋅ v y  + 

δ D x

δ z
 ⋅ v z

δ D y

δ x
 ⋅ v x  + 

δ D y

δ y
 ⋅ v y  + 

δ D y

δ z
 ⋅ vz

δ D z

δ x
 ⋅ vx  + 

δ D z

δ y
 ⋅ v y  + 

δ D z

δ z
 ⋅ v z

) = x⃗
(grad D⃗ ) v⃗                        (2.4.19)

(grad v⃗ )  ⋅ ( B⃗)  =  (
δv x

δ x
 ⋅B x  + 

δvx

δ y
 ⋅B y  +  

δ vx

δ z
 ⋅B z

δ v y

δ x
 ⋅B x  + 

δ v y

δ y
 ⋅B y  +  

δv y

δ z
 ⋅B z

δ v z

δ x
 ⋅B x  + 

δv z

δ y
 ⋅B y  +  

δ v z

δ z
 ⋅B z

)  = x⃗
(grad v⃗) B⃗                             (2.5.7)

−(grad v⃗ )  ⋅ (D⃗)  =  −(
δ v x

δ x
 ⋅D x  +  

δ vx

δ y
 ⋅D y  +  

δv x

δ z
 ⋅D z

δv y

δ x
 ⋅D x  +  

δv y

δ y
 ⋅D y  +  

δ v y

δ z
 ⋅Dz

δv z

δ x
 ⋅D x  +  

δvz

δ y
 ⋅D y  + 

δv z

δ z
 ⋅D z

) = − x⃗
(grad v⃗) D⃗                  (2.5.8)

5. What effect does equation 2.5.36 have on the electromagnetic wave equation?

v⃗  div ⃗(B)  = − j⃗m                                                                                                        (2.5.36)

6. Under what circumstances does the velocity vector field v⃗  and the two vector fields, the

magnetic flux density B⃗  and the electric flux density D⃗ , deform?
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4. CONCLUSION

Under  the  mathematical  requirement  of  Equation  2.5.2  ( (Sp)(grad B⃗)  = div ⃗( B) ),  the

physical  requirement  of  Equation  2.4.2  ( div( B⃗)  = 0 )  is  valid  only  provided  that  the

(Sp)(grad B⃗)  = 0  is. This means that either the physical conception of the magnetic field

has to be reinterpreted or the assumption from Equation 2.4.2 ( div( B⃗)  = 0 ) is fundamen-

tally wrong. 

By reinterpreting the "Maxwell equations" from equations 2.5.33, 2.5.34, 2.5.35 and 2.5.36, a

mathematically and physically consistent approach was achieved for the calculation of elec-

tric and magnetic fields. In addition, in these equations, the distortions of the field quantities

used in the equations were taken into account. A direct analogy between electric and magnet-

ic fields was also derived mathematically. This analogy leads to the fact that the magnetic

field density becomes a mathematical-physical requirement when (Sp)(grad B⃗)  ≠  0  is. It

remains to be discussed under what circumstances this does not happen. It also remains to be

discussed what influence the equations 2.5.33, 2.5.34, 2.5.35 and 2.5.36 have on other equa-

tions that are based on the "Maxwell equations" and what technical possibilities result from

them.
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