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Abstract 

        The Riemann  -Function can be  expressed as  (𝑠) = 𝑢(𝑥, 𝑦) +

𝑖𝑣(𝑥, 𝑦) where  𝑠 = 𝑥 + 𝑖𝑦.  The structure of a Hamiltonian flow in the 

critical strip, 0 ≤ x ≤1, 0≤ 𝑦 ≤ ∞  of 𝑥̇ =  𝑢(𝑥, 𝑦), 𝑦̇ = - 𝑣(𝑥, 𝑦)  is  

determined by its behavior near  zeros of (s). Phase  portraits  are  

considered  and proved that all zeros of  the Riemann  -Function on 

the critical line are saddle points.   

1. Introduction 

         This paper is dependent on papers from [1-3]. The Riemann 

Zeta function (s) is a function of the complex variable s= x + iy, 

defined in the half plane x > 1 by the absolutely convergent series: 

                                          (s)    =    ∑
1

𝑛𝑠
∞
𝑛=1                                              (1) 

         (s) can be extended by  analytical continuation to the whole 

complex plane, with only a simple pole at s = 1 and  trivial zeros at 

the negative even integers that is ,when s is one of  -2, -4, -6, -8 ……..  

(s) has an infinity of zeros on the critical line, x = ½. The Riemann 

hypothesis is stated that all the non-trivial zeros of the Riemann Zeta 

function must lie on the critical line, x= ½. 

        In order to eliminate pole at s = 0 ,1 and all trivial zeros, the -

function is formulated as 

                                          (s)  =  
1

2
 s(s-1)

𝛤(
𝑠

2
)(𝑠)

𝑠/2    ,                                 (2)       

which satisfies the functional equation 

                                           (s)  = (1-s),                                                   (3) 

and has the same zeros as (s) in the critical strip , 0 < x < 1. 



(s)  is an entire function with real and imaginary parts 𝑢(𝑥, 𝑦) and 

𝑣(𝑥, 𝑦), thus 

                                         (𝑥 + 𝑖𝑦) =  𝑢(𝑥, 𝑦) +𝑖𝑣(𝑥, 𝑦) ,                    (4) 

where  𝑠 = 𝑥 + 𝑖𝑦 . 

From Eq. (3), relationship of  𝑢(𝑥, 𝑦)  , 𝑣(𝑥, 𝑦)  in the critical strip can 

be stated as: 

                                     𝑢(𝑥, 𝑦)   = 𝑢(1 − 𝑥, 𝑦), 

                                    𝑣(𝑥, 𝑦)    =  −𝑣(1 − 𝑥, 𝑦).                                    (5) 

From these  symmetries , the following results applying along x= ½, 

such as 

                                         𝑣(
1

2
, 𝑦)  = 0, 

                                        
𝜕𝑢

𝜕𝑥
(1/2,y) = 0                                                       (6) 

Since (s)  is an analytical function of s, it satisfies the Cauchy-

Riemann equations: 

                                 
𝜕𝑢

𝜕𝑥
 = 

𝜕𝑣

𝜕𝑦
  ,  

𝜕𝑢

𝜕𝑦
 = - 

𝜕𝑣

𝜕𝑥
                                              (7) 

2. Phase Portraits of Hamiltonian Systems 

    The Jacobian matrix of  𝑥̇ =  𝑢(𝑥, 𝑦), 𝑦̇ = - 𝑣(𝑥, 𝑦)  is defined as 

 

                                          J = [

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦

− 
𝜕𝑣

𝜕𝑥
−

𝜕𝑣

𝜕𝑦

]                                              (8) 

Let 𝛼 = 
𝜕𝑢

𝜕𝑥
   and 𝛽 =  

𝜕𝑢

𝜕𝑦
 .  By using relationship from Eq. (7), J can be 

represented as 

                                          J = [
𝛼 𝛽
𝛽 −𝛼

]                                                      (9) 



At zeros of (s)  on the critical line,  𝛼 = 0 and 𝛽 ≠ 0, then Eigen 

values of J at zeros of (s)  on the critical line  are ±𝛽 and its Eigen 

vectors are [
1

√2
,

1

√2
 ]

𝑇

   and   [
1

√2
, −

1

√2
 ]

𝑇

 ,respectively. Thus zeros of 

(s)  on the critical line  are saddle points as shown in Fig. 1 and Fig. 2 

for the first zeros and the second zero  at 𝜌 =
1

2
+ 𝑖14.1347 and  

𝜌2 =
1

2
+ 𝑖21.0220, respectively. As shown in [2], the  vorticity  of  

Riemann zero on the critical line alternate in sign as one move along  

it. The first and second Riemann zero has vorticity – and +, 

respectively. 

             

             Figure 1. The phase portrait of 𝑥̇ = u(x,y), 𝑦̇ = -v(x,y)   

                                near 𝜌1 =
1

2
+ 𝑖14.1347 

 



 

Figure 2. The phase portrait of 𝑥̇ = u(x,y), 𝑦̇ = -v(x,y) 

                                  near  𝜌2 =
1

2
+ 𝑖21.0220 

3.  Index Theory of Dynamical Systems and Application to the 

Critical Strip 

        Consider a dynamical system in the plane represented by 

                                     𝑥̇  =  𝑓(𝑥, 𝑦), 

                                    𝑦̇  =  𝑔(𝑥, 𝑦)                                                      (10) 

Index theory provides global information as compared with local 

information from linearization about fixed points. To find an index of 

a closed curve, pick some curve C that does not have a fixed point on 

it. Let ∅ be the angle that the flow vector on C make w.r.t x-axis  and 
[∅]𝐶  be a net change in ∅ over one counterclockwise of C ( in radians 

). Then the index  of the closed C, 𝐼𝐶 , defined as 

                                                        𝐼𝐶 = 
1

2𝜋
[∅]𝐶                                      (11) 



As shown in [4], the index of  a closed curve C encloses a saddle point 

is -1. By the index theory, the index of a closed curve  is additive , 

that is , when C is sub-divided  as 

                                                         C = C1  + C2 , 

then                                               𝐼𝐶  =  𝐼𝐶1
 +  𝐼𝐶2

                                 (12) 

         Let consider the Hamiltonian system   𝑥̇ =  𝑢(𝑥, 𝑦), 𝑦̇ = - 𝑣(𝑥, 𝑦)   

in the critical strip, 0 ≤ x ≤1, 0≤ 𝑦 ≤ ∞. This critical strip can be sub-

divided into 𝑅𝑖,𝑖+1 ,  i= 1,2,…….∞  that  index theory can be applied to 

each subdivision separately.  

         The first region 𝑅1,2 is defined as  a rectangle with four corners 

at (1,0), (1,𝑦12), (0, 𝑦12) and (0,0), Im(𝜌1 ) < 𝑦12 < Im(𝜌2). A path 

from (1,𝑦12) to  (0, 𝑦12) does not pass through any zeros of (s).   

          All other regions 𝑅𝑖,𝑖+1 , I = 2, 3, …..are defined as  a rectangle 

with four corners at (1, 𝑦𝑖−1,𝑖), (1, 𝑦𝑖,𝑖+1), (0, 𝑦𝑖,𝑖+1), and (0, 𝑦𝑖−1,𝑖), 

Im(𝜌𝑖−1) < 𝑦𝑖−1,𝑖 < Im(𝜌𝑖)  and  Im(𝜌𝑖) < 𝑦𝑖 ,𝑖+1 < Im(𝜌𝑖+1) .  

          Paths from (1, 𝑦𝑖,𝑖+1) to (0, 𝑦𝑖,𝑖+1) and from (0, 𝑦𝑖−1,𝑖) to 

(1, 𝑦𝑖−1,𝑖) do not pass through any zeros of (s).   

         Let 𝐶𝑖,𝑖+1 be a closed path along the perimeter of 𝑅𝑖,𝑖+1 in the 

counter clockwise direction, (1, 𝑦𝑖−1,𝑖) → (1, 𝑦𝑖,𝑖+1) → (0, 𝑦𝑖,𝑖+1) → (0, 

𝑦𝑖−1,𝑖) →(1, 𝑦𝑖−1,𝑖). As shown by [2],  angles along 𝐶𝑖,𝑖+1   from 

(1, 𝑦𝑖−1,𝑖) to  (1, 𝑦𝑖,𝑖+1) and along 𝐶𝑖,𝑖+1   from (0, 𝑦𝑖,𝑖+1) to  (0, 𝑦𝑖−1,𝑖) 

rotate in the clockwise direction. With clockwise direction of these 

angles and condition from Eq. (3), the index of 𝐶𝑖,𝑖+1 must be  -1. 

          For purposes of illustration, the region 𝑅2,3 is considered. Let  

𝑦1,2 = 16 and  𝑦2,3  = 22 ,  A  𝐶2,3  is a closed path  , (1, 𝑦1,2) →  

(1, 𝑦2,3) → (0, 𝑦2,3) → (0, 𝑦1,2) → (1, 𝑦1,2). 

       Define       ∅1 ,  ∅2 as angles at (1, 𝑦1,2)   and (1, 𝑦2,3), respectively,    

one can find that      ∅1 ,  ∅2  are  3.041 radians and 0.018 radians, 

respectively.     



           A net angle changed from  (1, 𝑦1,2) →  (1, 𝑦2,3) = -(∅1 - ∅2 ), 

           A net angle changed from  (1, 𝑦2,3) →  (0, 𝑦2,3) = -2∅2 ,   

           A net angle changed from  (0, 𝑦2,3) →  (0, 𝑦1,2) = -(∅1 - ∅2 ), 

           A net angle changed from  (0, 𝑦1,2) →  (1, 𝑦1,2) = -2(-∅1 ). 

Thus, the angle changed = -(∅1 - ∅2 ) -2∅2 -(∅1 - ∅2 ) -2(-∅1 )= -2. 

       Clearly, a net change of angle is  -2𝜋. Thus, the index of 𝐶2,3 is  -1.  

Conclusions 

       The Hamiltonian flow of  𝑥̇ = 𝑢(𝑥, 𝑦),   𝑦̇ = - 𝑣(𝑥, 𝑦)   near its 

critical points is analyzed. Phase portraits are  considered  and 

proved that all zeros of the Riemann  -Function on the critical line 

are saddle points.  Also by sub-divide the critical strip, index theory 

can be applied to each subdivision separately. Results   indicate that 

the index of a closed curve around each subdivision is   -1. 
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