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Abstract:  
This text develops a new Primality Algorithm, this one obtains opposite results to Fermat's little theorem, 
since it uses similar mechanisms but applied to the analysis of patterns. 
In Fermat's Theorem there are always Pseudoprimes hidden among the primes, which does not give 
certainty about the primality of an odd number analyzed, beyond the change of bases as happens with 
the Pseudoprime number 561. 
In the Argentest algorithm, the opposite happens, the pseudoprimes do not pass the test, so we can 
confirm the primality of a number with absolute certainty and determination, but there is a percentage 
of primes that do not pass the test either, so we go to the change of base to re-analyze the patterns and 
confirm primality later. 
 
Then this new deterministic primality test algorithm uses two simple mechanisms, the first inspired by 
the Euler criterion, the second through the analysis of patterns formed by their remains, with these first 
two processes we can determine the primality of 70% of the set of prime numbers with 100% accuracy 
For the remaining 30% of the set of primes there is a third process that consists of changing from base 2 
to base 3 and then re-analyzing the patterns, this separates the pseudoprimes from the remaining prime 
numbers. 
60% of the primes who did not pass before, now confirm their primality. 40% of the remaining primes 
and a small part of the base-2 pseudoprimes also fail the test. Therefore, we should change the base 
again and repeat the process to continue decanting these numbers. 
With the combination of base 2 and base 3 we obtain the certification of primality for 90% of the set of 
prime numbers. For the remaining 10% we should repeat the process with another base change. 

 
Introduction 
 
Definition: A Primality test is an algorithm that allows deciding whether a natural number (n) is prime 
or composite. 
The Argentest seeks to solve primality with efficient calculations, although it can be achieved through 
graphical tables. The graphic tables is like a document of irrefutable primality. A unique stamp for each 
prime, like their own fingerprint. These tables are easily constructed, although for very large primes it 
is too long. So using efficient calculations is best applied for large numbers. 
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How the Argentest algorithm works 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

𝐸𝑛𝑡𝑒𝑟: 𝑘 > 1 ∈ ℕ 𝑛 = 2𝑘 − 1 

𝐏𝐫𝐨𝐜𝐞𝐬𝐬 𝟏 

∃𝑛 ∈ ℕ/ 2
ቀ
𝑛−1
2

ቁ
± 1 ≡ 0(𝑀𝑜𝑑 𝑛) 

 

 
→ 𝑛 = 𝑃 (𝑝𝑟𝑖𝑚𝑒) ∨ 𝑛 = 𝑃𝑠𝑝 (𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

𝐏𝐫𝐨𝐜𝐞𝐬𝐬 𝟐 

Analysis of the cycle formed by remains 

There are repeated remains 
→  𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑊𝑒𝑎𝑘 𝑃𝑟𝑖𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 

→  𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒𝑠 

No repeated remains 
and its cycle is Composite number 

→ 𝐷𝑒𝑡𝑒𝑐𝑡 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑃𝑟𝑖𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 
 

There are no repeated remains and their cycle 

is prime number 

→ 𝐷𝑒𝑡𝑒𝑐𝑡 𝑆𝑎𝑓𝑒 𝑃𝑟𝑖𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 

≢ 0(𝑀𝑜𝑑 𝑛) 

→ 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝑜𝑑𝑑 ≠ 𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒𝑠. 

𝐏𝐫𝐨𝐜𝐞𝐬𝐬 𝟑: Base change 

∃𝑛 ∈ ℕ/ 3ቀ
𝑛−1
2

ቁ ± 1 ≡ 0(𝑀𝑜𝑑 𝑛) 

Analysis of the cycle formed by remains 

 
→ 𝐷𝑒𝑡𝑒𝑐𝑡 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑃𝑟𝑖𝑚𝑒 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 

 

→  𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 
𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝑤𝑒𝑎𝑘 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐏𝐫𝐨𝐜𝐞𝐬𝐬 𝟒: Base change 

∃𝑛 ∈ ℕ/ 4ቀ
𝑛−1
2

ቁ ± 1 ≡ 0(𝑀𝑜𝑑 𝑛) 

Analysis of the cycle formed by 

remains
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Chapter I 

Process 1: Primality Test for Odd Numbers 
 

This process, like Fermat's little theorem, has the ability to separate numbers and classify them. 
The formula used by the Argentest is closely linked to it, it uses the Euler criterion. 
 
A) When the algorithm is negative (There is no congruence) it returns composite numbers that are not 
pseudo-prime. 
B) When the algorithm is affirmative (There is congruence) it returns primes and Pseudoprimes. 

 
          (k > 1) ∈ ℕ     ∧  𝑛 = 2𝑘 − 1 

∃𝑛 ∈ ℕ/ 2ቀ
𝑛−1
2

ቁ ± 1 ≡ 0(𝑀𝑜𝑑 𝑛) 

→ 𝑛 = 𝑃 (𝑝𝑟𝑖𝑚𝑒) ∨  𝑛 = 𝑃𝑠𝑝 (𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

 

Developing the two variables 

Formula A 
k > 1 ∈ ℕ 

 
 𝑛 = 2𝑘 − 1 ⇔   𝑘 ≡ 1 ∨ 2 (𝑀𝑜𝑑 4) 

 
𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑡𝑜 𝑡𝑒𝑠𝑡 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

∃𝑛 ∈ ℕ 
 

2ቀ
𝑛−1
2

ቁ + 1 ⇔ 𝑛 2ቀ
𝑛−1
2

ቁ + 1 
 
→ 𝑛 = 𝑃 (𝑝𝑟𝑖𝑚𝑒) ∨  𝑛 = 𝑃𝑠𝑝 (𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

 

𝟐ቀ
𝒏−𝟏
𝟐

ቁ + 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒏)  
 

Formula B 
   k > 1 ∈ ℕ 

 
𝑚 = 2𝑘 − 1 ⇔   𝑘 ≡ 0 ∨ 3 (𝑀𝑜𝑑 4) 

 
𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝑡𝑜 𝑡𝑒𝑠𝑡 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

∃𝑚 ∈ ℕ 
 

2
ቀ
𝑚−1
2

ቁ
− 1 ⇔ 𝑚 2

ቀ
𝑚−1
2

ቁ
− 1 

 
→ 𝑚 = 𝑃 (𝑝𝑟𝑖𝑚𝑒) ∨  𝑚 = 𝑃𝑠𝑝 (𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

 

𝟐ቀ
𝒎−𝟏
𝟐

ቁ − 𝟏 ≡ 𝟎(𝒎𝒐𝒅 𝒎)   
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Chapter II 

Process 2: Argentest Primality Test 

This can be used after process 1 is finished. 
It consists of the analysis of numbers formed by their remains, these have unique and special 
characteristics that allow us to affirm their primality with 100% accuracy. 
 
This process can be Affirmative, Negative or Neutral. 
 
A) If it is affirmative, it certifies the primality of the analyzed number. 
B) If it is neutral, it does not deny its primality, it postulates it as a candidate for a prime number or 
with less probability for a pseudo-prime. 
C) If it is negative, it certifies that it is a composite number. (This happens because its residual is 
greater than zero). 
These numbers do not pass process 1. 
 

                          
 𝑹𝒆𝒔𝒊𝒅𝒖𝒆 =  𝟎 ∧  𝑹𝒆𝒑𝒆𝒕𝒊𝒕𝒊𝒐𝒏 𝒐𝒇 𝒓𝒆𝒔𝒕 = 𝟎 →  𝒏 =  𝑷 ( 𝑷𝒓𝒊𝒎𝒆) 

 
   𝑅𝑒𝑠𝑖𝑑𝑢𝑒 =  0 ∧   𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑒𝑠𝑡 > 0 →  𝑛 =  𝑃 ∨ 𝑃𝑠𝑝 (𝑃𝑟𝑖𝑚𝑒  𝑜𝑟 𝑃𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒 >  0 =  𝐶 (𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) 

 

 
 
There are 4 types of numbers that we can find once Process 2 is finished 
 

 
A) If the result is affirmative, we obtain: 
 
𝑃𝑠: 𝑆𝑎𝑓𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟. 
𝑃𝑟: 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟. 
 

B) If the result is neutral we obtain: 
 
𝑃𝑤:𝑊𝑒𝑎𝑘 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟  
𝑃𝑠𝑝:  𝑃𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟. 
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Characteristics 
 

𝑷𝒔 = 𝑺𝒂𝒇𝒆 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 
Its remainder is zero and it does not repeat any remainder, forming a cycle of numbers without repetition 
and its cycle is a prime number. Therefore, they are easily detected. These prime numbers can be 
constructed simply by looking for prime cycles. They are of the form 2𝑝 + 1, ( 𝑝 𝑒𝑠 𝑝𝑟𝑖𝑚𝑒 , ∈ ℕ) 
 
𝑃𝑠 = {5, 7, 11, 23, 47, 59, 83,107,167, 179,227,263,347,359,383,467,479,503,563,587, 
           719,839,863,887,983,… . . . } 
 
These numbers are known as Safe primes, they have cycles formed by primes of Sophie Germain 
Reference OEIS: A005385 Safe prime number 
Reference  OEIS: A005384 Sophie Germain. 
 
𝑷𝒓 = 𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒕 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 
Its residual is zero. It does not repeat any remainder, forming a cycle of numbers without repetition, its 
cycle is a composite number, which we must factor to find its divisors, which will give us information 
about the non-repetition of remainders.  

  
𝑃𝑟 = {3,13,17,19,29,37,41,53,61,67,71,79,97,101,103,131,137,139,149,163,173,… . . . } 
 
 

𝑷𝒘 = 𝑾𝒆𝒂𝒌 𝑷𝒓𝒊𝒎𝒆 𝑵𝒖𝒎𝒃𝒆𝒓 
Its residual is zero. It forms number patterns as it repeats remains. Its cycle is a composite number. 
 

𝑃𝑤 = {31,43,73, 89,109,113,127,151,157,223,229,233,241,251,257,277,281,283,307,331,337, . } 

These represent approximately 30% of the prime numbers. 

Reference  OEIS: A082595 

 
𝑷𝒔𝒑 =  𝑷𝒔𝒆𝒖𝒅𝒐𝒑𝒓𝒊𝒎𝒆 𝑵𝒖𝒎𝒃𝒆𝒓. 
Its residual is zero. It forms number patterns as it repeats remains. Its cycle is a composite number. 
 

𝑃𝑠𝑝 = {561, 1.105,1.729, 1.905,2.047, 2.465, 3.277,4.033, 4.681,6.601, 8.321, 8.481,10.585,  
12.801,15.841,16.705, 18.705, 25.761,29.341, 30.121, 33.153, 34.945,41041,42.799,… . . } 

 
Reference OEIS A047713   
 

These represent a very small portion of the composite numbers that pass process 2. 
 
 
 

https://oeis.org/A005385
https://oeis.org/A005384
https://oeis.org/A082595
https://oeis.org/A047713
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How to analyze a pattern of remnants 
 

There are 2 ways to do it, the first is by applying an artisan method and the second by calculating the 
divisors of its cycle. 
 
Artisan Method: Consists of assembling the entire sequence of remains, applying the formula of 
process 1. And descending exponent by exponent until its ¾ part. If no remainder is repeated up to 
there, they will no longer be repeated, so we can affirm that it is a Prime number. The remainders are 
easily constructed, each time I under an exponent if the remainder is even I divide it by 2, if the 
remainder is odd I add (n) it and divide it by 2. 
It can be used as a determining method to confirm primality. This method is explicit and didactic. Very 
easy for the student to understand. 
With a simple Microsoft Excel sheet we can solve any large number. Although for numbers with 
enormous amounts of digits, the design of an application or software is recommended. 
 
Example Test 37 

2ቀ
𝑛−1
2

ቁ + 1 ≡ 0 (𝑚𝑜𝑑 𝑛)  

218 + 1 ≡ 0 (𝑚𝑜𝑑 37)  

   Cycle 18 

Test  37    

Total base Rest module  

131054 217 -18 ≡ 0 (Mod 37)  

65527 216 -9 ≡ 0 (Mod 37)  

32745 215 -23 ≡ 0 (Mod 37)  

16354 214 -30 ≡ 0 (Mod 37)  

8177 213 -15 ≡ 0 (Mod 37)  

4070 212 -26 ≡ 0 (Mod 37)  

2035 211 -13 ≡ 0 (Mod 37)  

999 210 -25 ≡ 0 (Mod 37)  

481 29 -31 ≡ 0 (Mod 37)  

222 28 -34 ≡ 0 (Mod 37)  

111 27 -17 ≡ 0 (Mod 37)  

37 26 -27 ≡ 0 (Mod 37)  

0 25 -32 ≡ 0 (Mod 37)  

0 24 -16 ≡ 0 (Mod 37)  

0 23 -8 ≡ 0 (Mod 37)  

0 22 -4 ≡ 0 (Mod 37)  

0 21 -2 ≡ 0 (Mod 37)  

0 20 -1 ≡ 0 (Mod 37)  
 

 

Construction of the remains 
A) If the remainder above is Even, divide by 2 
and subtract 1 from the index of the 
exponent of 2. 
 
B) If the above remainder is odd. We 
apply (𝑟 − 𝑛 )/2 
 

Example in the third row, 𝑛 = 37 
– 9 − 37

2
= −𝟐𝟑 

 

𝟐𝟏𝟓 − 𝟐𝟑 ≡ 𝟎 (Mod 37) 
 
I can complete it completely up to index 0 of 
the power of 2, or I can do it at least until ¾ 
+1 of the cycle to check if any remainder is 
repeated.  
 
This process is didactic but long for very large 
numbers. 
 
37 is Prime number since it does not repeat 
remainders and its remainder is zero. 
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Calculation of divisors: This allows avoiding making the complete table and directly solving by means 

of a calculation which, through the dividers, confirms whether the remains are repeated or not. Since 
the remains are repeated respecting the dividers of the cycle. 
 
The first step: It consists of finding the cycle of remainders, this is found in the index of the exponent of 
2 in the initial formula. 
In this case using the previous example (test: 37) 
 

𝟐𝟏𝟕 − 𝟏𝟖 ≡ 𝟎 (𝑴𝒐𝒅 𝟑𝟕) 
 
We take the 𝟐𝟏𝟕 and to the index (17) we add 1, since its cycle starts at 0 and has 18 rows. Therefore, 
his cycle is 18. 
You can also calculate the cycle using the formula: 

 𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 =
𝑛 − 1

2
 

 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 =
37 − 1

2
= 18 

 
Second step I look for the divisors of 18 
 
The divisors of 18 are: {1,2,3,6,9,18} 
I take the dividers 1 <  𝑑 < 18 
 

Third step: It consists of subtracting the divisors from the power of 𝟐𝟏𝟕−𝒅 and checking if there is congruence 
or not to determine the primality. 
 

Read below how to detect resistant prime numbers using the calculation of divisors. 
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Formula to detect resistant prime numbers 
Divisor Calculation Method. 

 
Resistant prime numbers have the characteristic of not repeating remainders and have zero residue, 

but to identify them we need to perform the following procedure. 

The Resistant prime numbers are formed by cycles that belong to the composite numbers, for this 

reason this number must be factored to obtain its divisors. Once found, it will allow us to define with 

100% accuracy if the number is prime or (weak prime or pseudo prime). 

This formula has two variables 

Formula A. It has Alternate cycles. It means that the 
first pattern is in half, so we must multiply its divisors 
by two. 
 

k > 1 ∈ ℕ 
 𝑛 = 2𝑘 − 1 ⇔   𝑘 ≡ 1 ∨ 2 (𝑀𝑜𝑑 4) 

 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

∃𝑛 ∈ ℕ 
 

2
ቀ
𝑛−1
2

ቁ
+ 1 ≡ 0 (𝑚𝑜𝑑 𝑛)  

 

𝑊𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎 𝑝𝑜𝑤𝑒𝑟  
 

2ቀ
𝑛−1
2

ቁ−1 − (
𝑛 + 1

2
) ≡ 0 (𝑚𝑜𝑑 𝑛) 

 
So I calculate the cycle of remains. 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 =
𝑛 − 1

2
 

 
 𝑑 = Remains Cycle Dividers. 

 
 

𝟐ቀ
𝒏−𝟏
𝟐

ቁ−𝟏−𝟐𝒅 − (
𝒏 + 𝟏

𝟐
) ≢ 𝟎 (𝒎𝒐𝒅 𝒏) 

↔ ∀ 𝒅/  𝟏 <  𝒅 <
𝒏 − 𝟏

𝟐
 

→ 𝒏 = 𝑷 (𝑷𝒓𝒊𝒎𝒆)  

 

Formula B: Normal Cycles: It means that your 
patterns are complete. 
 
 

   k > 1 ∈ ℕ 
𝑚 = 2𝑘 − 1 ⇔   𝑘 ≡ 0 ∨ 3 (𝑀𝑜𝑑 4) 

 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

∃𝑚 ∈ ℕ 
 

2
ቀ
𝑚−1
2

ቁ
− 1 ≡ 0(𝑚𝑜𝑑 𝑚)    

 

𝑊𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎 𝑝𝑜𝑤𝑒𝑟  
 

2ቀ
𝑚−1
2

ቁ−1 − (
𝑚 − 1

2
) ≡ 0 (𝑚𝑜𝑑 𝑛) 

 
So I calculate the cycle of remains. 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 =
𝑚 − 1

2
 

 
𝑑 = Remains Cycle Dividers 

 

 

𝟐ቀ
𝒎−𝟏
𝟐

ቁ−𝟏−𝒅 − (
𝒎− 𝟏

𝟐
) ≢ 𝟎 (𝒎𝒐𝒅 𝒏) 

↔ ∀ 𝒅/  𝟏 <  𝒅 <
𝒎− 𝟏

𝟐
 

→ 𝒏 = 𝑷 (𝑷𝒓𝒊𝒎𝒆) 
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Example A: Test 67 
 

𝟐ቀ
𝒎−𝟏
𝟐

ቁ + 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒎) 
 

2
ቀ
67−1
2

ቁ
+ 1 ≡ 0 (𝑚𝑜𝑑 67) 

= 233 + 1 ≡ 0 (𝑚𝑜𝑑 67) 
 

𝑊𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎 𝑝𝑜𝑤𝑒𝑟  
 

= 𝟐𝟑𝟐 − 𝟑𝟑 ≡ 𝟎 (𝒎𝒐𝒅 𝟔𝟕)  
 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠  = 
67−1

2
= 33 

 
 𝑑(33) = {1,3,11,33} 

 
Then 

= 232−𝑑 − 33 ≢ 0 (𝑚𝑜𝑑 67)  
↔ ∀ 𝑑/  1 <  𝑑 < 33 
→ 𝑛 = 𝑃 (𝑃𝑟𝑖𝑚𝑒) 

 
232−2∗11 − 33 ≢ 0 (𝑚𝑜𝑑 67)  
= 210 − 33 ≢ 0 (𝑚𝑜𝑑 67)  

 
232−2∗3 − 33 ≢ 0 (𝑚𝑜𝑑 67)  
= 226 − 33 ≢ 0 (𝑚𝑜𝑑 67)  

 
Since it is not congruent in both expressions then 67 
is a resistant prime number. This means that no value 
is repeated in the cycle formed by remainders. 

Example B: Test 71 
 

𝟐ቀ
𝒏−𝟏
𝟐

ቁ − 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒏) 
 

2
ቀ
71−1
2

ቁ
− 1 ≡ 0 (𝑚𝑜𝑑 71) 

= 235 − 1 ≡ 0 (𝑚𝑜𝑑 71)  
 

𝑊𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎 𝑝𝑜𝑤𝑒𝑟  
 

= 𝟐𝟑𝟒 − 𝟑𝟔 ≡ 𝟎 (𝒎𝒐𝒅 𝟕𝟏)  
 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 =
71−1

2
= 35 

 
 𝑑(35) = {1,5,7,35} 

 
Then 

= 234−𝑑 − 36 ≢ 0 (𝑚𝑜𝑑 71)  
↔ ∀ 𝑑/  1 <  𝑑 < 35 
→ 𝑛 = 𝑃 (𝑃𝑟𝑖𝑚𝑒) 

 
234−7 − 36 ≢ 0 (𝑚𝑜𝑑 71) 
= 227 − 36 ≢ 0 (𝑚𝑜𝑑 71) 

 
234−5 − 36 ≢ 0 (𝑚𝑜𝑑 71) 
= 229 − 36 ≢ 0 (𝑚𝑜𝑑 71) 

 
Since it is not congruent in both expressions then 
71 is a resistant prime number. 
This means that no value is repeated in the cycle 
formed by remainders. 
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Safe Prime Numbers 
Prime numbers who build Prime numbers 

 
A prime (q) is said to be safe if, in addition to being a prime, it is the result of multiplying a smaller 
prime (p) by two and adding one to it. For example, the number 23 is a safe prime because 23 = 2 x 11 
+ 1, with 11 and 23 being primes. 
Safe prime numbers are constructed by a prime number in its cycle. 
 
𝑃𝑠 = {5, 7, 11, 23, 47, 59, 83,107,167, 179,227,263,347,359,383,467,479,503,563,587, 
           719,839,863,887,983,… . . . } 

 
Safe prime numbers are of the form: 

𝑃𝑠 = 2𝑞 + 1, 𝑤ℎ𝑒𝑛 𝑞 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟. 

 
Primality Test for Safe Prime Numbers and Sophie Germain's Prime Numbers 

 
Download the document linked to this work. 
https://www.academia.edu/49807487/Argentest_primality_test_for_Sophie_Germains_prime_numbers_and_s
afe_prime_numbers. 
 

Example: Test of a safe prime number: 𝑛 = 47 

2ቀ
𝑛−1
2

ቁ − 1 ≡ 0(𝑚𝑜𝑑 𝑛)    

2ቀ
47−1
2

ቁ − 1 ≡ 0(𝑚𝑜𝑑 47)    
223 − 1 ≡ 0(𝑚𝑜𝑑 47) 

Method: Calculation of divisors 
𝑊𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎 𝑝𝑜𝑤𝑒𝑟 

𝟐𝟐𝟐 − 𝟐𝟒 ≡ 𝟎 (𝒎𝒐𝒅 𝟒𝟕)  

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠  = 
47−1

2
= 𝟐𝟑 

Dividers of 23:  

𝑑(23) = {1,23} 

1 <  𝑑 < 23 
 

There are no (d) divisors between 1 and 23, this means that 23 is Sophie Germain's prime number, so 
no remainder will be repeated in its cycle. 

∴ is a safe prime number 
 

https://www.academia.edu/49807487/Argentest_primality_test_for_Sophie_Germains_prime_numbers_and_safe_prime_numbers
https://www.academia.edu/49807487/Argentest_primality_test_for_Sophie_Germains_prime_numbers_and_safe_prime_numbers


12 

Professor Zeolla Gabriel M. 
 

Artisan Method 
 

 

Test  47 cycle de 23   

Total Powe rest 
Residue and 

modulus 

 4194280 222 -24 ≡ 0 (Mod 47) 

 2097140 221 -12 ≡ 0 (Mod 47) 

 1048570 220 -6 ≡ 0 (Mod 47) 

 524285 219 -3 ≡ 0 (Mod 47) 

 262119 218 -25 ≡ 0 (Mod 47) 

 131036 217 -36 ≡ 0 (Mod 47) 

 65518 216 -18 ≡ 0 (Mod 47) 

 32759 215 -9 ≡ 0 (Mod 47) 

 16356 214 -28 ≡ 0 (Mod 47) 

 8178 213 -14 ≡ 0 (Mod 47) 

 4089 212 -7 ≡ 0 (Mod 47) 

 2021 211 -27 ≡ 0 (Mod 47) 

 987 210 -37 ≡ 0 (Mod 47) 

 470 29 -42 ≡ 0 (Mod 47) 

 235 28 -21 ≡ 0 (Mod 47) 

 94 27 -34 ≡ 0 (Mod 47) 

 47 26 -17 ≡ 0 (Mod 47) 

 0 25 -32 ≡ 0 (Mod 47) 

 0 24 -16 ≡ 0 (Mod 47) 

 0 23 -8 ≡ 0 (Mod 47) 

 0 22 -4 ≡ 0 (Mod 47) 

 0 21 -2 ≡ 0 (Mod 47) 

 0 20 -1 ≡ 0 (Mod 47) 
 

 
Characteristics of all prime numbers Safe 
 

No rest is repeated. 
 

Residues= 0 
 

Its cycle is a prime number, in this case 
23, since 22 is the index of the power of 
two, 22 + 1 = 23 we add 1 because it 
starts at 0. 

 
The Remnant Pattern ends in decreasing 
values until it reaches 1 in the last 
powers. 

 
Totals have values that belong to the 
natural numbers and zero. 

 
47 is finally a prime number for all the 
above reasons, but especially for the first 
two. 
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Pseudoprime numbers 
 

Pseudoprimes are odd composite numbers, which pass process 1 and manage to mix with the prime 
numbers. These numbers are known as the Carmichael numbers. 
For this reason, when we take them to process 2 and analyze the remains of their cycles, these 
numbers always have repeated remains and form patterns, since in their essence they are composite 
numbers, which allows us to be able to classify them satisfactorily. 
 
The cycles of pseudo prime numbers are always a composite number for the base 2. 
I have tested the pseudoprimes up to the number 285,000,000 and none of them have a prime cycle 
up to there. Although I do not have a proof, this result is to take into account without a doubt since if 
the prime cycles did not appear up to here they hardly appear with larger numbers. But it is an open 
possibility. 
This detail gives solidity to the safe prime numbers. 

 
𝑃𝑠𝑝 ≠ 2𝑝 + 1, 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑷𝒔𝒑: 𝑷𝒔𝒆𝒖𝒅𝒐𝒑𝒓𝒊𝒎𝒆. 
Its residual is zero. Forms numerical patterns, has repeating remains. Your cycle is a composite number. 
 

𝑃𝑠𝑝 = {561, 1.105,1.729, 1.905,2.047, 2.465, 3.277,4.033, 4.681,6.601, 8.321, 8.481,10.585,  
12.801,15.841,16.705, 18.705, 25.761,29.341, 30.121, 33.153, 34.945,41041,42.799,… . . } 

 
Reference OEIS A047713   
 

These represent a very small portion of the composite numbers. 
𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠  =

𝑛 − 1

2
 

 

𝑃𝑠𝑝 

Cycle of 
remains   

Cycle 
characteristic 

561 280 Composite 
1.105 552 Composite 
1.729 864 Composite 
1.905 952 Composite 
2.047 1.023 Composite 
2.465 1.232 Composite 
3.277 1.638 Composite 
4.033 2.016 Composite 
4.681 2.340 Composite 
6.601 3.300 Composite 
8.321 4.160 Composite 
8.481 4240 Composite 

https://oeis.org/A047713
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10.585 5.292 Composite 
12.801 6.400 Composite 

   

Examples where pseudoprime fail the process 2 

Example A: Test 3.277 
 

2
ቀ
3.277−1

2
ቁ−1

− (
3.277 − 1

2
) ≡ 0 (𝑚𝑜𝑑 3.277)  

 
21637 − 1638 ≡ 0 (𝑚𝑜𝑑 3.277)  

 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠  =  
3277 − 1

2
= 1.638 

 
Dividers 

𝑑(1638) = {1, 2, 3, 6, 7, 9, 13, 14, 18, 21, 26, 39, 42, 63, 78, 

 91, 117, 126, 182, 234, 273, 546, 819, 1.638} 

1 <  𝑑 < 1.638 
 

21.637−2∗2 − 1.638 ≢ 0 (𝑚𝑜𝑑 3.277)  
21.637−2∗3 − 1.638 ≢ 0 (𝑚𝑜𝑑 3.277)  
21.637−2∗6 − 1.638 ≢ 0 (𝑚𝑜𝑑 3.277)  
21.637−2∗7 − 1.638 ≢ 0 (𝑚𝑜𝑑 3.277)  
21.637−2∗9 − 1.638 ≢ 0 (𝑚𝑜𝑑 3.277)  
21.637−2∗13 − 1.638 ≢ 0 (𝑚𝑜𝑑 3.277)  
𝟐𝟏.𝟔𝟑𝟕−𝟐∗𝟏𝟒 − 𝟏. 𝟔𝟑𝟖 ≡ 𝟎 (𝒎𝒐𝒅 𝟑.𝟐𝟕𝟕) 

 
Since it is congruent in the last expression then 3.277 

is a pseudo prime or weak prime number. 
 

This means that values and patterns are repeated in 
the cycle formed by remains. 
In this case there will be a pattern of 28 residues that 
repeat simultaneously. 
In the alternating cycles we obtain ½ pattern without 
completing. 
So we have 1638/28 = 58.5 
 This means that there is a pattern of 28 residues that 
are repeated 58 times and 1 pattern is left in the 
middle (14). 
 
Therefore, your alternating cycle is 28/14. 
In the alternating cycle the second number is always 
half of the first and it is the divisor that we use to find 
the pattern. 

28 ∗ 56 + 14 = 1.638 

Example B: Test 2.047 
 

2
ቀ
2.047−1

2
ቁ−1

− (
2.047 + 1

2
) ≡ 0 (𝑚𝑜𝑑 2.047)  

 
21022 − 1.024 ≡ 0 (𝑚𝑜𝑑 2.047)  

 

𝐶𝑦𝑐𝑙𝑒 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑠  =  
2.047 − 1

2
= 1.023 

 
Dividers 

𝑑(1023) = {1,3,11,31,33,93,341,1023} 

1 <  𝑑 < 1.023 
 

21022−3 − 1.024 ≢ 0 (𝑚𝑜𝑑 2047)  
𝟐𝟏𝟎𝟐𝟐−𝟏𝟏 − 𝟏.𝟎𝟐𝟒 ≡ 𝟎 (𝒎𝒐𝒅 𝟐𝟎𝟒𝟕)  

 
Since it is congruent in the second expression then 

2.047 is a pseudo prime or weak prime number. 
No need to keep calculating any more, just find a 

congruence to determine the result. 
 
This means that values and patterns are repeated in the 

cycle formed by remains. 
In this case there will be a pattern of 11 remains that is 
repeated 93 times. 

11 ∗ 93 = 1.023 
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Weak Prime Numbers 
 
They are those numbers that do not pass process 2 successfully and we cannot determine if it is a 
prime number or a pseudo prime. Its cycle is a Composite number. 
Its residues are zero, but the sequence of residues has repeating numbers that form patterns, which is 
conditioning and an impediment to affirming its primality. 
 
These are some of the prime numbers that do not pass the Argentest for base 2. 
 

𝑷𝒘:𝑾𝒆𝒂𝒌 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 
 
𝑃𝑤 = {31,43, 73, 89,109, 113, 127,151,157, 223,229,233, 241,251,257,277,281,283,307,331,337,353, . . } 

These represent approximately 30% of the set of prime numbers. 

Reference  OEIS: A082595 

 
Pseudoprimes do not pass the Argentest for base 2 since their remains also form patterns.  
 

𝑷𝒔𝒑: 𝑷𝒔𝒆𝒖𝒅𝒐𝒑𝒓𝒊𝒎𝒆. 
 

𝑃𝑠𝑝 = {561, 1.105, 1.729, 1.905, 2.047, 2.465, 3.277, 4.033, 4.681, 6.601, 8.321, 8.481, 10.585,  
12.801, 15.841, 16.705, 18.705, 25.761, 29.341, 30.121, 33.153, 34.945, 41041, 42.799,… . . } 

 
Reference OEIS A047713   
 

These represent a very small portion of the composite numbers. 
 

 

 

 

 

 

 

https://oeis.org/A082595
https://oeis.org/A047713
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Mersenne Prime Numbers are Weak Prime numbers 
In the Argentest the Mersenne primes greater than 7 are weak primes for the base 2. 
These have remnants that form patterns formed by the sequences of 2𝑛, this does not allow to classify 
them satisfactorily in this base since there are pseudo prime numbers of the same style. Example 2.047 

  
𝑀𝑝−1

2
≡ 3 (𝑀𝑜𝑑 4)  

 
𝑀𝑝 = {31, 127, 8.191,131.071,524.287,2.147.483.647,… . } 

 
We can observe that practically the patterns of remains are formed by the sequences of up to 2𝑛 <  𝑛, 
Also in both cases they have a remainder of 0. The sum of each pattern is equal to 𝑛.  
And in all cases its rest begins with (𝑛 + 1)/2 , then his remains are descending in divisions by 2 
uninterrupted until reaching 1. 
Examples 

Weak prime number 

215 − 1 ≡ 0(𝑚𝑜𝑑 31) 

Test  31 Pattern of 5  

Total Base Resto 
Residue and 

Modulus  

 16368 214 -16 ≡ 0(Mod 31)  

 8184 213 -8 ≡ 0(Mod 31)  

 4092 212 -4 ≡ 0(Mod 31)  

 2046 211 -2 ≡ 0(Mod 31)  

 1023 210 -1 ≡ 0(Mod 31)  

 496 29 -16 ≡ 0(Mod 31)  

 248 28 -8 ≡ 0(Mod 31)  

 124 27 -4 ≡ 0(Mod 31)  

 62 26 -2 ≡ 0(Mod 31)  

 31 25 -1 ≡ 0(Mod 31)  

 0 24 -16 ≡ 0(Mod 31)  

 0 23 -8 ≡ 0(Mod 31)  

 0 22 -4 ≡ 0(Mod 31)  

 0 21 -2 ≡ 0(Mod 31)  

 0 20 -1 ≡ 0(Mod 31)  

 
15 is the cycle number.  
Which has the divisors 𝑑: {1,3, 5,15} 
In this case, it is made up of a pattern of 5 residues and 
3 repetitions. 
The 5 remainder pattern is related to the Mersenne 

numbers, 25 − 1 = 31 
 

Pseudoprime (Trim the full cycle) 
21023 − 1 ≡ 0(𝑚𝑜𝑑 2.047) 

Test  2.047 Pattern  of 11  

 Base Rest 
Residue and 
modulus 

  21022 -1024 ≡ 0(Mod 2.047)  

  21021 -512 ≡ 0(Mod 2.047)  

  21020 -256 ≡ 0(Mod 2.047)  

  21019 -128 ≡ 0(Mod 2.047)  

  21018 -64 ≡ 0(Mod 2.047)  

  21017 -32 ≡ 0(Mod 2.047)  

  21016 -16 ≡ 0(Mod 2.047)  

  21015 -8 ≡ 0(Mod 2.047)  

 21014 -4 ≡ 0(Mod 2.047) 

  21013 -2 ≡ 0(Mod 2.047)  

  21012 -1 ≡ 0(Mod 2.047)  

  21011 -1024 ≡ 0(Mod 2.047)  

 21010 -512 ≡ 0(Mod 2.047) 

  21009 -256 ≡ 0(Mod 2.047)  

  21008 -128 ≡ 0(Mod 2.047)  

  21007 -64 ≡ 0(Mod 2.047)  

1.023 is the cycle number.  
Which has the divisors: 
 𝑑 = {1, 3, 11, 31, 33, 93, 341, 1023} 
In this case, it is made up of a pattern of 11 residues 
and 93 repetitions. 
The pattern of 11 remains is related to the Mersenne 
numbers, In this case, it is made up of a pattern of 11 
residues and 93 repetitions. 
The pattern of 11 remains is related to the Mersenne 
numbers211 − 1 = 2.047 
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Chapter III 

Process 3. Change of base 
 

Formula to determine primality with bases greater than 2. 
It is the same that we use in base 2. 

The main formula works with the Euler criteria, although it has a small modification which makes it 
easier for us to build the sequence of remains without problems in base 3 in an artisanal way. 

 
Formula A 
 

𝒂
ቀ
𝒏−𝟏
𝟐

ቁ
+ 𝟏 ≡ 𝟎(𝒎𝒐𝒅 𝒏)   

 

Formula B 
 

𝒂
ቀ
𝒎−𝟏
𝟐

ቁ
− 𝟏 ≡ 𝟎(𝒎𝒐𝒅 𝒎)   

 

We apply the process 3 to the weak prime numbers. 
Process 3 consists of changing base 2 to base 3 and then forming the sequence of residues and being 
able to check whether or not there are patterns to confirm primality. 
 

 
Fórmula para determinar primalidad con base 3 

 
Formula A 

k > 1 ∈ ℕ 
𝑛 = 2𝑘 − 1 ⇔   𝑘 ≡ 2 ∨ 3 (𝑀𝑜𝑑 6) 

 
∃𝑛 ∈ ℕ 

3ቀ
𝑛−1
2

ቁ + 1 ⇔ 𝑛| 3ቀ
𝑛−1
2

ቁ + 1 
→ 𝑛 = 𝑃 (𝑝𝑟𝑖𝑚𝑒) ∨  𝑛 = 𝑃𝑠𝑝 (𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

 

𝟑
ቀ
𝒏−𝟏
𝟐

ቁ
+ 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒏)   

Formula B 
   k > 1 ∈ ℕ 

𝑚 = 2𝑘 − 1 ⇔   𝑘 ≡ 0 ∨ 5 (𝑀𝑜𝑑 6) 
 

∃𝑛 ∈ ℕ 

3ቀ
𝑚−1
2

ቁ − 1 ⇔ 𝑚|3ቀ
𝑚−1
2

ቁ − 1 
→ 𝑚 = 𝑃 (𝑝𝑟𝑖𝑚𝑒) ∨  𝑚 = 𝑃𝑠𝑝 (𝑝𝑠𝑒𝑢𝑑𝑜𝑝𝑟𝑖𝑚𝑒) 

 

𝟑
ቀ
𝒎−𝟏
𝟐

ቁ
− 𝟏 ≡ 𝟎(𝒎𝒐𝒅 𝒎)    

 
 

When 𝑘 ≡ 1 ∨ 4 (𝑀𝑜𝑑 6) 
𝑛 = 2𝑘 − 1  (𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3). 

Example: 561 
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Artisan method. 
 

Example Formula A: Test 31 
 

𝟑ቀ
𝒏−𝟏
𝟐

ቁ + 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒏) 
 

3ቀ
31−1
2

ቁ + 1 ≡ 0 (𝑚𝑜𝑑 31) 
 

315 + 1 ≡ 0(Mod 31) 

Total Base rest 
Residue and 

modulus 

4782959 314 -10 ≡ 0(Mod 31)  

1594299 313 -24 ≡ 0(Mod 31)  

531433 312 -8 ≡ 0(Mod 31)  

177134 311 -13 ≡ 0(Mod 31)  

59024 310 -25 ≡ 0(Mod 31)  

19654 39 -29 ≡ 0(Mod 31)  

6541 38 -20 ≡ 0(Mod 31)  

2170 37 -17 ≡ 0(Mod 31)  

713 36 -16 ≡ 0(Mod 31)  

217 35 -26 ≡ 0(Mod 31)  

62 34 -19 ≡ 0(Mod 31)  

0 33 -27 ≡ 0(Mod 31)  

0 32 -9 ≡ 0(Mod 31)  

0 31 -3 ≡ 0(Mod 31)  

0 30 -1 ≡ 0(Mod 31)  

 
It does not repeat Remains, which is why its 

primality is confirmed with the change of base. 

 
We begin by analyzing remains from 

 

3
ቀ
𝑛−1

2
ቁ−1

= 314 
 

 
Building remains has 3 options 
A) If the remainder above is a multiple of 3, 
divide by 3. 
 
B) If the above remainder is not a multiple of 3, 
then we apply (𝒓 − 𝒏)/𝟑 
𝑛 = 31 

Example 314 
(1 − 31)/3 = −10 
314 − 10 ≡ 0(Mod 31) 

 
C) If performing the first step and the second and 
we do not obtain a multiple of 3 then: 
 (𝒓 − 𝟐𝒏)/𝟑 

Example  39 
(−25 − 2 ∗ 31)/3 = −29 
39 − 29 ≡ 0(Mod 31) 

 
D) if performing the previous steps and a multiple 
of 3 is not achieved. It means that this tested 
number is compound and multiple of 3. 
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Divisor Calculation Method 

It is exactly the same as in base 2. We look for the divisors of the cycle to check if any 

remainder is repeated. 

 

 

 

Example A: Test 73.  Normal cycle 

 

3
ቀ
𝑚−1
2

ቁ
− 1 ≡ 0 (𝑚𝑜𝑑 𝑚) 

 

3ቀ
73−1
2

ቁ − 1 ≡ 0 (𝑚𝑜𝑑 73)  
= 336 − 1 ≡ 0 (𝑚𝑜𝑑 73)  

 
𝑊𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎 𝑝𝑜𝑤𝑒𝑟 

= 𝟑𝟑𝟓 − 𝟒𝟗 ≡ 𝟎 (𝒎𝒐𝒅 𝟕𝟑)  
 

Then 
335−𝑑 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

↔ ∀ 𝑑/  1 <  𝑑 <
𝑚− 1

2
 

→ 𝑛 = 𝑃 (𝑛º 𝑝𝑟𝑖𝑚𝑜) 
 
 

I look for the dividers of the cycle  ቀ
73−1

2
ቁ =36 

𝑑(36) = {1,2,3,4,6,9,12,18,36} 

 
𝑡ℎ𝑒𝑛  1 <  𝑑 < 36 

 

 
335−2 − 49 ≢ 0 (𝑚𝑜𝑑 73)  
= 333 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

 

335−3 − 49 ≢ 0 (𝑚𝑜𝑑 73)  
= 332 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

 

335−4 − 49 ≢ 0 (𝑚𝑜𝑑 73)  
= 331 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

 
335−6 − 49 ≢ 0 (𝑚𝑜𝑑 73)  
= 329 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

 

335−9 − 49 ≢ 0 (𝑚𝑜𝑑 73)  
= 326 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

 

𝟑𝟑𝟓−𝟏𝟐 − 𝟒𝟗 ≡ 𝟎 (𝒎𝒐𝒅 𝟕𝟑)  
= 𝟑𝟐𝟑 − 𝟒𝟗 ≡ 𝟎 (𝒎𝒐𝒅 𝟕𝟑)  

 

335−18 − 49 ≢ 0 (𝑚𝑜𝑑 73)  
= 317 − 49 ≢ 0 (𝑚𝑜𝑑 73)  

 
 

 
Since it is congruent, then 73 is a Base 3 Weak prime number. 
This means that values are repeated in the cycle formed by remains. 
Therefore, it will have a pattern of 12 remains that is repeated 3 times (12 arises from the divisor). 
12 * 3 = 36 (cycle number) 
 
Therefore, we must re-analyze it with base 4 to examine its cycle again. 
This number has the peculiarity of confirming its primality only with the base 5. 
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Example: Analysis of the number 73 for base 3. 

Method: artisan 

Abbreviated sequence. 

336 − 1 ≡ 0 (𝑚𝑜𝑑 73)  

Test  73     

 Total base rest 
Residue and 
modulus 

5,0032E+16 335 -49 ≡ 0(Mod 73) 

1,6677E+16 334 -65 ≡ 0(Mod 73) 

5,5591E+15 333 -46 ≡ 0(Mod 73) 

1,853E+15 332 -64 ≡ 0(Mod 73) 

6,1767E+14 331 -70 ≡ 0(Mod 73) 

2,0589E+14 330 -72 ≡ 0(Mod 73) 

6,863E+13 329 -24 ≡ 0(Mod 73) 

2,2877E+13 328 -8 ≡ 0(Mod 73) 

7,6256E+12 327 -27 ≡ 0(Mod 73) 

2,5419E+12 326 -9 ≡ 0(Mod 73) 

8,4729E+11 325 -3 ≡ 0(Mod 73) 

2,8243E+11 324 -1 ≡ 0(Mod 73) 

9,4143E+10 323 -49 ≡ 0(Mod 73) 

3,1381E+10 322 -65 ≡ 0(Mod 73) 

1,046E+10 321 -46 ≡ 0(Mod 73) 

3486784337 320 -64 ≡ 0(Mod 73) 

 
continue 

 
 

 

 

 
 
 
 
 

𝟑ቀ
𝒎−𝟏
𝟐

ቁ − 𝟏 ≡ 𝟎 (𝒎𝒐𝒅 𝒎) 

 

3ቀ
73−1
2

ቁ − 1 ≡ 0 (𝑚𝑜𝑑 73) 
 

336 − 1 ≡ 0 (𝑚𝑜𝑑 73) 
 
We analyze the cycle from the previous power 
 

𝟑𝟑𝟓 − 𝟒𝟗 ≡ 𝟎 (𝒎𝒐𝒅 𝟕𝟑) 
 

 

We see that it has a pattern of 12 remains which starts again from 323, then  311 
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Weak Prime Numbers with base 3 
 

The base 2 weak primes that did not pass process 2, we pass them through process 3. 60% of them will 
be able to confirm their primality, but the remaining 40% will be weak prime again. 
For example, 73. This has patterns with base 2 and also with base 3. Therefore, we define it as a weak 
prime of base 3. 
To be considered a prime number in base 3 the conditions remain the same as in base 2, the input (n) 
must have: 

Residue =0   
Repetitions of remains = 0 

 
These numbers have residue 0 but have residue repeats. Therefore, we cannot confirm their primality 
and we postulate them as a weak prime number with base 3. 
Examples 

𝑃𝑤3 = {73,109,151,229,277,307,433,439,499,577,601,… . } 
 

These numbers should be subjected to another base change (process 4) in order to separate them from 
the base 2 pseudo-primes. Perform the same analysis and re-debug the sequence. 
 

 
Pseudoprimes with neutral result for base 3 

They are the base-2 pseudoprimes that do not pass process 3 and that continue to have repeating 
residues that form patterns. 
These base 2 pseudoprimes have residue 0 but have residue repeats and are therefore candidates for a 
weak base-3 prime number. 
 
Example 

𝑃𝑠𝑝3 = { 1.729,10.585, 15.841, 29.341,41.041,… . . } 
 
 

Pseudoprimes with negative result for Base 3 
They are those numbers whose remainder is greater than 0 or are multiples of 3. Therefore, we certify 
that it is a composite number. Therefore, the set of pseudoprimes decreases significantly with the 
change of base. 

𝑃𝑠𝑝 = 𝐶 = {561,1.105, 1.905,2.047,2.465,3.277,4.033,4.681,6.601,8.321,8.481,… . } 
 
Examples 

 
3280 − 1 ≢ 0(Mod 561) 
3552 − 1 ≢ 0(Mod 1.105) 
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Chapter VI 

Process 4. Base change 

 
We apply process 4 to the weak prime numbers of process 3. 
Process 4 consists of changing base 3 to base 4 and then forming the sequence of residues and being 
able to check whether or not there are patterns to confirm primality. 
The method is exactly the same as in the previous bases. 
We can change bases as many times as we need and the mechanism will always be the same. 

∃𝑛 ∈ ℕ/ 4
ቀ
𝑛−1
2

ቁ
± 1 ≡ 0(𝑀𝑜𝑑 𝑛) 

 

We build the sequence in an artisanal way dividing by 4 when it is a multiple of 4, otherwise we 
subtract (n) until we find a multiple, and then divide by 4. The sequence of remainders ends in 1 when 
it is prime or pseudo-prime. 
 
Primality conditions 

Residual = 0 
Repetitions of remains = 0 
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Conclusion 
 
Centuries ago the Chinese used what we now know as Fermat's little theorem and believed that it 
reached only the remainder equal to zero to certify the primality of an odd number, until a long time 
later pseudo prime numbers were discovered. 
Argentest brings up the missing conditions to determine the primality of an odd number, which is the 
non-repetition of remainders. 
Argentest is a new and simple tool to be able to certify the primality of an odd number (n), it uses 
simple and didactic mechanisms for students. Since through the construction of tables or efficient 
calculations we achieve the objective in a few simple steps. 
The Argentest is a new possibility that provides certainty in the face of the great distress that prime 
numbers have caused in great mathematicians of the past. 
Today there are many very interesting primality tests and with different degrees of application, this 
new algorithm aims to be a new possibility and another way of knowing and interpreting prime 
numbers.  

Professor Zeolla Gabriel Martín 
Buenos Aires, Argentina.  

 

Download the Microsoft Excel spreadsheet: For the calculation of the artisan method. 
 
Other documents of the author: 

https://independent.academia.edu/GabrielZeolla 
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