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Magic Squares with Centrally Embedded Squares of Odd Order: A Construction Method 

Clarence Gipbsin and Lamarr Widmer 

 

Abstract 

We present a method which modifies a magic square of odd order n and then adds two outer 

rows and two outer columns to produce a magic square of order n + 2 .  The modification of the 

original square will preserve the equality of sums of the rows, columns, and main diagonals as 

well as other significant properties.  This modified square will be centrally embedded in the 

magic square of order n + 2 . 

Definitions 

For the purposes of this paper, a magic square of order 𝑛 shall mean an 𝑛 × 𝑛 arrangement of 

the integers 1 through 𝑛2 such that the sums of each row, each column and both main diagonals 

all equal the magic sum  𝑆 =
𝑛2(𝑛2+1)

2𝑛
=  

𝑛

2
 (𝑛2 + 1) .  An embedded square of order 𝑛 shall 

mean an 𝑛 × 𝑛 arrangement of distinct positive integers such that each row, each column and 

both main diagonals have the same sum.  

 

106 91 134 93 95 130 129 98 99 126 102 103 122 121 146 

81 107 166 63 69 70 72 73 152 151 150 149 78 169 145 

82 59 108 187 42 45 48 176 51 173 54 171 188 167 144 

83 62 52 109 27 28 195 32 191 36 196 203 174 164 143 

87 64 47 33 110 15 209 18 20 205 214 193 179 162 139 

94 67 43 29 19 111 8 9 216 221 207 197 183 159 132 

101 71 41 25 13 7 112 225 2 219 213 201 185 155 125 

147 170 189 204 215 220 3 113 223 6 11 22 37 56 79 

142 168 180 202 212 222 224 1 114 4 14 24 46 58 84 

141 165 182 200 210 5 218 217 10 115 16 26 44 61 85 

140 161 186 192 12 211 17 208 206 21 116 34 40 65 86 

138 158 177 23 199 198 31 194 35 190 30 117 49 68 88 

137 160 38 39 184 181 178 50 175 53 172 55 118 66 89 

136 57 60 163 157 156 154 153 74 75 76 77 148 119 90 

80 135 92 133 131 96 97 128 127 100 124 123 104 105 120 

 

Figure 1 

Figure 1 shows an order-15 magic square with embedded squares of all odd dimensions from 

3 × 3 to 13 × 13 . This square contains the integers 1 through 152 = 225 .  The median value of 

these integers, the number 113, appears at the exact center of this magic square.  The number 113 

is also the median of the fifteen consecutive integers which appear on one main diagonal (from 
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upper left to lower right) of this square.  Each row and each column consists of one number from 

this main diagonal, seven numbers less than those on this main diagonal and seven numbers 

greater than those on this main diagonal.  The other main diagonal also consists of one number 

from this main diagonal, seven numbers less than those on this main diagonal and seven numbers 

greater than those on this main diagonal.  This example illustrates these crucial properties that 

will be preserved at each successive step in building our magic square.  Each step will begin with 

a magic square having these properties, modify it to produce an embedded square of the same 

odd order and then add outer rows and columns to complete the next higher odd order magic 

square. A smallest nontrivial magic square with all these properties is shown in Figure 2.  An 

order-5 magic square with these properties is show in Figure 3.  

            22      38 

     11 8 9 16 21    23 8 9 40 45  
4 9 2   7 12 25 2 19    7 24 49 2 43  
3 5 7   20 3 13 23 6    44 3 25 47 6  
8 1 6   22 24 1 14 4    46 48 1 26 4  

     5 18 17 10 15    5 42 41 10 27  

            12      28 

      Figure 2                                   Figure 3                                                     Figure 4 

 

We will illustrate our process by starting with the square in Figure 3 and creating an order-7 

magic square having all the specified properties.  The median value of integers 1 through 49 is 

25.  This is how we know that the values on the main diagonal will each increase by 12.  

Numbers 1 through 10 will not change and numbers 16 through 25 will increase by 24.  This 

gives us the new square shown in Figure 4.  The numbers that will make up the surrounding rows 

and columns will be used in pairs as shown in Figure 5.  The pair (22,28) must extend one main 

diagonal and we choose (12,38) to extend the other, as shown in Figure 4. 

        pair        difference 

11 39   
12 38   
13 37   
14 36   
15 35 20  x    

16 34   
17 33 16      
18 32 14  x 

19 31   
20 30 10   x 

21 29 8    
22 28   
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            Figure 5 

      

At this point the trial-and-error work begins.  Since the magic sum for our desired square is 175, 

we see that the five numbers completing the new top row must have a sum of 115 and those 

completing the new rightmost column must sum to 109.  The number 38 in the new upper right 

corner is from the second column in Figure 5 (i.e., larger than those on the main diagonal), so in 

each case our remaining five numbers must consist of two more from that column and three from 

the first column.  With this in mind, we find that 109 = 31 + 37 + 11 + 14 + 16 .  Now five 

pairs remain, the ones with a number in the difference column of Figure 5.  The sum of the 

numbers in column 2 for these five pairs is 159.  We need a sum of 115.  The difference of these 

numbers is 44.  Our attempt will succeed if we can find three of the indicated numbers in the 

difference column of our table whose total is 44.  We do indeed find  20 + 14 + 10 = 44  from 

the pairs marked by an x and thus we have 115 = 15 + 33 + 18 + 20 + 29 .  These numbers may be 

inserted in any order to complete the top row and rightmost column and the corresponding 

numbers in their respective pairs will complete the bottom row and first column.  This produces 

the order-7 magic square in Figure 6.  We have preserved all the necessary properties so that the 

same process may now be used to enlarge to an order-9 square. 

  
22 15 33 18 20 29 38 

19 23 8 9 40 45 31 

13 7 24 49 2 43 37 

39 44 3 25 47 6 11 

36 46 48 1 26 4 14 

34 5 42 41 10 27 16 

12 35 17 32 30 21 28 

 

                           Figure 6 

 

Observations and Suggestions for Further Investigation 

The reader will now see that the process described here was used to move from the square in 

Figure 2 to that of Figure 3.  We note that it can also be used to move from the trivial order-1 

magic square (one-by-one square whose only entry is 1) to that of Figure 2.  The trial-and-error 

aspects of our method become easier as the size of the square increases.  Having more numbers 

to work with makes it easier to find those which make up the necessary sums. 

At the final step in our example, we needed to find three numbers from the column of differences 

whose sum would be 44.  Since all numbers in that column were even, we can only hope to 

succeed at this final step if the needed sum is even.  So, there is an issue of parity here.  

Experience showed, and a careful analysis confirmed, that this method can succeed only if the 

pairs chosen for the corners consist of four numbers of the same parity as they did above. 
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Each iteration of our enlargement process begins with an order-n magic square.  When this 

square is modified, the integers 1 through 
𝑛2−𝑛

2
  are not increased.  This means that they will 

occupy the same positions relative to the center of the square from that point forward.  In fact, 

the modification which converts the order-n square to become the embedded square is 

deterministic.  This is sufficient knowledge to let us run this procedure backward from a known 

square produced by this process or to recognize that a given square could not have been 

produced by this process.  

As noted above, considerations of parity play an important role in our construction method.  

Note that in Figure 2, the five odd numbers occupy the second row and second column.  This 

pattern may be extended.  By carefully exercising our choices as we build outward, we can 

extend this pattern as shown in Figure 7, where the shading corresponds to parity.  A different 

arrangement of the values not on the main diagonals gives us the parity pattern seen in Figure 8. 

 

106 91 134 93 130 95 98 129 126 99 102 103 122 121 146 

81 107 166 63 70 69 72 73 152 151 150 149 78 169 145 

82 62 108 187 42 45 48 51 176 173 54 171 188 164 144 

83 59 47 109 28 27 32 195 36 191 196 203 179 167 143 

94 64 52 202 110 209 20 15 18 205 214 24 174 162 132 

87 67 43 29 19 111 8 9 216 221 207 197 183 159 139 

142 170 182 204 210 220 112 225 2 6 16 22 44 56 84 

147 71 189 25 215 7 3 113 223 219 11 201 37 155 79 

138 168 180 200 212 222 224 1 114 4 14 26 46 58 88 

141 165 41 33 13 5 218 217 10 115 213 193 185 61 85 

140 158 186 192 12 17 206 211 208 21 116 34 40 68 86 

101 161 177 23 198 199 194 31 190 35 30 117 49 65 125 

136 160 38 39 184 181 178 175 50 53 172 55 118 66 90 

137 57 60 163 156 157 154 153 74 75 76 77 148 119 89 

80 135 92 133 96 131 128 97 100 127 124 123 104 105 120 

 

                                                                Figure 7 
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106 98 134 130 93 95 91 129 121 99 103 102 122 126 146 

142 107 166 72 70 69 63 73 149 151 150 152 78 169 84 

82 62 108 48 42 45 187 51 171 173 54 176 188 164 144 

94 170 182 109 28 32 27 195 191 36 196 203 44 56 132 

83 64 52 202 110 20 209 15 205 18 214 24 174 162 143 

87 67 43 204 210 111 8 9 216 221 16 22 183 159 139 

81 59 47 29 19 220 112 225 2 6 207 197 179 167 145 

147 71 189 25 215 7 3 113 223 219 11 201 37 155 79 

137 161 177 33 13 222 224 1 114 4 213 193 49 65 89 

141 165 41 200 212 5 218 217 10 115 14 26 185 61 85 

101 158 180 192 12 206 17 211 21 208 116 34 46 68 125 

140 168 186 23 198 194 199 31 35 190 30 117 40 58 86 

136 160 38 178 184 181 39 175 55 53 172 50 118 66 90 

138 57 60 154 156 157 163 153 77 75 76 74 148 119 88 

80 128 92 96 133 131 135 97 105 127 123 124 104 100 120 

 

                                                                Figure 8 
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