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Abstract 

Generalized Uncertainty Principle (GUP), which manifests a minimal Planck length in 

quantum spacetime, is central in various quantum gravity theories and has been widely 

used to describe the Planck-scale phenomenon. Here, we propose a thought experiment 

based on GUP – as a quantum version of Galileo's falling bodies experiment – to show 

that the experimental results cannot be consistently described in quantum mechanics. 

This paradox arises from the interaction of two quantum systems in an interferometer, 

a photon and a mirror, with different effective Planck constants. Our thought experiment 

rules out the widely used GUP, and establishes a Quantum Coupling Principle that two 

physical systems of different effective Planck constants cannot be consistently coupled 

in quantum mechanics. Our results point new directions to quantum gravity. 

 

One-sentence summary: The widely used Generalized Uncertainty Principle is proven 

inconsistent with a proposed thought experiment with Planck interferometer. 

 

 



Quantum mechanics predicts that there is a smallest unit in the phase space of quantum 

systems (1), manifested by the Heisenberg uncertainty principle[ , ]x p i . Is there also 

a smallest unit in the real physical space? Various approaches to quantum gravity have 

predicted a minimal observable length (2-7). These lead to a correction of the original 

Heisenberg uncertainty principle into Generalized Uncertainty Principle (GUP) (8-12). 

Based on the GUP, numerous interesting quantum gravity effects have been predicted, 

and recently, several proposals of experimental tests have also been suggested (13-18). 

However, due to the very stringent experimental requirements, no non-trivial result has 

been observed. 

In this work, we implement a thought experiment to reveals a paradox between the GUP 

and quantum mechanics. The paradox is analog to Galileo's falling bodies experiment 

in classical gravity (19). Galileo’s classical experiment (Fig. 1A) coupled two falling 

balls with different masses and revealed a paradox in their landing time, thus logically 

ruling out the possibility that heavy objects fall faster than the lighter ones in gravity. 

Here, in our experiment, we couple two quantum objects with different effective Planck 

constants in a quantum optical interferometer (Fig. 1B). The two quantum objects are a 

photon and a mirror, which have different effective Planck constants derived from the 

GUP. In this thought experiment, we reveal an inconsistency of predicted interference 

visibilities caused by the GUP. 

The GUP can be expressed as a deformed commutator. Considering a quantum object 

of rest mass m  in one-dimension space, its two canonical observables, coordinate x  

and momentum p , obey the following generalized version of commutator (8), 
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where / 22PM c G g   is the Planck mass, is the Planck constant, c  is the 

light speed, G  is the gravitational constant, and 1   is a free constant. Importantly, 



the GUP gives rise to a modified, state-dependent effective Planck constant in the form 
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In our thought experiment, we restrict the system’s momentum in the realm 
Pp M c , 

so we can expand the commutator in the first order of / Pp M c . For a photon of zero 

rest mass, we have the effective Planck constant 

  2 2 2

photon photon1 / Pp M c  . 

For the sake of convenience, we use a mirror of a rest mass 
2( 1) / (2 ) Pm M   , 

where 1   is a constant related to the mass, we have 

  2 2 2 2

mirror mirror / Pp M c    . 

In the realm 
Pp M c , the effective Planck constants of the photon and the mirror 

can be conveniently written as  and  , respectively. The different effective Planck 

constants are due to the system’s different rest masses. 

The thought experiment is carried out on a quantum optics interferometer in Michelson 

configuration (20). A Planck photon of momentum 
photonk  is sent to a balanced beam 

splitter and split into two path modes, a  (vertical) and b  (horizontal). The paths 

are coupled to the mirror through radiation-pressure-induced interacting Hamiltonian 

int photon mirror( )H g t p x  with a coupling strength ( ) 2g t dt  (ref. 21). The mirror is a 

quantum harmonic oscillator of eigenfrequency    and is prepared in the quantum 

ground state. 

The single photon after the first beam splitter is in a superposition state ( ) / 2a b . 

Before reflection, the composite system of the photon and the mirror is in a product 



state 
( )

1Ψ (1/ 2)( ) ( )x a b x x dx    , where the mirror’s wave function ( )x  

is represented in the position representation. After the reflection, the photon is entangled 

with the mirror in a wave function 
( ) 2

2Ψ ( )( ) / 2x ikxx e a x b x dx    . The 

photon’s phase factor 2ikxe   comes from the mirror-position-dependent phase shift. 

Quantum mechanics also promises to equivalently describe the same physical process 

in the momentum representation of the mirror. The state of the composite system 

( )

1 (1/ 2)( ) ( )p a b p p dp     , where ( )p  is the mirror’s wave function in 

the momentum representation, evolves to 
( )

2 ( )( 2 ) / 2p p a p k b p dp     

after the reflection. The change of the mirror’s momentum 2 k  comes from the kick 

of the photon. 

Then, the photon is recombined on the same beam splitter. Scanning a phase shift over 

the path, we can observe an interference fringe at the output. The quantum entanglement 

between the photon and the mirror will reduce the interference visibility from the ideal 

100%. It is straightforward to derive that in the position and momentum representations, 

the visibility is 
2 2( ) 2x k xV e    and 

2 2( ) ( ) /2p k pV e   , where / 2x m     and 

/ 2p m    is the mirror’s position and momentum uncertainty, respectively (22). 

One would expect ( ) ( )x pV V  as the quantum mechanics is consistent. However, in 

this thought experiment, remarkable, we observe that 
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Only when 1  , these two visibilities at positon and momentum representations equal 

to each other. For any GUP correction of 1  , our thought experiment reveals a direct 

contradiction. Figure 2 illustrates examples of ( )xV  and ( )pV  at the regime where the 

mirror’s momentum uncertainty is comparable to the photon’s momentum kick, which 

show evident differences (22). 



Intuitively, this conflict can be also seen from the mirror’s position and momentum 

uncertainty, / 2x m    and / 2p m   , respectively, as a function of the 

GUP correction  . When the   increases, it would give both a larger x  and p . 

However, while a larger x  would result in a lower interference visibility, a larger 

p  would imply a higher interference visibility. The spirit of our paradox is similar to 

Galileo's falling bodies experiment in classical gravity: different views on the two-body 

interaction process can generate different results (19). 

Therefore, our thought experiment reveals an inconsistency between standard quantum 

mechanics and the GUP. We can summarize our observation with a Quantum Coupling 

Principle (QCP) that two physical systems with different effective Planck constants 

cannot be consistently coupled in quantum mechanics. An immediate inspiration from 

the QCP is that classical physics which assumes 0  cannot consistently couple to 

quantum systems ( 0 ). This reinforces the view that we need to quantize everything, 

including the classical gravity (23). 
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Figures: 

 

 

Fig. 1. A quantum version of Galileo’s falling bodies thought experiment. (A) The 

classical Galileo's falling bodies experiment. If falling objects of different masses have 

different gravitational accelerations, a logic paradox will arise in their landing time. (B) 

The Planck quantum optics interferometer. If quantum objects of different masses have 

different quantum-gravity-corrected effective Planck constants, a paradox will raise in 

the interference visibility. 

 



 

Fig 2. Examples of the inconsistency of the interference visibility due to GUP. For 

illustrative purpose, we choose a GUP correction of 1.5   for the effective Planck 

constant, and a regime where the momentum uncertainty of the mirror is comparable to 

the single photon momentum kick. The photon momentum shown in horizontal axis is 

normalized to the momentum uncertainty of the mirror. The plotted interference 

visibilities ( )xV  and ( )pV   are estimated using the position and the momentum 

representations, respectively, which show a pronounced gap. 

 

 

 

Supplementary Materials 

 

Interference Visibility 

In the interferometer, when the photon is input to the balanced beam splitter, it is in a 

path superposition state 
1 ( ) / 2a b   , where a  and b are the vertical and 

horizontal paths (Fig. 1B), respectively. After the interaction between the photon and 

the Planck mirror, the photon is entangled with the mirror in an entangled state 

2 ( ) / 2a b    , where   and   are the quantum states of the mirror 

before and after the interaction, respectively. The photon then passes a tunable phase 

shifter ie   and combines on the balanced beam splitter. The output quantum state is 



output ( ( ) ( )) / 2i ia e b e          . Therefore, the photon counting 

probability at the output port a   is ( ) 1/ 2 (1/ 2) cos( arg )aP          

and the interference visibility is V   .   

In the position representation, the mirror’s quantum state    and    are 

( )x x dx     and 
2( ) ikxx e x dx     , respectively. As the mirror’s ground 

state is  
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Two Planck mirrors 

In the main text, we only consider one mirror at one optical path for simplicity. Here, 

we present a full calculation including the other mirror. The central conclusion remains 

the same. 

After the interaction between the photon and the two Planck mirrors, the photon is 

entangled with the mirrors in an entangled state 
2 ( ) / 2

a b a b
a b      , 

where 
a

  and 
a

  (
b

  and 
b

 ) are the quantum states of the mirror on the 

path a   ( b  ) before and after the interaction, respectively. Thus, the interference 

visibility becomes a ba b a b
V V V       , where a a a

V      and 

b b b
V    .  

We estimate the interference visibilities in two selected composite representations: the 

first mirror in the position or the momentum representations, and the second mirror 

always in the position representations. Therefore, the interference visibilities are 

( ) ( ) ( )x x x

a bV V V  and 
( ) ( ) ( )p p x

a bV V V , respectively. In this case, we will have the value  



( ) ( ) ( ) ( )/ /x p x p

a aV V V V , which is the same to the result in the main text. 

 

Effective Rest Mass 

In our thought experiment, the effective Planck constant is dependent on the rest mass, 

which is the key to the quantum paradox. There are alternative deformed commutators 

without explicit rest mass (10), for example: 

2 2
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where i  is the index of the spatial dimensions,   and    are correction constants. 

In this case, we can use the momentum component perpendicular to the first dimension 

as the effective rest mass. By setting 2 2 2

2 3

1
+ = ( )Pp p M c








, the commutator for the 

first spatial dimension becomes: 
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where   describes the effective rest mass. Therefore, the effective Planck constant is 

  when 
1 Pp M c . 

 


