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0- Abstract:

With a very intuitive notation, we are going to see in this paper a solution of the approximation to a 
determinate position digit in whole and fractional numbers. We are going to use ceiling and floor 
functions to give precision to the rounding.

1- Introduction:

Firstly, we should see the main notation for the different digits number following the decimal 
positioning system, we are going to name <a> to the whole part and <b> to the fractional part.

(1) am a(m−1) ...a2a1 a0 .b1b2b3 ...b(n−1)bn

Where:
a0 correspond to ones, a1 to the tens and a2 to the hundreds.
b1 correspond to tenths, b2 to the hundredths and b3 to the thousandths.

Now with a given number am .bn we will use the ceiling ( ⌈am .bn⌉ ) or the floor ( ⌊am .bn⌋ ) 
function. We will use a positional determinant s in the super index, this will show us which is the 
relevant last number in the approximation. The super index will be an indeterminate variable am
or bn and it will precise which determinate position we should choose end with.

2- Theory:

Theorem 1: The main rounding of the number could be in the whole part, and it will be cut in a 
determinate last right position number ax , we should substitute all numbers cutting off in the 
right part of the determinate number, with zeros until the position of ones a0 . If the last number 
chosen are in the fractional part we just delete (substituting for zeros) all numbers in the right part 
and rounding to the determinate bx .

Proposition 1: The possible combinations of the method are four of them: 1- (⌈am.bn⌉)
(ax) 2-

(⌊am.bn⌋)
(ax) 3- (⌈am.bn⌉)

(bx) and 4- (⌊am.bn⌋)
(bx) . The first one express a ceiling function with 

and ending in the whole part, the second one a floor function with an ending in the whole part, the 
third a ceiling function with and ending in the fractional part and the fourth a floor function with 
and ending in the fractional part. 



Proposition 2: In the ceiling function the rounding will be plus one (+1) to the determinate ax or
bx not depending which is the a(x−1) or the b(x+1) previous or next. All a(x−n) until a0

will be zeros (0s) and all b(x+n) will be zero until −∞ . Except when all the right numbers until
−∞  are zero (0) then we should add zero (+0) to the chosen number.

• Lemma 1: If the chosen determinate variable is in a determinate case a number nine 
(9) in ax  instead of plus one (Proposition 2), we should substitute with a zero (0) 
and add one (+1) in a(x+1) .

• Lemma 1.1: If a(x+1) is also a nine (9) we should substitute with a zero (0)
a(x+1) and add one (+1) to a(x+2) . If we have an iteration we should do this steps 

until a(x+n) is not a nine and then add one (+1) to these number.
• Lemma 2: If the chosen determinate variable is in a determinate case a number nine 

(9) in bx instead of plus one (Proposition 2) we should substitute with a zero (0) 
and add one (+1) in b(x−1) .

• Lemma 2.1: If b(x−1) is also a nine (9) we should substitute with a zero (0)
b(x−1) and add one (+1) to b(x−2) . In this case too if we have an iteration we 

should continue doing this until b(x−m) is not a nine.
• Lemma 2.2: If we have a necessary iteration of substitutions of nines to zeros until

b1 and we pass to a0 we should continue doing substitutions in the whole part 
and add one (+1) to the non-nine number. (Ex.11)

It will be interesting to notice that in some cases there are possibilities to obtain the same result in a 
different ceiling functions. ( (⌈am. bn⌉)

(ax) or (⌈am.bn⌉)
(bx) ). This happens in the exposed 

situations of Lemmas 1 and 2. In this situations (⌈am.bn⌉)
(ax) = (⌈am.bn⌉)

(ax+1) , when ax=9

and (⌈am.bn⌉)
(bx) = (⌈am.bn⌉)

(bx−1) , when bx=9 . We will see in the examples part in (Ex.16 
and Ex.17)

Proposition 3: The rounding will be plus zero (+0) in the ax or bx in the floor function. All
a(x−n) until a0 will be zeros (0s) and all b(x+n) will be zero until −∞ .

3-Examples:

1. ⌈32.0⌉(a0)=32.0 2. ⌈32.0⌉(b1)=32.0 3. ⌈32.0⌉(a1)=40.0

4. ⌈32.2⌉(a 0)=33.0 5. ⌈32.2⌉(b 1)=32.2 6. ⌈32.2⌉(a 1)=40.0

7. ⌊538.79⌋(b 1)=538.7 8. (⌊9.3873⌋)(b2)=9.38 9. ⌈38.37521⌉(a 0)=39

10. ⌈3259.395⌉(b2)=3259.4 11. ⌈59.9953⌉(b 2)=60 12. ⌊7853.39⌋(a 2)=7800

13. ⌊325379839.235⌋(a 6)=325000000 14. ⌊3.141592⌋(b 5)=3.14159

15. ⌈3.141592⌉(b 5)=3.1416 16. ⌈89.59⌉(a0)=90 17. ⌈89.59⌉(a1)=90



4- Conclusions:

We have seen the main theorem and its related ideas and exemplified some key cases for 
understanding the theory. This theory can be interesting in applied sciences such as physics, 
chemistry or economics. It is a clear example of how an elementary idea that we all learned as 
children can be taken further in a precise and rigorous way.


