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Abstract. We consider special semicircles, whose endpoints lie on a circle, for a generalized arbelos called the
arbelos with overhang considered in [4] with division by zero.

1 Introduction

For a point O on the segment AB such that |AO| = 2a, |BO| = 2b, let Ah (resp. Bh) be a point on the half line
OA (resp. OB) with initial point O such that |OAh| = 2(a + h) (resp. |OBh| = 2(b + h)) for a real number h
satisfying min(a, b) < h. In [4] we have considered a generalized arbelos consisting of the three semicircles α, β
and γ of diameters AhO, BhO and AB, respectively, constructed on the same side of AB. The figure is denoted
by (α, β, γ)h and is called the arbelos with overhang h (see Figure 1). The ordinary arbelos is obtained from
(α, β, γ)h if h = 0, which is denoted by (α, β, γ)0.
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Figure 1: (α, β, γ)h, −min(a, b) < h < 0.

Let c = a+ b. The circle touching α (resp. β) externally, γ internally, and the axis from the side opposite to
B (resp. A) has radius

rA =
ab

c+ h
.

The two circles are called the twin circles of Archimedes of (α, β, γ)h. Circles of radius rA are called Archimedean
circles of (α, β, γ)h or said to be Archimedean with respect to (α, β, γ)h.

In this article we consider special semicircles, which are counterpart to the incircle and Archimedean circles of
(α, β, γ)h using division by zero. At the last part of this paper we consider special case of (α, β, γ)h considered by
Aida [1]. We consider using a rectangular coordinate system with origin O such that the farthest point on α have
coordinates (a+ h, a+ h) (see Figure 1). The radical axis of α and β is called the axis.
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2 Incircle and insemicircle

In this section we consider the incircle of (α, β, γ)h and an inscribed semicircle in (α, β, γ)h. If a circle touches α
and β externally and γ internally, we call the circle the incircle of (α, β, γ)h (see Figure 2). If the endpoints of a
semicircles lie on a circle, we say that the semicircle touches the circle at the endpoints. If a semicircle touches
α and β, and γ at the endpoints, we say that the semicircle is inscribed in (α, β, γ)h. We have considered such a
semicircle in [2] for (α, β, γ)0. We use the next proposition.

Proposition 1. A semicircle of radius s touches a circle of radius r at the endpoints if and only if d2 + s2 = r2,
where d is the distance between the centers of the semicircle and the circle.

Let v =
√
(c+ h)2 − 2ab+ h2.

Theorem 1. The following statements hold.
(i) The incircle of (α, β, γ)h has radius

ic =
ab(c+ 2h)

(c+ h)2 − ab
. (1)

(ii) If a semicircle is inscribed in (α, β, γ)h, then it has radius

is =
−v2 +

√
8ab(c+ 2h)2 + v4

2(c+ 2h)
. (2)

Proof. We prove (ii). Let (x, y) and is be the coordinates of the center and the radius of the semicircle inscribed
in (α, β, γ)h. Then we get (x − (a + h))2 + y2 = ((a + h) + is)

2, (x + (b + h))2 + y2 = ((b + h) + is)
2 and

(x − (a − b))2 + y2 + i2s = c2 by Proposition 1. Eliminating x and y from the three equations and solving the
resulting equation for is, we get (2). The part (i) is proved similarly.
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Figure 2.

The theorem shows that an inscribed semicircle in (α, β, γ)h is determined uniquely. Hence we can call it the
insemicircle of (α, β, γ)h.

We consider a condition where a semicircle of radius is touches γ. If one of the endpoints of a semicircle S1

lies on a semicircle S2 and the other endpoints of S1 lies on the reflection of S2 in its diameter, we still say that
S1 touches S2 at the endpoints. The circle of center of coordinates ((a+ h)m, 0) (resp. (−(b+ h)n, 0) and passing
through O is denoted by αm (resp. βn) for a real number m (resp. n) (see Figure 3). For points P and Q on
a semicircle δ, we say that P , Q and the endpoints of δ lie counterclockwise if P , Q and one of the endpoints of
δ lie counterclockwise. If a circle touches αm, βn and γ internally so that the points of tangency of this circle
and each of βm, αn and γ lie counterclockwise, we say that the circle touches αm, βn and γ appropriately. Also
if a semicircle touches αm and βn, and γ at the endpoints so that the points of tangency of the semicircle and
each of βn, αm, and the endpoints lie counterclockwise, then we say that the semicircle touches αm, βn and γ
appropriately.
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Theorem 2. If m ̸= 0 and n ̸= 0, the following three statements are equivalent.
(i) A circle of radius ic touches αm, βn and γ appropriately.
(ii) A semicircle of radius is touches αm, βn and γ appropriately.

(iii) c+ 2h =
a+ h

m
+
b+ h

n
.

Proof. Assume that (i) and (x, y) are the coordinates of the center of the circle in (i). Then we have (x−m(a+
h))2+y2 = (m(a+h)+ ic)

2, (x+n(b+h))2+y2 = (n(b+h)+ ic)
2 and (x−(a−b))2+y2 = (c− ic)2. Eliminating x

and y from the three equations with (1), we get (iii). Conversely we assume (iii), and a circle of radius ic touches
αm, βn′ and γ appropriately for a real number n′. Then we have a + b + 2h = (a + h)/m + (b + h)/n′ just as
we have shown, i.e., n = n′. Hence βn = βn′ , i.e., (iii) implies (i). Therefore (i) and (iii) are equivalent. The
equivalence of (ii) and (iii) is proved similarly.
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Figure 3: 1 < m and 0 < n < 1.

Theorem 2 does not consider the case in which αm or βn coincides with the axis. We consider the case in the
next theorem (see Figure 4).

Theorem 3. The following statements hold.
(i) A circle of radius ic touches αm (m > 0) externally, γ internally and the axis if and only if

m = m0 =
a+ h

c+ 2h
. (3)

(ii) A semicircle of radius is touches αm (m > 0) and the axis, and γ at the endpoints if and only if (3) holds.
(iii) A circle of radius ic touches βn (n > 0) externally, γ internally and the axis if and only if

n = n0 =
b+ h

c+ 2h
. (4)

(iv) A semicircle of radius is touches βn (n > 0) and the axis, and γ at the endpoints if and only if (4) holds.

Proof. We prove (i). Let (x, y) be the coordinates of the center of the circle of radius ic in (i). Then we have
x = ic, (x −m(a + h))2 + y2 = (m(a + h) + ic)

2 and (x − (a − b))2 + y2 = (a + b − ic)
2. Eliminating x and y

from the three equations with (1), and solving the resulting equation for m, we get (3). Conversely, we assume
that (3) and a circle of radius ic touches αm′ (m′ > 0) externally, γ internally and the axis for a real number m′.
Then we have m′ = m0 = m as just we have proved. Therefore αm′ = αm and the converse is true. The rest of
the theorem is proved similarly.
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Figure 4.

3



If m = m0, then (a + h)/m = c + 2h. Therefore if (b + h)/nx = 0, and βnx coincides with the axis, then we
can consider that Theorem 2 is true in the case (m,n) = (m0, nx). Similarly if n = n0 and (a + h)/mx = 0 and
αmx

coincides with the axis, we can also consider that Theorem 2 holds in the case (m,n) = (mx, n0). Therefore
Theorems 2 and 3 can be unified in this case. We consider about this in section 4.
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Figure 5.

Theorem 4. If A0O and B0O are the diameters of the circles αm0 and βn0 , respectively, then the circles of
diameters A0Ah and B0Bh are Archimedean circles of the arbelos made by α, β and the semicircle of diameter
AhBh constructed on the same side of AB as γ. Therefore the circle of diameter A0B0 is concentric to γ and
touches the twin circles of Archimedes of the arbelos.

Proof. Since the radius of the circle αm0
equals (a+h)m0 = (a+h)2/(c+2h) by (3), the circle of diameter A0Ah

has radius

(a+ h)− (a+ h)2

c+ 2h
=

(a+ h)(b+ h)

c+ 2h
,

which equals the radius of Archimedean circles of the arbelos made by α, β and the semicircle of diameter AhBh

(see Figure 5). Since the radius of the circle is symmetric in a and b, the other circle also has the same radius.

3 Archimedean semicircles

In this section we consider another kind of semicircles touching γ at the endpoints.

Theorem 5. The semicircle touching α and the axis and γ at the endpoints is congruent to the semicircle touching
β and the axis and γ at the endpoints. The common radius equals

sA =
1

2
(
√

(c+ 2h)2 + 8ab− c− 2h). (5)

Proof. Let (s, y) be the coordinates of the center of the semicircle touching α and the axis, and γ at the endpoints.
Then s equals the radius of the semicircle, and we have (s − (a − b))2 + y2 + s2 = c2 by Proposition 1 and
(s− (a+ h))2 + y2 = ((a+ h) + s)2. Eliminating y from the two equations and solving the resulting equation for
s, we have s = sA. Since s is symmetric in a and b, the other semicircle also has the same radius.
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Figure 6.
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The two congruent semicircles in Theorem 5 may be called the twin semicircles of Archimedes (see Figure 6).
A semicircle of radius sA is called an Archimedean semicircle of (α, β, γ)h or said to be Archimedean with respect
to (α, β, γ)h. Let wk =

√
a2 + kmn+ b2. Theorem 5 shows that (α, β, γ)0 has Archimedean semicircles of radius

(w10 − c)/2.

Theorem 6. Assume that (m,n) ̸= (1, 0), (0, 1) and a semicircle touches αm, βn and γ appropriately. Then the
semicircle is Archimedean with respect to (α, β, γ)h if and only if

1

m
+

1

n
= 1. (6)

Proof. Assume that a semicircle of radius sA touches αm, βn and γ appropriately and (x, y) are the coordinates
of its center. Then we get (x−m(a+ h))2 + y2 = (m(a+ h) + sA)

2, (x+ n(b+ h))2 + y2 = (n(b+ h) + sA)
2, and

(x− (a− b))2 + y2 + sA
2 = c2. Eliminating x and y from the three equations, we have (6). Conversely we assume

(6) and assume that a semicircle of radius sA touches αm, βn′ and γ appropriately. Then we have 1/m+1/n′ = 1.
Hence we get n = n′, i.e., βn = βn′ . Hence the converse holds.

While we have obtained the next theorem in [4].

Theorem 7. If (m,n) ̸= (1, 0), (0, 1) and a circle touches αm, βn and γ appropriately, then the circle is
Archimedean with respect to (α, β, γ)h if and only if (6) holds.

By Theorems 6 and 7 we have the next theorem.

Theorem 8. If (m,n) ̸= (1, 0), (0, 1), the following statements are equivalent.
(i) The circle touching αm, βn, and γ appropriately is Archimedean with respect to (α, β, γ)h.
(ii) The semicircle touching αm, βn, and γ appropriately is Archimedean with respect to (α, β, γ)h.
(iii) (6) holds.

It is commonly considered that the circles α0 and β0 are point circles and coincide with the origin O. This
implies that Theorem 8 is not true in the cases (m,n) = (1, 0), (0, 1). Therefore Theorems 8 does not consider the
case of the twin circles of Archimedean and the case of the twin semicircles of Archimedes. We consider the case
in the next section.

4 Division by zero

In this section we show that we can consider that the circles α0 and β0 coincide with the axis using recently made
definition of division by zero [5].

For a field F we consider the following bijection ψ : F → F :

ψ(a) =

{
a−1 if a ̸= 0

0 if a = 0.

It is a custom to denote zψ(a) by z/a if a ̸= 0, i.e., zψ(a) = a/z for a ̸= 0. Following to this, we write

z · ψ(0) = z

0
for ∀z ∈ F. (7)

Then we have
z · ψ(a) = z

a
for ∀a, z ∈ F. (8)

Especially we have
z

0
= z · 0 = 0 for ∀z ∈ F. (9)

Notice that the concept of the reduction to common denominator can not be used for z/0, i.e., we have the
following relation in general in the case b = 0 or d = 0:

a

b
+
c

d
̸= ad+ bc

bd
.
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We consider the circle αm in the case m = 0. The circle αm has an equation (x−m(a+h))2+y2 = m2(a+h)2,
or

−2m(a+ h)x+ (x2 + y2) = 0. (10)

This implies x2 + y2 = 0 if m = 0. Hence α0 coincides with the origin in this case. On the other hand, (10) can
be written as

−2(a+ h)x+
x2 + y2

m
= 0. (11)

Therefore we get −2(a+ h)x = 0, i.e., x = 0 if m = 0 by (9), i.e., α0 coincides with the axis in this case. Now we
can consider that α0 is the origin or the axis, or the axis as the union of them. Similarly β0 can be considered as
the origin or the axis.

We can now consider that α0 and β0 coincide with the axis. Then Theorem 2 holds in the case (m,n) =
(m0, 0), (0, n0) by (9). Also Theorem 8 holds in the case (m,n) = (1, 0), (0, 1). Our current mathematics avoids
to consider (9). But our above observation shows that (9) is useful.

Division by zero was founded by Saburou Saitoh in 2014. He has been making a list of successful example
applying division by zero and its generalization called division by zero calculus, and there are more than 1200
evidences. It shows that a new world of mathematics can be opened if we admit them. For an extensive reference
of division by zero and division by zero calculus including those evidences, see [5].

5 Aida arbelos

Aida (1747-1817) considered a figure consisting of two touching semicircles at their midpoints and the circle passing
through the endpoints of the semicircles [1] (see Figure 7). He gave several notable properties of this figure, which
are summarized in [3]. We conclude this paper by considering special circles and special semicircles for this figure.

Figure 7: Aida’s figure.

AB O

γ
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β

Figure 8: Aida arbelos.

Aida’s figure is obtained from (α, β, γ)h, when h = rA [3], or

h =
ab

c+ h
. (12)

Because (12) is equivalent to

rA = h =
1

2
(w6 − c), (13)
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and (13) implies that the farthest points on α and β from AB lie on γ, where recall wk =
√
a2 + kab+ b2. In this

case we call (α, β, γ)h an Aida arbelos (see Figure 8). Replacing h in the denominator of the right side of (12) by
the right side of (12) repeatedly, we get a continued fraction expansion of rA for the Aida arbelos:

rA =
ab

c+ h
=

ab

c+
ab

c+ h

=
ab

c+
ab

c+
ab

c+
.. .

.

We assume h ≥ 0. Let α and β be the semicircles of diameters AO and BO, respectively, constructed on
the same side of AB as γ, i.e., α, β and γ form (α, β, γ)0. The incircle of the curvilinear triangle made by α, α
(resp. β, β) and the radical axis of α (resp. β) and γ has radius (1/rA + 1/h)−1 for (α, β, γ)h [4]. Therefore the
radius equals rA/2 for the Aida arbelos. The circles are denoted by green in Figure 9. The circle touching α or β
externally, γ externally and the axis has radius ab/h for (α, β, γ)h [4]. Hence the radius equals ab/rA = c+ rA for
the Aida arbelos by (12). The circles are denoted by magenta in Figure 9.

O

α
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β

c+ rA

rA

Figure 9: The green circles have radius rA/2.

Substituting (13) in (5), we get that the radius of Archimedean semicircles of the Aida arbelos equals

sA =
1

2
(w14 − w6).

Since ic = w6h/c for the Aida arbelos [3], we get that the inradius of the Aida arbelos equals

ic =
w6(w6 − c)

2c

by (13). Therefore we have

ic + rA =
2ab

c
.

Hence the sum of ic and rA for the Aida arbelos equals the diameter of the Archimedean circle of (α, β, γ)0. Let
u = (w4

6 + 16a2b2)1/4.

Theorem 9. If the insemicircle of the Aida arbelos has center of coordinates (xs, ys), we have

is =
u2 − c2

2w6
, (14)

(xs, ys) =

(
(b− a)is
w6

,
4ab

√
4ab+ u2

w2
6

)
. (15)
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Proof. By (2) and (13), we get (14). Solving the equations (xs − (a+ h))2 + y2s = ((a+ h) + is)
2 and (xs + (b+

h))2 + y2s = ((b+ h) + is)
2 with (14), we get (15).

The next theorem shows that the result for the insemicircle of (α, β, γ)0 obtained in [2] also holds for the Aida
arbelos (see Figure 10).
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Figure 10.

Theorem 10. If the line joining the centers of γ and the insemicircle of the Aida arbelos meets the axis in a point
V , then the circle of diameter OV is orthogonal to the insemicircle. Hence the circle passes through the points of
tangency of two of α, β and the insemicircle.

Proof. From (13) and (15), the circle of diameter OV has radius

rv =
4ab

√
4ab+ u2

w2
10 + u2

and the center of coordinates (0, yv) = (0, rv). Then we have (xs − 0)2 + (ys − yv)
2 = r2v + i2s.
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