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Abstract
The problem of a flow with its velocity gradient being of real Schur form uniformly in a cyclic

box is formulated for numerical simulation, and a semi-analytic algorithm is developed from

the precise structures. Computations starting from two-component-two-dimensional-coupled-with-

one-component-three-dimensional initial velocity fields of the Taylor-Green and Arnold-Beltrami-

Childress fashions are carried out, and some discussions related to turbulence are offered for the

multi-scale eddies which, though, present precise order and symmetry. Plenty of color pictures of

patterns of these completely new flows are presented for general and specific conceptions.
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I. INTRODUCTION

As shown in Fig. 1 for a prototypical flow of the Taylor-Green [1] fashion described
by Eq. (20) below, a two-component-two-dimensional coupled with one-component-three-
dimensional (2C2Dcw1C3D) velocity field, with the ‘horizontal’ components, u1 and u2,
presenting columnar/two-dimensional (2D) patterns and the ‘vertical’ component u3 fully
three-dimensional (3D) one, has the velocity gradient uniformly of the real Schur form, thus a
real Schur flow (RSF). Such RSF is of interesting mathematical value and physical relevance
([2] and references therein). A better understanding of how such anisotropic structure is
maintained dynamically may also shed light onto the opposite problem of isotropization
in Navier-Stokes flows (NSF), which is of course fundamentally important, especially for
turbulence. However, RSF, formally simplifying, say, the full Navier-Stokes flow (NSF), can
still be very complicated, welcoming also systematic numerical investigations to explore it
in detail. Actually, as we shall see, finding and designing algorithms for computing RSF by
itself requires in-depth investigation of the dynamics, especially the fine structures.

FIG. 1: The isosurfaces (of values ±0.9 and ±0.3) of the three components, u1 (left), u2

(middle) and u3 (right), of the Taylor-Green-fashion 2C2Dcw1C3D velocity field.

Note that an RSF in the natural Navier-Stokes setting is of course unstable, but extra
physical constraint, such as strong rotation or background magnetic field, among others,
may stabilize it. Thus, singling it out for separate study makes a lot of sense.

Numerical computation of RSF is nontrivial in the sense that the above defining prop-
erty of the velocity does not directly specify the precise and complete form of the governing
equation(s) appropriate for discretization and integration. Mathematically speaking, RSF
lives in a subset of the (phase) space of NSF, requiring appropriate constraint(s) to avoid
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escaping. In other words, dynamically, a set of additional precise relations should be satis-
fied to have a self-consistent evolution of the system. Under the framework of NSF, it has
been shown that such relations can be explicitly written down, in the sense of particular
properties of the (primitive) variable itself as a function of space and time, for the inviscid
case or for the slightly simplified viscosity model with, say, the dilatational effect neglected
in the Stokesian model [2]. This makes it possible to define a dynamical projection oper-
ator straightforward for numerical implementation. For the more general cases, including
models such as non-newtonian fluid or quantum NSF, the precise structures are typically
not explicitly expressible but implicity specified, in the sense of some particular relation(s)
between different (primitive) variables. It is possible that one may make use of (some of ) the
precise relations to apply in a ‘brute-force’ way the conventional dual-time stepping method
[3] with the inner iterations (pseudo-time) for the accurate relaxation to the self-consistent
state before advancing the physical time. How to ensure the convergence of the inner iter-
ation and how accurate or how many (pseudo-time) steps are needed for the self-consistent
RSF dynamics are in general not easy to be made clear and can be subtle. Another brute
force is to resort to approaches related to molecular dynamics. For example, Gallis et al. [4]
recently made a comparison between the direct simulation Monte Carlo (DSMC) and direct
numerical simulation (DNS) of the compressible continuum model for the evolution starting
from the Taylor-Green field (TGF [1]). For RSF, however, specific rules at the micro- or
meso-scopic level need to be found and implemented in the computation, which, among other
issues such as the (virtual) molecule number and noise of DSMC as addressed in Ref. [4]
(see also the discussions of simulations of incompressible TGF evolution by discrete unified
gas-kinetic scheme, pseudo-spectral and lattice Boltzmann methods [5]), again is not obvi-
ous. Both such types of algorithms are interesting and probably challenging, and, definitely
deserve to be pursued. Here, as a first step, we discuss a semi-analytical algorithm, for DNS
of RSF, based on the evolution equation dynamically projected from the full Navier-Stokes
with the explicit analytical expressions for the precise relations.

For physical interest, RSF has been suggested to be possibily playing the role in general
turbulence dynamics as special relativity in general relativity and, particularly, the helical
RSF were proposed to be the ‘chiral base flow (CBF)’ for understanding the helicity effect on
the compressibility of flows of neutral and ionized gases [6]. It is thus natural to numerically
examine the very basic issues such as the production of small RSF eddies, a praradigm with
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TGF [1, 7, 8] extended also to different numerical concerns of compressible flows [9, 10], and
to test the relevant resutls in Ref. [6], such as the ‘fastening’ (compressibility-reduction)
effect of helicity (compared to achiral base flow — aCBF).

In Sec. II, we formulate RSF equations for numerical simulation, and, design the algo-
rithm and solution strategy. In particular, Eqs. (1a and 1b+), together with Eqs. (1b-
and 1c), are established to compute isothermal RSF in a cyclic box with the semi-analytical
algorithm. In Sec. III, the specific physical problem and numerical method, with Eq. (1b)
alternative to Eqs. (1b- and 1b+), are presented, which is followed by Sec. IV for the
discussion of the results, especially the production and properties of small RSF eddies. Sec.
V concludes the work with further discussions.

II. FORMULATION AND ALGORITHM

A. Starting from NSF

Let’s start with the Euler equation in E3 for the RSF with (nondimensional) density ρ,
pressure p, velocity u,

∂tρ = −∇ · (ρu) =: 0RHS, (1)

∂tuh = −uh · ∇huh − ρ−1∇hp =: hrhs, (1b-)

∂tu3 = −(uh · ∇hu3 + u3u3,3)− ρ−1p,3 =: 3rhs, (1c)

where x1 and x2 are the ‘horizontal’ coordinates and the corresponding uh := {u1, u2} is
independent of the ‘vertical’ coordinate x3, i.e.,

uh,3 ≡ 0. (2)

For the barotropic case,
(∇p)/ρ = ∇Π (3)

where Π is the specific enthalpy, and the isothermal (constant-temperature) relation p = c2ρ

results in
∇Π = c2∇ ln ρ, (4)

where c is the sound speed. Internal viscosity (resp., external acceleration) models of Mh

and M3 (resp., ah and a3) can be added to (1b- and 1c) respectively, and our objective is
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then to find the numerical solutions of Eqs. (1, 1b- and 1c) constrained by Eq. (2), which in
general requires appropirately designed algorithms for performing consistent computations
to obtain the accurate results. In this note, we are not interested in very complicated
situations or sophisticated computations, but would rather look for reasonable simplications
and semi-analytical treatments to compute RSF.

The viscosity model M (u) is determined by the constitutive relation of the medium. For
the (generalized) Newtonian fluid, there is a dilational or ‘second viscosity’ coefficient whose
neglection leads to the Stokesian model (thus the Navier-Stokes)

M (u) = µρ−1∇2u+
µ

3ρ
∇(∇ · u) (5)

when the dynamical viscosity µ is constant. For simplicity, we will focus on the model
M (u) = ν∇2u applied in incompressible flows with constant kinetic viscosity ν. This is not
always very realistic, but can be a good approximation in many physical situations, unless
the flow is extremely compressible with very high tempearture, say. In such a case,

Mh = ν∇2
huh, and M3 = ν∇2u3. (6)

Note that for analytical (e.g., Ref. [11] and recently [2]) and/or numerical (e.g., Refs.
[12, 13]) convenience, Eq. (1) has also been written for the ‘logarithmic variable’, ln ρ,

∂t ln ρ = −u · ∇ ln ρ−∇ · u, (7)

which is equivalent except for the vacuum solution that we are not interested in here.
On the other hand, particularly for the computational fluid dynamics (CFD) formulation

and programming, and, for better behavior of shock-capturing schemes (e.g., Ref. [14]), it
is also useful to write in the following conservative form for the Navier–Stokes equations of
the compressible flow of an ideal gasU,t = −Fj,j + Vj,j =: RHS,

p = ρRT,
(8)

where

U =


ρ

hU

ρu3

E

 , Fj =



ρuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(E + p)uj


, Vj =



0

σ1j

σ2j

σ3j

σjkuk + κT,j


, (9)
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with 0U := ρ and hU :=

 ρu1

ρu2

 to which correspond the 0RHS and hRHS (for later

reference), respectively, in RHS. Here, δij is the Kronecker delta, and the summation over
repeated indices has been assumed; κ is the conductivity of the temperature T , and R is the
ideal gas constant. The total energy is E = p

γ−1 +
1
2
ρujuj where γ ≡ Cp/Cv is the adiabatic

exponent, the ratio of the constant-pressure heat capacity Cp to the constant-volume one,
Cv. The viscous stress σij = µ (ui,j + uj,i)− 2

3
µθδij, in general also accounts for the dilatation

θ := ∇ · u. The dynamic viscosity µ assumes Sutherland’s law [15] µ = 1.4042T 1.5

T+0.40417
µ∞ with

µ∞ = 1.716×10−5kg/(m·s): µ is indeed constant when T is not varying (isothermal), which
is a good approximation for moderate cases free of boundary.

B. The governing equations for RSF

The RSF has not only the defining characteristics in the velocity but also some particular
thermodynamic structures which govern the dynamics. Below, we will derive the results from
the 2C2Dcw1C3D velocity field for the 3-space dynamics (more complete analytical results,
including those for high-dimensional space and Lie invariances, are discussed in another note
[2]).

Taking derivative with respect to x3 in Eq. (1b-) for the horizontal momentum, Eq. (2)
indicates [16]

[(∇hp)/ρ],3 = 0 (10)

by the requirement of RSF uniformly over space and time, which leads to nontrivial conse-
quence as follows.

By Eq. (3), the barotropic Eq. (10) writes

(∇hΠ),3 = 0 (or Π,13 = Π,23 = 0), (11)

which simply means, in words, Π should be decomposed into two functions, Ph and P3,
one of only the horizontal coordinate xh := {x1, x2} and the other of only x3. To be precise,
Eq. (11) means Fh(xh) := ∇hΠ is a (vector) function of only the horizontal coordinate xh

and F3(x3) := Π,3 a function of only x3, which leads to

Π = P3(x3) + Ph(x1, x2) (12)
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where
Ph :=

∫ ∫
Fh · d2xh

∣∣∣h and P3 :=

∫
F3dx3

∣∣∣3, (13)

with
∣∣∣h meaning “ignoring the x3-dependent integration constant which is absorbed by P3”

and
∣∣∣3 “ignoring the xh-dependent integration constant which is absorbed by Ph”.

We may consider the RSF in a box of dimension Lz × L2 × L3, cyclic in each direction,
or with L → ∞ in some direction(s) with the field vanishing sufficiently fast. Introducing

⟨•⟩12 :=
∫ L2

0

∫ L1

0
•dx1dx2

L1L2

, ⟨•⟩3 :=
∫ L3

0
•dx3

L3

and ⟨•⟩123 :=
∫ L1

0

∫ L2

0

∫ L3

0
•dx1dx2dx3

L1L2L3

, (14)

we have

⟨Π⟩3 = Ph(x1, x2) + ⟨P3⟩3, (15a)

⟨Π⟩12 = P3(x3) + ⟨Ph⟩12, (15b)

⟨Π⟩123 = ⟨Ph⟩12 + ⟨P3⟩3 = ⟨Π⟩12 + ⟨Π⟩3 − Π,

i.e., Π = ⟨Π⟩12 + ⟨Π⟩3 − ⟨Π⟩123. (15c)

Rewriting Eq. (1) or (7) as

∂t ln ρ = −u · ∇ ln ρ−∇ · u =0RHS/ρ =:0rhs (16)

and taking, with Eq. (4) for the isothermal case, the specific enthalpy particularly (ignoring
the irrelevant constant)

Π = c2 ln ρ = c2(⟨ln ρ⟩12 + ⟨ln ρ⟩3 − ⟨ln ρ⟩123), (17)

and, by bringing Eqs. (17 and 15c) into Eq. (16) with the interchangeability of the order of
the time derivative and the average operators defined in Eq. (14) and with

⟨u1,1⟩1 = ⟨u2,2⟩2 = ⟨u3,3⟩3 = 0 (18)

from the periodic boundary condition, we finally obtain the partial-integral-differential equa-
tion (not the original conventional partial differential equation — PDE)

∂t ln ρ = ⟨0rhs⟩12 + ⟨0rhs⟩3 − ⟨0rhs⟩123 (1a)

It is seen that the above derivation works also for the case with a 2C2Dcw1C3D external
acceleration (‘force’ divided by the mass per volume in Newtonian mechanics) a applied to
Eqs. (1b- and/or 1c), with the horizontal component ah being independent of x3.
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Eq. (1a) summarizes Eqs. (1, 2 and 10) and, together with Eqs. (1b- and 1c), completely
defines the dynamics of the 2C2Dcw1C3D isothermal flow in a cyclic box, even for the driven
case with 2C2Dcw1C3D acceleration added, as just mentioned.

Actually, Eq. (1a) applies in more general nonbarotropic RSFs which present other precise
structures as well [2] (c.f., the winding-up discussion in Sec. V), but we focus only on the
isothermal case in this note for the (numerical) proof of concept.

C. The strategy and algorithm for simulations

We focus on the isothermal RSFs in a cyclic box of dimension 2π × 2π × 2π. Our
algorithm for integrating our partial-ingral-differential equations can be developed from the
standard method of CFD. As can be seen from the governing equations, particularly (1a), of
RSF dynamics established in the above, the first part involves the familiar discretization and
computation of the compressible Navier-Stokes quation, in which, as mentioned, the wisdom
is that the conservative Eq. (8), where Eq. (1), instead of (1a), is appropriate for use in the
case of high speed flows with shocks needed to be captured accurately [14]: Eqs. (16 and
1a) are not in the conservative form. The latter can be directly used for discretizing and
integrating weakly compressible flows [13] but in general do not quite satisfy our interests of
the flows also involving (strong) shocks. So, we need a combination of the two methodologies,
both appear to be most conveniently realized by the mature high-order finite difference
schemes, such as the compact and weighted essentially non-oscillator (WENO) schemes [17]
used in various relevant studies [18–21].

Our strategy is to compute Eqs. (16 and 1a) in an actually-conservative way, in the sense
that the 0rhs of Eq. (16) is computed from the 0RHS of Eq. (1), simply by (ln ρ),t = ρ,t/ρ.
u can also be used as the primitive variable but integrated in such an actually-convervative
method (see below). Since the transformation (dividing by ρ) involves only the local variable
without derivative and ρ is nonvanishing (we won’t study the problem with vacuum in this
note, as said), neither accuracy loss nor singular issue will arise.

With such a strategy, the second part then can be performed, after the (actually-
conservative) fluxes are computed, with the spatial averaging operators defined in Eq.
(14). Higher-order time accuracy, such as the Runge-Kutta methods, then can be applied
for (explicit) time marching, completing the implemention of a semi-analytical algorithm.
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We remark that in principle Eqs. (1a, 1b- and 1c) completely defines the 2C2Dcw1C3D
flow without the necessity of imposing other precise analytical relations derived in the last
section. However, due to numerical errors in computing uh with Eq. (1b-) or obtaining uh

through uh = ρuh/ρ from the computation of the conservative Eq. (8), i.e., the second and
third components of (8 and 9), it is practically needed to impose, say, Eq. (2) which reads
in terms of computation

uh = ⟨uh⟩3, . (1b+)

We will come back to this point in Sec. III B.

III. THE PHYSICAL PROBLEM AND NUMERICAL METHODS

As said in the introductory discussions, the local structure of a general flow is of RSF
up to an O(3) transformation of the coordinates in the neighborhood of a point, which
is at the second-order accuracy with respect to the size of the local domain, because the
velocity gradient involves the first-order spatial derivatives of the velocity. This is very
much resembling the situation in the classical general relativity concerning the local inertial
frame in which a (strong) equivalence principle is introduced. What’s more, the formal fast-
rotating limit, i.e., the compressible Taylor-Proudman theorem, corresponds to an RSF.
Thus, it appears that there is every reason to explore fundamental problems of such flows.
Indeed, it is speculated in Ref. [6] that the knowledge of RSF may provide the basis of
the ‘strong equivalence principle’ to describe the general turbulence. Thus, systematic and
extensive numerical investigations of RSF, turbulence or not, are promising, which requires
a proof of concept with definite physical problem and numerical solution, as is the purpose
of this section.

A most fundamental problem in fluid turbulence is the development of multi-scale struc-
tures and small-scale dissipation, associated to the singularities (complex or real). A
paradigm has been studying the evolution of the so-called Taylor-Green field (TGF) [1] and
Orszag-Tang field (OTF) [22]. Indeed, much further has been carried forward along this
way for incompressible (e.g., Refs. [7] and [23], respectively for TGF and OTF) and also
compressible flows, for the latter of which it has even been proposed as the ‘benchmark’ case
for numerical methods (e.g., Ref. [9] and [24], respectively for TGF and OTF). The OTF
studies have been also carried out in 3D magnetohydrodynamics (MHD) (e.g., Refs. [25]).
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Actually, though our studies may be extended to plasma flows [6], we shall restrict ourselves
in the neutral gas. And, corresponding to OTF, actually, as we shall see, it appears more
precise to consider the Arnold-Beltrami-Childress flow (ABCF: [26]).

We will freely apply the correpondences x ↔ x1, y ↔ x2 and z ↔ x3 for historical reason
associated to TGF and ABCF, and ω denotes the vorticity of the velocity field.

A. The physical problems

The TGF (after appropriate normalizations and reparameterization with a rotation angle
θ [7]) and ABCF read, respectively,

TGFu =


sin(θ+2π/3)√

3
sinx cos y cos z

sin(θ−2π/3)√
3

cosx sin y cos z
sin θ√

3
cosx cos y sin z

 , ABCFu =


A sin z +B cos y
C sinx+ A cos z
B sin y + C cosx

 , (19)

where OTF (with an extra uz component) corresponds to A = 0, B = 1 (with y replaced by
y + π/2) and C = 1.

Before proceeding, it is better putting some terminologies in to the following

Definition 1 A vector field v is ‘purely helical’ if each of the Fourier component v̂(k) =∫ ∫ ∫
v exp{−îx · v}d3x is a ‘helical mode’, the latter meaning that îk × v̂ = ±kv̂ with

î2 = −1. The + and − signs are usually asigned respectively to right- and left-handnesses.
And, v is ‘Beltrami’ if ∃κ, κ2 > 0, ∇× v = κv.

The local helicity density of TGF vanishes everywhere, TGFω · TGFu = 0, while ABCF is
purely helical, actually ‘Beltrami’[26].

We first remark that the approximate analytical calculations similar to that of Taylor
and Green [1] is formidable, if possible to any degree, for the compressible case, because the
density modes enter and the pressure can not simply be determined by the Poisson equation,
even if initially is. For our RSFs, with the additional precise structures obtainable (see also
Ref. [2] for more), the problem might be more tractable, but definitely nontrivial, and the
numerical studies are highly desirable.
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1. 2C2Dcw1C3D

We first consider the TGF fashion RSF velocity

u =


cosx sin y

− sinx cos y
sinx sin y cos z

 . (20)

It appears in Fig. 2 for the field pattern that the isosurfaces of small-amplitide vorticity are
highly three dimensional while those of high amplitude are only weakly depending on z.

u is already fully 2C2Dcw1C3D, thus the simplest initial density can just be uniform
ρ(t0) = 1. We can of course also compute from the isothermal relation the one corresponding
to which the pressure gradient balances the ‘parallel’ (to wavevector) component of the
nonlinear advection term, as is usually done in TGF-relevant studies: such balance however,
unlike in the incompressible flow, is not prereserved, thus no obvious reason for such a choice
in our study. The different initial pressure/density fields will lead to different relaxation at
the very beginning and probably much later on, here we however shall not digress into such
studies but only focus on issues related to the proof of concept, such as the differences
between two viscosity models, one being of the incompressible flow, while the other being
Stokesian with the dilatation effect (but without the ‘second viscosity’).

FIG. 2: The vorticity strength slices and isosurfaces (0.7 and 1.9 in the left panel, and, 0.1
and 1.9 in the right one), and, velocity (left) and vorticity (right) streamlines.
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Nevertheless, the problem of flow compressibility difference between CBF and aCBF
remarked in the introductory discussions should not be neglected, thus comes the issue of
‘fair comparison’: when we have CBF and aCBF with the same transversal and parallel
(to wavevector) energies, and, the same density field, among others, the initial acceleration
fields (or the ‘impulses’) are different, and vise versa. Thus, absolutely ‘fair’ comparison
is in general impossible, and what can be pursued is to be essentially fair in exposing the
different physical consequences. We will come back to this point in Sec. III A 2 for the fields
related to the following helical decomposition.

The local helicity density ω · u = 0 for u in Eq. (20). We then can compute the purely
helical, say, the right-handed Ru from the standard helical decomposition of the Fourier
coefficients ([27, 28]: explicit formula given in Sec. III A 2), but, unfortunately, such Ru

is not an RSF. It is of course easy to design helical but not purely helical RSFs, with
the freedom of uz with z dependence. For purely helical RSF, we have to turn to the field
independent of the vertical coordinate z, that is a three-component-two-dimensional (3C2D)
velocity, due to the following

Theorem 1 A 2C2Dcw1C3D but not 3C2D flow can not be ‘purely helical’.

Proof. uh,3 = 0 means û1(k) = û2(k) = 0 ∀ k3 ̸= 0. The helical, say, without loss of
generality, the right-handed Fourier mode ûh, satisfies however, e.g., î(k1û2 − k2û1) = kû3

by definition 1, and contradiction results if k3û3(k) ̸= 0 for k3 ̸= 0. □
In other words, a purely helical 2C2Dcw1C3D flow must be 3C2D which satisfies our purpose

here. And, ABCF in Eq. (19) with A = 0 but BC ̸= 0 is purely helical 3C2D RSF.

2. 3C2D

To have a comparison between purely neutral (with right- and left-handed sectors exactly
balanced) and purely helical RSF initial fields, we then consider

u =


cosx sin y

− sinx cos y
sinx sin y

 , Ru =


1
2

(√
2 cosx sin y + sinx cos y

)
1
2

(
−
√
2 sinx cos y − cosx sin y

)
1
2

(√
2 sinx sin y − 2 cosx cos y

)
 . (21)

In the above, Ru is computed from the helical decomposition of Fourier coefficients [27, 28],
Rû = (û+ îk × û/k)/

√
2, (22)
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of the incompressible u, representing the purely right-handed helical sector. The reason we
do this is because, just like TGF, here (∇×u) ·u = 0. We will compare the evolutions from
such fields, both augmented with, say,

ρ(t0) = ρ0(1 + ϵ cos z) (23)

where ρ0 (= 1 here) is the reference density and 1 > |ϵ| ̸= 0. The pressure p = c2ρ then will
drive the isothermal flow to be 2C2Dcw1C3D during which small eddies are produced.

Both velocities are incompressible and
∫ 2π

0

∫ 2π

0
u2 dxdy =

∫ 2π

0

∫ 2π

0
Ru

2
dxdy, for which, in

Eq. (22), we have particularly replaced the factor 1/2 in the stardard formular [27, 28] with
1/
√
2. However, the two chiral sectors of vorticities of u can cancel, leading to much smaller

minimum (≈ 0) of |∇ × u| than that of the purely helical sector (≈ 1.4), while the maxima
of the former (2.0) is larger (due to mutual enhancement) than the latter (≈ 1.0, in Fig. 3),
which already indicates the insufficiency or incompleteness of the traditional terminology in
compressible or aeroacoustic turbulence context [11] of ‘vortical’ or ‘shear’ mode (compared
to the dilational/compressive mode, c.f., Ref. [32] and references therein). Fig. 3 compares
the vorticity strength and velocity streamlines of the two initial fields, showing the different
flow patterns, though the vorticity strength patterns look similar (with strong quantitative
distinction). Also presented in the right pannel is the computed helicity density and the
vorticity-streamline pattern: it looks the same as the middle panel, because Ru is a Baltrami
field due to the fact that the two modes of u has the same wavelength k =

√
2. For more

details, this Beltrami field satisfies ∇×u = ku, and actually, corresponding to the maximum
and minimum figures of vorticity amplitudes given in the above, the maximum of helicty is
indeed 1.412/

√
2 ≈ 1.41 while the minimum, again indeed, (1.0)2/

√
2 ≈ 0.71 [the maxima

and minima given the legends for contours are in general close to but not exactly the actual
ones]. In other words, we already have the OTF- or ABC-fashion initial field given in the
second half of Eq. (19) to which only a variable tranformation is needed from the second
half of Eq. (21).

The above set up of CBF and aCBF appear to be good for comparing the evolution of
compressibility. The initial acceleration fields and the changing rates of velocity divergence
are in general different, from the beginning to the end (when ‘everything’ is transformed into
thermal motions by viscosity), resulting in the physical conclusions in Sec. IV B consistent
with the ‘fastening’ notion [6]. In other words, it is, in a sense, appropriate to conclude
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FIG. 3: The vorticity strength (|∇ × u|) slices and isosurfaces and, velocity streamlines of
u (left) and Ru (middle), the slices, isosurfaces, helicity density and vorticity streamlines

of the latter is also presented in the right pannel (exactly the same/isomorphic to the
middle pannel due to the Beltramity).

the ‘unfair/different’ consequences from essentially fair physical conditions for dynamical
analysis. Similarly is the situation with random initial fields and/or forcing, in which case it
is obvious impossible to have many details to be the same, except for the relevant statistics,
for an essentially fair comparison of turbulence. Detailed discussions of the latter however
belong to another communication.

B. Numerical method

As remarked in the end of Sec. II C, the problems in Sec. III A with initial data of RSF
should be solved with the equations established there. However, though the problem and
mathematical description are already complete, the standard CFD procedure and the RSF-
specialization, such as the extra imposition of Eq. (2), actually contain important technical
details in the numerical method and need further clarification.

1. The standard CFD part

In the numerical implementation, the first part, as mentioned in Sec. II C, for our purpose
can in principle any suitable standard CFD method, in the prodecure of which Eq. (8) is
normalized by the characteristic length ℓ∗, velocity u∗, time L/U , density ρ∗, temperature T ∗,
pressure ρ∗RT ∗, kinetic energy ρ∗U2, sound speed c∗ =

√
γRT ∗, dynamic viscosity µ∗, and
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heat conductivity coefficient κ∗. The normalization results in non-dimensional parameters,
including the Reynolds number Re := ρ∗UL/µ∗, Mach number Ma := U/c∗, Prandtl number
Pr := µ∗Cp/κ

∗, and adiabatic exponent of gas γ, and total energy now reads

E =
p

(γ − 1)γMa2
+

1

2
ρujuj. (24)

Our isothermal case simply corresponds to that with unit value of T . We solved the nondi-
mensionalized equation with various initial parameters with, for instance, the Mach number
Ma ranging from 0.1 to 2.0 for various tests and checks, but here only the simulations in
a cube of dimension 2π resolved with 1283 uniform grids for γ = 1.4, Pr = 0.7, Re = 450

and Ma = 1 are reported, as the proof of concept. More detailed and specific studies of
(complex) singularities, fully developed turbulence with random structures, among others
which may require higher resolution and precision, and, even other approaches such as the
pseudo-spectral method [29], are beyond the scope of this communication.

In the RSF solver for these specific computations, assembling of the conservation and
nonconservation forms of the Navier–Stokes equation has been made. In particular, the
equation for the logarithmic of density for time marching with its right-hand side however
is computed from the method using the conservative form in terms of density itself. Using
the logarithmic of density is a must for RSF as already indicated earlier and will be further
explained below, while using the conservative form for discretization is to capture the shocks
well [14]. Specifically for the finite-difference schemes, the viscous terms are discretized by
the compact eighth-order finite difference scheme and the convective terms are discretized
by the seventh-order weighted essentially non-oscillatory (WENO) schemes [20, 21]. The
time integration is advanced by the third–order total variation diminishing Runge-–Kutta
method [30].

2. The second RSF-specialization part

Some more important details of the second RSF-specialization part follow: with

hRHS = (ρuh),t = ρuh,t + ρtuh = ρ hrhs + 0rhs uh (25)

and 0rhs = 0RHS/ρ defined in Eq. (16), we have

uh,t =
hrhs =

[
hRHS − uh

0RHS/ρ
]
/ρ. (26)
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Given Eqs. (1a and 1b-) and the initial RSF data, the RSF evolution is mathematically
assured, however, with hRHS, 0RHS and ρ containing the z-dependence not numerically
cleanly removed as in Eq. (1a), the computation of hrhs in Eq. (26) needs clearing up the
z-dependent errors. Thus, according to Eq. (1b+) and the interchangeability of the order
of time derivative and spatial averaging, we should in stead compute

uh,t = ⟨(ρ hRHS − 0RHS uh)/ρ
2⟩3. (1b)

That is, the ‘numerically complete’ governing equations are (1a,1b and 1c), and solving such
a system with whatever numerical discretization scheme may be considered as the ‘semi-
analytical’ method, in the sense that the uh,3 ≡ 0 property is automatically satisfied by the
self-consistent dynamical equations and the errors from whatever numerical discretizations
and integrations in this repspect is cleanly removed, up to the computer roundoff. Since it
is purely the purpose of removing the numerical errors to perform (i) the computation of
Eq. (1b), i.e., additional spatial averages over Eq. (26) and (ii) that imposing Eq. (1b+)
after computing uh from hU in Eq. (8) mentioned in the end of Sec. II C, there should be
no difference between the latter two approaches, as indeed verified by numerical tests. For
the current purpose of the problems set up in Sec. III A, the computation of (ii) is actually
more economy, with less spacial averaging or Fourier mode truncation.

Simply imposing the extra Eq. (1b+) in each step of solving the original, say, the
conservative-form Eq. (8), in the standard CFD may not be considered as completely
‘wrong’ but should be regarded only a ‘primitive’ or ‘zeroth order’ scheme (which is possible
to be improved with other techniques such as the dual-time stepping method [3]). Such a
‘naive’ treatment does not take the self-consistent RSF dynamics with the accompanying
precise structures in Sec. II B (see more in Ref. [2]) into account. Since the response time
to the operation (1b+) is finite, characterized in general by the sound speed c, it is hard to
estimate the errors. Numerical experiments were performed with such ‘zeroth order’ algo-
rithm against the ‘semi-analytical’ one, showing that the former leads to inaccurate results
with growing errors from the inconsistent response between the density/pressure and the
imposed Eq. (1b+): Fig. 4 constrasts the typical structures of ∂x(ln ρ) and ∂2

xz(ln ρ) result-
ing from the two algorithms at some early stage of the simulations, showing that the ‘zeroth
order’ algorithm is poorly in accord with the precise result, ∂2

hz(ln ρ) = 0, of RSF and that
‘semi-analytical’ is precise (up to the pure ‘noise’ of numerical errors from discretization and
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computer round off): the structures of ∂x(ln ρ) from the former present obviously visiably
deviatiations from perfect vertical ‘bars’ as those from the latter, and the difference of the
errors in this respect is of 15 orders of magnitude, as indicated by the legends. Comparisons
of ∂y(ln ρ) and ∂2

yz(ln ρ) is of similar character and not shown.

FIG. 4: Snapshots of the isosurfaces and contours (transluency) of ∂x(ln ρ) (left) and
∂2
xz(ln ρ) (right) for the ‘zeroth order’ algorithm (upper) and the ‘semi-analytical’
algorithm (lower) from test simulations of inviscid RSF starting from Eq. (20).

IV. RESULTS

In this section we present the solutions to the physical problems formulated in Sec. III A.
The focuses are on the differences between production of small eddies from helical and
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nonhelical TGF-fashion initial fields, and on the differences between the viscosity models,
(6 and 5). A comparion between RSF and the Navier-Stokes flow (NSF) is also made.

All simulations were performed with initial Re = 350 and Ma = 1.

A. Multi-scale excitations of RSF eddies from 2C2Dcw1C3D initial fields

First of all, since the flow is completely new in the sense of realizations (in silico), we
present in Fig. 5 for general conception the comparison of the fields at the very early time
t = 0.3 between RSF and NSF starting from the same field of Eq. (20) and Fig. 1 at
t = 0, showing very different evolution routes. Obviously, NSF immediately generates 3D
uh, together with other differences to RSF.

To see the differences when the systems maturize with ‘fully developed’ multi-scale ex-
citations, we also present in Fig. 6 the NSF fields and spectra at t = 5 (left and middle
panels) for comparison:

E(k) :=
∑
|k|=k

|û(k)|2, vEv(kv) :=

kh∑
|k3|=kv

|û3(k)|2 and hEh(kh) :=

k3∑
|kh|=kh

|ûh(k)|2 (27)

where kh := {k1, k2} which can be ‘trivially’ extended to be a 3-space vector {k1, k2, 0}.
Actually, we notice that at such a moment the system has not really reached the ‘mature’
state, with an approximate k−5/3 (which is generally referred to the Kolmogorov 1941 – K41
– law [31]) scaling in the potentially inertial range, which happens at t = 6 as shown by the
right panel: It appears that all NSF spectra maturize (approximately) to the k−5/3 law in
the potentially inertial range where large-scale forcing (if exists) and small-scale damping
effects are neglegible. Although multi-scale excitations present and the spectra appear like
those of the conventional turbulence, we note that obvious order represented by the ‘precise’
(up to numerical errors) symmetry of the pattern inhereted and developed from the original
field is in the flow. Such a characteristic, shared by all the results presented in this note,
is not that of ‘statistical symmetry’ in the conventional (multi-)fractal or fully developed
turbulence theory [31]. This observation also means that it makes sense to compare the
definite flow structures of our simulations at the same moment. We will nevertheless keep
making remarks related to ‘turbulence’ during the discussions of our results, and we believe
they indeed are relevant.

18



RSF NSF

ρ
u
1

u
2

u
3

FIG. 5: Contours of the primitive variables ρ, u1, u2 and u3 at t = 0.3, for NSF and RSF.
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FIG. 6: Isosurfaces, slices of vorticity amplitude and streamtraces of vorticity (left), and,
the power spectra of velocity (middle) of NSF at t = 5. Also presented are the

corresponding spectra at t = 6 (modes of noninteger k are always grouped to the nearest
integer shell, thus those of k =

√
2 are counted on the first shell, if not particularly pointed

out as in a figure below). Dashed lines denoting k−5/3 law are for reference.

Very differently, as shown in Fig. 7 (the power spectra and fields correspond in the
two upper rows for three different simulations for the same flow, respectively, to those of
Fig. 6), RSF runs into a completely different state, both in terms of patterns and ve-
locity power spectra. The three columns are respectively from three different simulations
with band-optimized symmetric WENO (WENO-SYMBO [21]: left) and WENO-Z ([20]:
middle) for the RSF with Stokesian viscosity without the compressibility effect, and, with
WENO-SYMBO for the RSF with full Stokesian viscosity. These results indicate on the
one hand that the differences from the details of the different numerical schemes are small
and irrelevant to our discussions, and, on the other hand, our semi-analytical algorithm,
though precise (up to the numerical errors) only for the simplified viscosity, is actually very
close and physically relevant to the ‘real’ Stokesian one. In other words, our algorithm is
‘precise’ also for the Stokesian viscosity, up to the errors of the applied numerical schemes
which have already paid particularly attentions to the numerical dissipation problem with
reasonable success.

Also presented in the lowest row of Fig. 7 are the density isosurfaces and slices, for which,
just as in the figures for spectra, regions are circled out to highlight the tiny differences in
the patterns. Such differences from numerical schemes or physical viscosity models are
negligible for both verification of our algorithm and discussions of our results, such as the
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FIG. 7: Slices and isosurfaces (of values 0.7 and 1.7) of density at t = 5, showing tiny
differences from different numerical schemes. Actually, the WENO-SYMBO (left) produces
maximum 0.532881 and minimum 1.82369, while WENO-Z (middle) 0.532842 and 1.81667,

a difference smaller than 0.4%. On the right panel, we also present the corresponding
result from the Stokesian model simulated with the same strategy and algorithm described
in Sec II C and the WENO-SYMBO finite difference scheme, and, again, only very small

difference can be seen, with the maximum 0.53096 and minimum 1.82017, roughly of errors
2% ∼ 4%. Dashed lines denoting for k−5/3 and k−3 laws in the top panels are also plotted
for references, and some cirles are used to highlighted the regions where one can see the

small differences.
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general features of RSFs and the specific effects of helicity.

Before going into the even more specific discussions on the helicity effects on RSF multi-
scale excitations of RSF eddies, we remark that although the RSF E(k) appears to also
maturize into a (approximately) k−5/3 scaling law (designated with a slashed line) in the
potentially inertial range, the vertical spectrum of vertical velocity vEv(kv) does not. The
latter appearing to be k−3 (also designated with a slashed line), as will be further addressed.

B. Multi-scale excitations of RSF eddies from 3C2D initial fields

We now turn to compare results from the simulations started from the nonhelical and
purely helical (actually Beltrami with monowavelength) RSFs described by Eqs. (21, both
assisted by 23) with ϵ = 0.35. The viscosity model satisfies Eq. (6).

1. The general spectral dynamics

Before everything, we should point out that, since our initial RSF has wavenumber k =
√
2, counting it on the first or second integer shell, and similarly other modes for other

shells, for plotting the spectrum presents different results. Thus, when interpreting our
results, especially for small k, we should always be careful about this, which is the reason
we have plotted the results with two different ways, one in Fig. 8 with such modes on the
second shell (and similarly for others for which the issue is less critical with larger k) and
the other (for all the other plots in the work) with these modes counted on the first shell.

Since the field can be decomposed into left-, right- and nill-handed modes corresponding
to the eigenvalues −k, +k and 0 of the curl operator, îk× in the Fourier space (see also
the representation with Craya-Herring-Cambon coordinate [33]), it is natural to look first
at the spectral behaviors of such sectors in Fig. 8, for which we define left- and righ-handed
spectra

EL :=
∑
|k|=k

|Lû(k)|2 and ER :=
∑
|k|=k

|Rû(k)|2 (28)

from which we can compute the spectra of the nill-handed (parallel/potential) mode and
helicity

P (k) = E − EL− ER and H(k) = k(ER− EL). (29)
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FIG. 8: The velocity, its left-, right-handed and parallel eigenmode power spectra E(k),
EL(k), ER(k) and P (k) at different times for the helical and nonhelical cases, together

with the Kolmogorov scaling law (“K41”) for reference in some plots.

The two rows above the shaded box containing time labels for each column are for the results
from helical RSF, and those below for the nonhelical case. The total spectrum E(k) and the
K41 k−5/3 law are also plotted for reference. Note that in the last row the helicity spectra
are zero (up to the numerical errors) and not visible in the windows of the layouts.

We observe i) the early excitation of modes by the initial ones (t = 0.2), ii) most available
modes being well excited but still far from the “equilibrium” (t = 2: the velocity spectrum
is approaching but obviously not close to the K41 law), iii) premature “equilibrium” state
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with inertial and dissipation ranges almost but not yet established very well (t = 4) and iv)
the mature equilibrium state with all excitation established as possible and the dissipation
having been systematically reducing the whole level of spectrum (t = 6). After t = 6,
the system is going towards the so-called ‘late-time’ decaying regime which is not of our
interest here. As mentioned, the initial-field modes are of wavenumber k =

√
2, but for the

presentation of spectra, they are counted in the k = 2 shell here. We should focus on the
activities of the modes beyond this ‘thermal bath’ shell (remember that the z-coordinate
dependence are originally driven by the density/pressure gradient along this direction).
Note also that we have adopted the scenario and terminology for turbulence and based our
choices and remarks on the emperical observations and judgement, although the system still
presents highly precise order, especially the symmetries in the patterns (see below). There
has not been a rigorous theory [31] for the inertial scaling law such as the K41 one, not
even a consensus on the complete definition of turbulence, but we just chose a ‘pragmatism’
standpoint for the purpose of describing the multi-scale eddies in the above.

It is seen in Fig. 8 that the right-handed initial RSF evolves into that with all three
sectors, but ER keeps dominating the energetic behavior, especially before entering the dis-
sipation scales (where the amplitudes of left- and right-handed modes are relatively closer),
with H(k) being positive definite; while, the nill-handed initial RSF keep nill-handed, never
loosing the symmetry as time goes.

Interestingly, the parallel modes of the helical case are less excited, both in the absolute
and relative senses, the ratio P (k)/E(k) for the relative value being simply measured by the
vertical distance between the two spectral lines in the logarithmic coordinates for the plots
[easily observable with bare eyes by comparing the areas between the lines of P (k) and E(k)],
except for the first two shells at t = 6, which is consistent with the mechanical/geometrical
and statistical analyses, and, the ‘fastening’ notion proposed earlier [6]: the gravest modes
of k = 2 counted on the second shell serve as the ‘source’, of energy and helicity, for the
other modes, thus the time variations of the modes on it and the nearest shells may need
additional theoretical considerations.

Since RSF is apparently anisotropic, the above general 1D spectral analysis is of course
not complete, as already indicated in Sec. IV A, and more specific spectral results will be
analyzed in Sec. IV B 3 before which we would like to present the general patterns of such
RSF evolutions.
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2. The general flow patterns

Fig. 9 presents the evolutions of density contours for the helical and nonhelical RSFs,
showing consistently, with the previous spectral observation, especially the compressibility-
relevant parallel-mode spectra, that, over all, the density-modes are less excited. Especially,
the nonhelical case can have the maximum and minimum values far beyond the initial ones,
indicating the production of strong expansion regions and compression (probably shocks),
which will be further examined:

We now focus on the moment at t = 6, when the snapshots of the isosurfaces and slices of
ρ and |∇ρ| are captured in Fig 10: the high(est) density regions are in general accompanied
with the stong(est) gradients at almost, but not exactly, the same places, thus demonstrating
the shocks with the isothermal density being essentially the pressure. The nonhelical case
presents much stronger shocks with much more sharply 2D structures. In Fig. 11, we zoom
in close to the strong gradient regions, rotate the axis for better observation, and plot the
rakes of velocity streamtraces, showing that the nonhelical case indeed presents (almost) 2D
surface of shock with abrupt deflection of the streamlines across it and that the helical case
prsents a much thicker spatial domain accrossing which the streamlines, also oblique, do not
present any obvious deflection (thus not close to a real shock). The shocks are clearly seen
to be much less space occupying, an indication of (strong) spatial intermittency, and most of
the space are occupied by expansion regions with density close to the background value and
low weak gradients. The stronger/more intermittent the shocks are, the more space weak
|∇ρ| occupies. Note that, though rationally natural, the conjecture and remarks relevant
to shocks in Ref. [6] went much beyond the arguments supporting the analysis made there:
the analytical tractability of the statistical mechanical calculation required weak excitation
assumption and that of geometrical analysis took the inviscid limit. Thus, the results about
shocks presented here is not only an obvious support but also a strong indication of a more
systematic theory behind it.

We have explained in Sec. III A that the helical initial field is Beltrami, thus its u- and
ω-streamtrace patterns are exactly the same as presented there. Here, although, the helical
case is not Beltrami, actually not even purely helical (homochiral), any more as time goes,
the vorticity- and velocity-streamtrace patterns in the helical case, unlike the nonhelical one,
look still quite similar in Fig. 10, at least at large scales, except for some small-scale details,
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FIG. 10: Patterns at t = 6.
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FIG. 11: Velocity Streamtraces across the strong density gradient regions for the helical
(left) and nonhelical (right) cases.

which should not be surprising, because, as shown in Fig 8, at each moment, most of the
helicity is concentrated on the k = 2 shell where the right-handed and left-hand energies
are of a difference of (more than) three orders of magnitude, thus basically homochiral and
Beltrami. The corresponding nonhelical patterns, in contrast, do not have such properties.

Note that, although RSF allows the x3 dependence of u3, which, however, in the classical
setting is of the ‘parallel mode’ nature and in most spatial regions, as indicated by the
above density discussion, should be small. Thus, RSF in general appear over all much of 2D
characteristic. One can start with an RSF of very large u3,3, in which case u3, compared to
uh, will also be subjected to an additional damping operator ν∂2

33 according to the viscosity
model (6) and eventually will be weaker.

3. More specific analyses

As remarked, RSF is by definition anisotropic, and the patterns of some quantities such
as the u streamlines and those related to the density presented in Sec. IV B 2 appear to be
quite of 2D character though in principle can be 3D. Thus, the general spectral dynamics
presented in Sec. IV B 1 are not specific enough to describe RSFs, and according to RSF
nature and our initial data we will look more into the details of the anisotropic properties.
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FIG. 12: The horizontal energy and divergence spectra, and, the vertical divergence
spectra. Kolmogorov scaling law denoted by straight lines are also added to some plots for

reference.

First of all, since the RSF uh is 2D, depending only on the horizontal wave vector kh, we
should examine the relevant spectra in terms of kh. Fig. 12 presents the ‘horizontal spectra’,
corresponding to the results discussed in Secs. IV B 2 and IV B 1,

Eh(kh) :=
∑
|kh|=kh

|ûh(kh)|2 and Dh(kh) :=
∑
|kh|=kh

|ûh(kh) · kh|2, (30)

which measure the ‘power’ of the fluctuations of, respectively, uh and ∇h · uh on each
horizontal wave number kh. [Note that the modes with k3 ̸= 0 for uh are truncated by the
definition of RSF.] Compared to the comparisons for the helical and nonhelical cases in Fig.
8, it is seen that here the uh small eddies are even more markedly less excited: while E(k)

there nearly reaches a ∝ k−5/3 state at t = 6 in the ‘potentially inertial’ range (roughly for
2 < k < 10), here Eh(kh) is much steeper, as can be seen by the thin solid black line denoting
∝ k−3 and added for reference. Dh(kh) also shows that horizontal small eddies are much
less compressible. These horizontal behaviors are in sharp contrast with the nonhelical case
where thin black lines denoting ∝ k−5/3 are added to the plots at t = 4 and t = 6. The
vertical divergence spectrum

Dv(kh) :=
∑

|kh|=kh,k3

k2
3|û3(kh, k3)|2 (31)
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also appears to be slightly affected by the helicity, but much less than Eh(kh) and Dh(kh).
Although such reduction of horizontal compressibility appears to be consistent with an
argument given in Ref. [6], of boosting to a rotating frame in which the helicity vanishes
and thus transforming the helicity effect to the rotation effect (Taylor-Proudman effect of
reducing compressibility in the rotating plane), the additional detailed observations, such
as the Eh(kh) spectral behavior, deserve further theoretical consideration according to the
dynamics. [A consistent consideration of ‘compressibility’ involves normalization, say, by
the enstrophy or total spectrum: c.f., the remark for Fig. 8 on the relative reduction of
P (k).] Here, we offer a possible theoretical scenario in the context of turbulence as follows.

The uh dynamics in the isothermal RSF model used in our simulations is controlled by
Eq. (1b-) which is almost autonomous except that the pressure gradient is coupled to the
rest of the system through the density. Now, if the pressure gradient is assumed to be
decomposed into two parts, one corresponding to that in the incompressible 2D flow (thus
solving the Poisson equation with the source being the divergence of the nonlinear term)
and the other being externally affected and serving as the pump for uh. If the pumping is
concentrating at some large scales and the uh is approximately incompressible, a forward
enstrophy transfer together with an Eh spectrum ∝ k−3h (with logarithmic correction) is then
the well-tested incompressible 2D turbulence theoretical result [34]. In other words, the rest
of the system may offer an environment of external nonlocal-transfer channels while still
facilitating a genuine internal local direct transfers of the 2D incompressible flow nature.
How Eq. (1b-) couples with the rest of the system can be very subtle due to the multi-scale
and nonlocal nature of pressure/density fluctuations, and the characteristics at t = 6 in
Fig. 12 for the helical case is of course not yet clear and clean enough; and, much more
systematic investigations with general initial fields, including an ensemble of random ones,
other than the specific one we treated here are needed to test such a speculation.

We then present in Fig. 13 the spectra of uv := u3, as functions of k, kh and kv,

Ev(k) :=
∑
k=|k|

|ûv|2

2
, hEv(kh) :=

∑
k3,kh=|kh|

|ûv|2

2
and vEv(kv) :=

∑
kh,kv=k3

|ûv|2

2
, (32)

which characterize the distributions and variations of, respectively, the vertical velocity, uv,
eddies in full 3D space, in the horizontal plane and along the vertical coordinate. We now see
that the u3 dynamics are not so much different for the helical and nonhelical cases as for uh.
Especially, the vEv(kv) behaviors are very close, both presenting a quite clean ∝ k−3 law at
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large scales (thin lines of such a scaling are added to the plot for reference), and only at t = 6

the helical vEv(kv) is at a slightly higher level (while those of Ev(k) and hEv(kh), both being
close, are lower, beyond the first shell). Reference lines of ∝ k−5/3 are also added to the
plots, denoting the possible (approximate) behaviors of Ev(k) and hEv(kh) in the potential
inertial range: just as before, doing this, we by no means indicate the precise results in the
asymptotic inertial range, with or without corrections from intermittency or other physical
reasons. No strong theoretical suggestion, relevant to passive scalar or acoustics, is offered
for the k−3 scaling either. We believe these results, though coming only from the very specific
initial fields, are fundamental and important, with no available directly relevant theory for
explanation, to our best knowledge, and should be simply presented for information and
motivation.
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FIG. 13: The velocity spectra Ev, hEv(kh) and vEv(kv). Thin straight lines for laws
∝ k−5/3 and ∝ k−3 are added to some of the plots for reference.

V. FURTHER DISCUSSIONS

RSF being new and anisotropic, many more results can be still of some value to be
demonstrated. For example, we may analyze the vertical and horizontal helicity, dissipation
and density spectra, and, also the anisotropic higher-order structure functions of various
variables. We may also analyze the longer (late) time evolution, such as the anisotropic
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decaying rates, the homogeneization processes, and so on and so forth. However, to make
all that more meaningful, we also need more mathematics and theory, as some of the results
presented here already call for. Thus, it is important to leave some space for thought
experiments and excursions here, before which let us summarize what have been reaped and
what should be the stratigic direction:

We have formulated the numerical RSF problem and showed that the precise analytical
results of RSF established in Ref. [2] can be used to design effective semi-analytical algorithm
for simulation. Explicit physical problems of the TGF and ABCF fashions have been created
for proof-of-concept examples. The numerical results demonstrated the evolution of RSF
distinct from that of NSF, the excitation of multi-scale RSF small eddies. Recent theoretical
arguments and conjectures about the helicity effect on reducing the compressibility of the
flow have been tested, and actually extended in a firm way. The differences from different
numerical discretization schemes are shown to be so small that they are irrelevant to the
general conclusions about the production of small eddies and the helicity effects.

It is promising to further apply the algorithm to carry out the studies of RSF turbulence,
forced or decaying, with other possibly more precise methods (such as the pseudo-spectra
one) and higher resolutions, and/or, longer-time simulations developing further from the
results presented here or starting from random fields. Such studies could shedlight on the
passive scalar and rotating flow issues, for the obvious connections of RSF with the Taylor-
Proudman limit.

Further more, the formal compressible Taylor-Proudman theorem [6] requires the incom-
pressibility of uh, thus it is also interesting to extend the algorithm to such flows and to
carry out the numerical studies of such even more special RSFs, turbulent or not.

On the other hand, although it appears in the case presented in Sec. IV B that the
RSF with Stokesian viscosity taking the velocity dilatation into account, simulated with our
semi-analytical algorithm, is also very close to that without the compressibility effect in the
viscosity model, such a situation is not assured for every other case, especially for turbulence
at very high Reynolds numbers and/or very large Mach numbers, and, for other flows (such
as the non-newtonian fluid and quantum flows [35]) beyond the Navier-Stokes framework.
Thus, other effective brute-force algorithms more universally applicable for general RSF
simulations are also desired.

Indeed, for the nonbarotropic RSF, a set of precise relations for the temperature structures
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can also be established [2] and be used to check the errors by measuring the deviations
from them, just as we showed in Fig. 4 for the density structure. Preliminary numerical
experiments show that our algorithm can also simulate such RSFs reasonably well: this is
not like the situation for the ‘zeroth order’ algorithm discussed with that figure, because
our semi-analytical algorithm already ensures the part of the thermodynamic structure and
the difference of the temperature from our algorithm to the precise one in general moderate
cases do not affect the flow too much (part of the reason why the isothermal process can
be a good approximation). Of course, in principle, especially for turbulence at high Re and
Ma where entropy modes are crutial and the fine structures are important for particular
interests or problems, we should have a self-consistent algorithm with such equations like
(1a and 1b) that the relevant errors are completely under control, which deserves further
studies.

To see how interesting and challenging, to our understanding, the open problem we set
out is, let us elaborate a bit by taking some results from Ref. [2]: For an ideal gas with, say,
p = ρRT , Eq. (10) reads

[∇h(ρT )

ρ

]
,3
= 0. (33)

Eq. (33) indicates that ∇h(ρT )
ρ

is a function of only x1 and x2 and should have such separation
of the variables

ρ = r(x3)/R(x1, x2) (34)

that the numerator r and denominator R can cancel the common factor r(x3). In other
words, we have the same structure, especially Eq. (1a), as in the isothermal case. And, by
taking (34) into (33), we further have

T (x1, x2, x3) = T (x1, x2) +R(x1, x2)τ(x3), (35)

where T and τ and other variables are also time dependent. Eq. (35) characterizes the very
fine structures of T , and designing an effective algorithm for it, semi-analytical or brute-
force, appears to be a nontrivial challenge. More definite derivatives from Eq. (35) have also
been offered in Ref. [2], but, here, it is more appropriate to leave the space for imaginations.
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