The Universal Constructions of Heterotic Vacua in
Complex and Hermitian Moduli Superspaces

Boris Stoyanov

DARK MODULI INSTITUTE, Membrane Theory Research Department,
18 King William Street, London, EC4N 7BP, United Kingdom

E-mail: stoyanov@darkmodulinstitute.org

BRANE HEPLAB, Theoretical High Energy Physics Department,
FEast Road, Cambridge, CB1 1BH, United Kingdom

E-mail: stoyanov@braneheplab.org

SUGRA INSTITUTE, 125 Cambridge Park Drive, Suite 301,
Cambridge, 02140, Massachusetts, United States

E-mail: stoyanov@sugrainstitute.org

Abstract

In the present article we construct universal representations of a heterotic vacua in the conditions
of the complex structure and hermitian moduli spaces. We show that it agrees with the results that
have recently been obtained from a ten-dimensional perspective where supersymmetric Minkowski
solutions including the Bianchi identity correspond to an integrable holomorphic structure, with
infinitesimal moduli calculated by its first cohomology. As has recently been noted, interplay of
complex structure and bundle deformations through holomorphic and anomaly constraints can
lead to fewer moduli than may have been expected. We derive a relation between the number of
complex structure and bundle moduli removed from the low energy theory in this way, and give
conditions for there to be no complex structure moduli or bundle moduli remaining in the low
energy theory. The link between Yukawa couplings and obstruction theory is also briefly discussed.



1 Introduction

Heterotic geometry is the geometry associated with the moduli space of a heterotic vacua of
superstring theory. The geometrical background, associated with the vacua, is understood, at
large volume, as R!¥x X, where X is a complex 3-dimensional manifold with vanishing first
Chern class. This geometry is endowed with a holomorphic vector bundle £ — X, admitting a
connection A that satisfies the Hermitian Yang-Mills equations. The metric on the moduli space
of heterotic supergravity metric was computed, correct to O(a') by a dimensional reduction of
heterotic supergravity. This metric has to be Kéahler as a consequence of supersymmetry. It should
not be surprising, therefore, that verifying that the moduli superspace is in fact Kéhler requires
taking into account the relations between H, the connection on the bundle ‘E, and the hermitian
form w on X, since these relations follow from both the anomaly cancellations condition and the
requirement of supersymmetry. The purpose of this article is to show that considering structure
is worthwhile. Before entering into technical matters it may be helpful to indicate why this might
be expected to be the case. To start, consider for example the deformation of a manifold, which
is part of our data. In general relativity one often thinks of a three-geometry that evolves in time.
We think of time as a parameter which governs the evolution. Our aim is to describe the metric on
the space of heterotic vacua. This parameter space geometry, which we term heterotic geometry, is
the generalisation of the special geometry of type II string theory. The heterotic vacua of concern
here derive from compactifying heterotic string theory, at large radius, on R¥!x X, where X is a
smooth complex threefold with vanishing first Chern-class that is endowed with a holomorphic
vector bundle E, that has a connection satisfying the Hermitian—Yang-Mills (HYM) equation
and a gauge invariant three-form H. These quantities satisfy an anomaly condition, that will be
discussed shortly. These vacua are of physical interest since, at low-energies, they realise quasi-
realistic four-dimensional theories of relevance to observable particle physics. These equations
already imply that the moduli space has a recondite character, since the deformations of F', w
and H are intricately related. By contrast to the case of type II vacua, where the roles of the
complex structure parameters and the Kéhler class parameters are strictly separated, there seems
to be no useful distinction, in the heterotic context, between what are conventionally labelled the
complex structure moduli, hermitian moduli and bundle moduli. The deformations of a heterotic
structure, within a given topological class, correspond to the points of the moduli space M, which
is itself a complex manifold. The geometry of the moduli superspaces of these vacua are also
of mathematical interest. The metric on the local moduli space of holomorphic hermitian Yang-
Mills (HYM) bundles E constructed over an arbitrary but fixed complex manifold goes back to
Kobayashi and collaborators. By constructing local coordinates in the spirit of Kodaira-Spencer,
this metric was shown to be Kéhler by Itoh. However, the restriction to a fixed CY manifold
is artificial from the point of view of string theory: the moduli space includes deformations of
X, the gauge-invariant three-form H and the vector bundle £ simultaneously. We call the triple
(X,E, H) a heterotic structure. The present work is complementary to a series of papers, which
describe this heterotic structure and identify the moduli of the vacua with certain cohomology
groups. Within the fibration U lies the fibration of the manifold X over M. This is the natural
context in which to discuss the Ehresmann connection — equivalently, the projection 0 — the
metric g and complex structure J for the extended space. The connection ¢, allows us to restrict



g and J to fibres covariantly and, when this is done, they are identified with the metric ¢ and
complex structure J on X. Furthermore, using 9 we can also project g and J to the moduli space
metric ¢* and complex structure J*. We describe the differential calculus of X and its relation to
deformations. For example, we show that the covariant derivatives are identified as Lie derivatives
acting tensors on X. This leads to an interpretation of deformations with flows on X. We start to
see the profits of our labour. We introduce on X extensions of the connections A and ©, denoted A
and  respectively, which allows to discuss the extended symmetry groups mentioned above. The
fields A and  are holomorphic connections for the vector bundle U — X. Moreover, we define
the extensions of w and H, denoted  and H respectively, and suppose a relation H = d° | as
the extension of the supersymmetry relation. Surprisingly, this relation together with its Bianchi
identity, encapsulate in a simple pair of tensor equations, a set of long and otherwise complicated
equations relating covariant derivatives which were crucial to the derivation of the Kéhler moduli
space metric. This is similar to how the laws of electrodynamics when viewed relativistically are
unified into a simple tensor equation.

2 The Universal Geometry of Heterotic Moduli

The central results of this paper were originally derived with the goal of finding the natural Kéhler
metric on the moduli of heterotic structures. In the broader context of the heterotic superstring we
show how this is extended to the holotypical derivative and how it is interpreted as a connection.
Remarkably, however, we have found they have a natural geometric interpretation when viewed
in the context of what is known as the universal bundle. The salient point is that geometrising
our algebraic structures is a powerful way of viewing the moduli superspace. Finally, we remark
that the same results for the moduli problem of heterotic structures was obtained in the present
literature from first and second order deformations of a heterotic superpotential.

2.1 The extension of A

The covariant derivative for A defined in [1] transforms covariantly under gauge transformations.
It needs to be generalised to transform, additionally, under bundle diffeomorphisms. To do this
we define an extended connection A for the extended vector bundle U — X

A = Amem + Agdya s AFI = Aa - Amcam )

where the components of the corpus A,, are identified with the connection along X. In the
following, we will denote the corpus of A by A = A,,e™ in the e-basis, the animus by A* = Afdy®.
We can divide the form into holomorphic type

A=A-A, 4= A",

We will not be specific about the structure group of the universal bundle U beyond requiring it
contain @ as a subgroup when restricted to X appropriately. This restriction is important in later
sections when we discuss deformations of ZTx.

The form A can be decomposed into its animus and corpus

A = ALdy™ + Az e .



The field strength of A is defined as usual

F = dA+A%. (2.0)
This can be decomposed according to tangibility and in terms of the covariant derivatives B, D*,
respectively
_ it i N2 1 m_n a 1 # ai,b
F=®+b*-9A+A)+(A+ 4% = 5 Fnne™e +dy Fa+§Fabdydy : (2.1)

Let us unpackage each of the three components of F. The corpus is the field strength of A on X,
Fon = 0nA, — 0, A, + AnA, — ALA,, .

The second term defines a covariant derivative that transforms homogeneously under gauge trans-
formations and is invariant under bundle diffeomorphisms:

FI = ©,4, where D,A = e,(A) — (Pc,™) A, — DAY (2.2)
here
DA} = DAY +[A A%,

and

eo(A) = 0,A—c,"0,A .

On a gauge neutral object, D, reduces to D¥.
In holomorphic coordinates, using the identification of A,, we find it is the appropriate gen-
eralisation of the holotypical derivative introduced in [1]:

DA = eo(A) — A Al — T4A"
The third equation of (2.1) is
Fi, = 2Df AL + (AL Al — S ™A, where DEAY = e,(A]) .
We take U to be holomorphic meaning
FO2 = 0.

The corpus of F automatically satisfies this requirement in virtue of F(®? = 0. The tangibility
[1,1] component is the condition that A depend holomorphically on parameters

DsA = 0.

The tangibility [2,0] component implies Fﬁag = 0. That is, that the bundle U restricted to M is
holomorphic. In deducing this we have used S5 = 0.
Consider now the Bianchi identity for F

daF = 0. (2.3)



The corpus realises the Bianchi identity on X. The animus gives two further identities
DA(D,A) = D,F and [0, D)4 = —DA(F’,) + S F, = 0,
where
D4(D,4) = D(D,4) +[A,D.4], D, F = D'F+[ALF],
Da(DpA) = DEL(DpA) + [AL, DyA] DAF:, = DFf, +[AFL].

The relations (2.4) can be derived directly from the definition of the covariant derivative as in [1]
with some labour. What we see here is an alternative derivation through the Bianchi identity.
This also has the advantage of unification, reducing a pair of identities to a single identity.

The Atiyah constraint comes from taking a = « in the first equation of (2.4), and considering
the (0, 2)-component together with the identification of A,:

04(DaA) = AMF, .

2.2 The extension of B and H
The field H is the extension of H, and defined as

Oé\

H = dB— —(CS[A] S ]) . where CS[A] = Tr (A dA + 3A3) , (2.4)
4 3
where B is the extension of the Kalb-Ramond field
1 1
B = S Buneme" + Bf dye™ + §Bib dydy’ = B+B!dy + B .
H decomposes as
1

abe 1t
H = i dy™H;,.

where the [1,2] term will be relevant in what follows. It is given by

1
+§dyabHﬁb+dyaH§+H,

a

\

\
H: =P!B DB} — %(Tr (AEDA) — Tr (@gB@)) + %(Tr (AD,A) — Tt (6 @a@)) . (2.5)
We can now rewrite this in terms of covariant derivatives
a\
H = DB+ (Tr (AD,A) — Tr (0 @a@)) ~ DB | (2.6)
with the covariant derivative ©,B is defined as

D.B = DﬁB—%(Tr(AﬁDA)—Tr(@iD@)) ,

which sharpens the relation derived in [1]. We will see why this is a covariant derivative shortly.
By demanding H be gauge invariant, we see that the field B transforms under gauge transfor-
mations:

BB = B+ - {Tr(YA-Z )+U-W}|. (2.7)
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Given the above relations the field strength H is invariant. As the animus of B transforms inho-
mogeneously, it is inconsistent to try to set it to zero. Here Y, U are the extensions of Y and

U:

1
Y = & 'dd, dU = gTer3 ,
with Z, W being the spin connection counterpart.
The right hand side of (2.6) is the combination of terms identified in [1] as being gauge invariant.
This we now understand since B, = Hf, and H is gauge invariant.
The covariant derivative is defined such that it transforms in a manner parallel to the B-field
itself:

\

@D, B = DB+ % (Tr (Y DA) + Do — Tr (£20,0) — 3a>.
We have also defined
V. = DLU - Tr (YiY?) + b (Tr (YA - AY))) |
3. = PEZ—Te(Z02%) + P (T (200 — 642)) |
Using that the form Y satisfies dY = —Y2, we find that this quantity is D-closed
PY, = 0.

In addition to the gauge transformations above the field strength H is invariant under an
additional symmetry, in which B shifts by a d-exact amount,

B—-B+d |, = B e™ + B dy”
where the one-form is gauge-invariant. Decomposing this into tangibilities we have

B—B+Dj,
B! — B+ D3 —Dpt, (2.8)
Bib — Bib + Diﬁg - Bzﬁﬁg —Sap" Bm -

The first line corresponds to shifting B by a P-exact term. The second line corresponds to shifts
of Bf. The way to think of B! is that it is another connection; its purpose to is define an invariant
quantity B, as in (2.6). This invariance can be checked directly, but an easier way to see this
is to note that H is invariant and so HY = B, is invariant. The quantity B,, mentioned in the
introduction, plays an important role as B, +i19,w plays the role in heterotic geometry analogous
to the role of complexified Kéhler class in special geometry. All this goes to show that the animi
of A and B are connections which are needed to define covariant derivatives on the moduli space.

Although we have not fully explored this aspect, we believe the quantity Bib with the trans-
formation rules as in the third line above, provide connections that enable one to define second
and higher order derivatives. For example, see [1| where a second order covariant derivative was
defined.



2.3 The extension of d‘w

We will shortly have need for the quantity
. 1
d = QJPJQJR(d )POR -
In a holomorphic basis  is (1,1) and so
d = id )@Y —id BV,

The term d° has vanishing [3,0] term due to the fact that gig is Kéhler, while the remaining
components are given by

a ), = 10,0 —iD,w0?
(dc )oz,B == —iSag“w# s (dc ) B = iSaBHwE, (29)
(dc )aE = = isaﬁﬁwﬁ + iSaEH Wy -

Note that the action of the covariant derivative ®, on a gauge neutral object is the same as D
so that D,wP9) = Dﬁw(p"”. In the sections to follow, where no ambiguity will arise we will use
9, to prevent an unnecessary proliferation of symbols.

On setting S = 0 the expression simplifies significantly

d° = i(0- 5)w + idyo‘(@aw(l’l) - @aw(0’2)) + idyg(ggw@’o) — @Ew(l’l)) )
While w is type (1,1), its derivative D, is type (2,1) @ (1,2): Dow = Dow™) +D,w 2 and this
expresses the type changing property of variations with respect to complex structure.

2.4 The relation H = d¢ , Bianchi identity and second order relations

We suppose that the extended supersymmetry relation (3.7) holds on X This imposes some con-
straints on the variations of a heterotic structure. The tangibility [1, 2] part of this relation gives

goa(lo) =0,
B, —iD,w) = 0, (2.10)
B, 02 4+ 19,0 = 0.

We define
Zy = By+10.w, and Z, = B, —iDyw ,

which are the generalisation to heterotic geometry of the variation of the complexified Kahler class
familiar in special geometry 0B + idw. In terms of Z, Z, (2.10) can be written as

2,20 — 7,20 _ g
Z,00 — ¢, (2.11)

z,% = 0.



These equations described first order conditions on the heterotic moduli which were derived in
[13-16] and in this notation in [1] by taking partial derivatives of the supersymmetry relation
H = d°w. We identify B, with b, and note that H = d° captures all of the moduli equations
except one. For the remaining one we turn to the Bianchi identity for dH on X:

a\

dH = = (TrFQ—TrR2> — d(d° ).

The curvatures F and R are of type (1,1) and so only the type (2,2) part of this relation is
non-vanishing.

We start with tangibility [1,3], focusing on holomorphic variation with index a. The first
equality of the previous equation is

(dH), = _%\ (Tr (DaA F) = Tr (Do) R)) .
Meanwhile (dd® ), is simplified using
D(d® ), = iD@D " —Dw’?)
D,.(Pw) = 21A/ (0w), — 210(A" w,) +1(0 —0)Daw
and by using (2.10) we get

\

BZD) = 21AM (Bw), + % (Tr (D0 F) — Tr (D0 R)) . (2.12)
Let us now turn our attention to tangibility [2,2]. Assuming that S = 0, this consists of two
relations
Da(de )p—Dp(d° o = — % (Tr (D AD5A) — Tt (Do 959)) ,
) ) @ + T (2.13)
Da(d )5 —Dp(d® )a = -5 (Tr (Do ADZAT) — Tr (D0 D56 ))
OC\

. <Tr(FiBF) —Tr(RﬁaBR)> .

The second relation forms part of a critical algebraic relation needed to derive the moduli space
metric in [1] and so we focus on this one. It becomes

D,(d° )5 —D5(d° )o = —21(DaD50) " + 2 AF (D50%),, + 21 A57 (D)
+iDa(A5" wy) — iABV(@aw(M))U +iD5(Ad w,) — iAa”(@gw(l’l))u _

The last equation can be simplified by noticing a further relation
Da(A5"wr) — Aﬁﬁ(gaw(l’l))v = (05,3 )wr = 0,

which sets the last line to zero. Putting everything together, we can rearrange (2.13) to obtain

(1.1) ia'
(DaD50) " = - = <Tr (DA DZAT) — Tr (D0 @EGT))
-5 (Te(Ff 5 1) = Tr (RE R) ) + A (D5020), 4 A" (D),
8 afB afB o B K B @ v

This shows that the Bianchi identity for H incorporates the second order algebraic relation for the
variation of the hermitian form that is crucial in deriving the o'-corrected moduli metric.
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2.5 The covariant derivative of 9(6”’)

We now compute ©,0©? to zeroth order in o'. We will find that only when ¢ p =1 is the
connection holomorphic, that is R(? = 0. For the remainder of the paper we set S,;, = 0, and work
in harmonic gauge, the conventional choice in supergravity: V™g,,, = 0 where V,,, = 9,, + O, is
computed with respect to the affine spin connection on X that is discussed in Appendix 7?7. This
gauge fixing decomposes into

Aw, =0, V,AM =0, 0p(wDawum) =0,

provided X has h(®? = 0. Interestingly, without vanishing curvature S = 0 and gauge fixing, the
connection is not holomorphic for any choice of e’ p.
First, we demand that the connection is holomorphic 9,0, = 0. We find the following

components are not immediately zero:
+ +

e’ v l—e v e’ v l—e v.
9,0 p)M L= %.QAV}LQCYWU)\7 D,0! p)uﬁ - _%gkvﬂgaww.

We see that the covariant derivatives of the variations appear
VU Aaﬂy = 80 Aaﬁy + GUV/\ AaﬁA ) Vﬁ Qawaﬁ = &ugawaﬂ - @ﬁ)\ﬁ Qang .

For the connection to be holomorphic we need to set e p = 1. It can be checked that this relation
is sufficient to ensure that R(? = 0. So we have found a 1-parameter family of holomorphic
connections on X.

Computing, we find the following non-zero components for the physical deformations ©,0:

0,0 D, = V, Ay +i V" Dot ,

=

B (2.14)
0,0 Vi's = —g” (VaQaz” +i VP Dawxi) g -

Before we continue, let us pause to make some comments. Firstly, we have not computed terms
which have vertical indices, such as ©,0,%, as they do not appear in (3.6).
Second, it is straightforward to show that ©,0 satisfies the Atiyah condition:

v, e0h = A KR, . (2.15)

Third, for the Hull connection (e’p)=(1,0) if we compute the covariant derivative of the fibre
metric, we find it vanishes since we have set S to zero:

Va(dsk) = Vo(2gwe™ ®@e”) = —29,5(S

G Ay @+ S et edy’) = 0.
These covariant derivatives do not mix components of the fibre metric with components of the
base metric under parallel transport along the moduli space.

Fourth, the extended connection  defines a covariant derivative of tensors, and it might
be tempting to interpret this parallel transport as the appropriate deformation theory of tensors.
However, this does not reduce to known expressions derived in [1] for the appropriate deformations
of tensors on X. Note also, if one were to impose that V and 7 commute, then this would imply

", and %, vanish. This would mean that ©,¢,» and A,z” both vanish, which is a condition

we do not want.



3 The Metric for Heterotic Moduli

We come to computing the parameter space metric. We compute it in two ways: the first is by
computing the metric deriving from a Kahler potential which we propose with some prescience.
The second is to dimensionally reduce o' -corrected heterotic supergravity. The dependence of the
bundle parameters arises through the mixing of fields implied by supersymmetry as dictated by
(6.1). The metric can be written in the form

ds® = 2Ge; dydy” + 2G°; d2"dz" |

where

GO? /onXﬂ

1 -\ s A
G = — / Dew + Do+ / T (DA DrAT) — = / W?Tr (De D'

Here the x,, form a basis of closed (2, 1)-forms, and the second term in the last line is the Kobayashi
metric, extended to the entire parameter space. The metric is the natural inner product of Dew
and DA together with the inner product of representatives of deformations of complex structure.
As expected, the B-field does not make an explicit appearance, being determined by the other fields
in the heterotic structure through the anomaly and supersymmetry constraints. The construction
of this metric did not assume any underlying special geometry, and its simplicity leads us to
conjecture it holds for a general heterotic structure satisfying the equations of motion and so for
the Strominger system. The result (3.1) builds on [9] who studied the moduli space metric to
O(a'?) restricted to a locus of the parameter space in which only the hermitian part of the metric
varies 09,5 # 0 with the remaining fields remain fixed, A = 6B = 0. On this sub-locus, the
leading correction to the moduli space metric is O(a'?) and not O(a'). As can be seen from
(3.1), this result is a manifestation of demanding the gauge field remain fixed — which is in our
language DB = 0 and D:A = 0. In general, we need to allow all the fields to vary, even when
considering Kéhler parameter variations. As shown in (3.1), this means the metric is corrected at
O(a'), with the property, for example, that the special geometry metric is corrected through a
mixing the complex structure and hermitian parameter sectors.

We propose a Kéahler that describes the a'-corrected moduli space metric. It is remarkably
similar to the special geometry Kéhler potential, in which the Kéhler form is replaced by the
o' -corrected hermitian form:

K=K + Ky,=—log (I/Qﬁ> — log (g/w?’) . (3.2)

Although it is remarkably similar to the special geometry Kéahler potential, in the derivation of the
moduli space metric and Kéahler potential, no assumptions are made about special geometry. The
fact we arrived at such a similar Kéhler potential is a surprising conclusion from our calculation.

In this section we compute the metric using the results constructed in the previous two sections.
The answer agrees with known mathematics literature in the situation with the CY is fixed. It
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also agrees with the answer we get from dimensionally reducing o'-corrected supergravity in the
next section. We conclude this is the Kéahler parameter space metric and Kéahler potential as
dictated to us by o'-corrected supergravity.

The first term, K7, gives the complex structure metric:

1 — i
0 _ _ v _ _
Gy = Oa0gKy = W/aag,w%g“ x1 = —v||Q||2/Xa*X5~ (3.3)
The second term K, contains all the o'-corrections. Differentiating twice
1 1
0:05 Ky = v/@gw*ﬁﬁw— W/uﬂ@g@ﬁw. (3.4)

We need to turn these terms into appropriate holotypical derivatives in order to express the
metric in gauge invariant quantities that reflect the physical moduli fields that arise in the dimen-
sional reduction. The first term uses

Oew = Dewh! + Dew”?
For the second, we use w is a (1, 1)-form and so
1
W00 = W DeDyw" = Sw{De, Dy,

The second equality follows from [0, Og]w = 0.
Returning to the Kéahler potential,

OOl = %/(@wl’l + Dew™?) (D! + Dye®?) — %/uﬂ{ﬂ)& Dyt

= %/(@gwl’l * %wl,l + Q)éw * Q)—(JJQ 0) + W w2i{fD£, %}wl’l .

In the second term Dyw®? x Dyw?® is O(a'?). For the third term we use (?7?):

a' -
wW?i{De, Di}w = /w2 [7Tr D AD;AT + A, “T%’g — Ay Tg’;] :

i i
4V g
where T is defined, and also

1 _

§w2Aﬁ”T2’; = D x BY? — iDp® + Dew®? = O(a'?) .

In this way we see that

4;/ WA{De, D} = % W2 Tr DeAD AT
Hence,
OcO05 Ky = —/Q)gw * Dbt + 18(;[/ /w2Tr D: AD A

Including the complex structure special geometry metric (3.3) we get

ds? —2G dyEdy"+2G0 dz"dz” (3.5)

11



where dy® = {dz®, dt*,dw'}. So when we choose complex coordinates on M so that holds, a
choice naturally handed to us by string theory as shown in the next section, we find the Kéhler
potential exactly gives the metric arising from the dimensional reduction.

The upshot is that the complex structure metric Ggg is unchanged in O(a'), while the com-
plexified Kéhler metric G?ﬁ is corrected, and, as written above, implicitly includes o'-corrections.

The complex structure metric can still, as is the case of special geometry, be written as a metric

on the cohomology classes. This is not obviously the case for the metric Gfﬁ, we intend to return
to this point in future work.

In section 4, we illustrate a utility of X by showing how the curvature R in (6.1) can be used
to compute the covariant derivative D,© in terms of the complex structure moduli A,* and
hermitian moduli ®,w!! to zeroth order in a'. We then use this to compute the last term in the

moduli space metric g¢ derived in [1] to be

ds*? = 2¢° S dy* @ dy” ;

1 _ 1 — a
g v
gaE = V/X{Aa‘u * AB gﬂv -+ Z_l a X Zg —+ zTI' (@CVA * @EA) (36)
Oé\ Ty %8
—|——2 (AQWAEpU + @awpﬁ @E&Jop) R#? } >

which generalises an expression in [9] to include all the moduli.

In section 5, we put all of this together to show how to derive the moduli space metric giB
from its Kéhler potential in a concise way, which simplifies much of the analysis of [1].

We have need of derivatives that are covariant under the coordinate transformations, this
requires a refinement of the derivatives defined in [1] for which covariance was required only under
the simpler transformations (y, ) — (4(y), Z(z)). We are led to construct outer derivatives
that descend from d and covariant derivatives D and ©,. For complex manifolds X and M the
operators D and D! split further into & + 0 and 8% + 9%, which are the analogues of the familiar
split d = 9 + 0.

Furthermore, we overload the derivative symbol so that D?, say, should also be covariant with
respect to gauge transformations. When we take into account the complex structure of X and M,
the D? decomposes further into ®, and D3, which are suitable generalisations of the holotypical
derivatives of [1]. From §2.3 we write ® in place of D even when acting on ‘gauge neutral’ objects
since no ambiguity arises, and this gives cleaner expressions. For example, we understand that
Dow = Diw.

In the previous sections we have described in detail how to extend the geometry of X to the
larger structure of the fibration X. This also allowed us to describe geometrically the variations
of the metric and complex structures on X in terms of Lie derivatives and flows on the moduli
space M. We now study the geometry U, the universal bundle, whose base manifold is X. This is
a holomorphic bundle with connection A, with A the natural extension of A. The field strength F
for A has a tangibility [1, 1] part which exactly describes the variation of A. The Bianchi identity
for F efficiently encapsulates otherwise subtle identities derived in [1].

The universal geometry also includes the three-form H = d“w and its Bianchi identity (6.2).

12



The extension of H to X is defined in a natural way
H=d® . (3.7)

We demand that H obeys an extended Bianchi identity
_ o 2 2
dH = —Z<Tr(F )~ Tr(R )) .

Remarkably, this equation elegantly captures otherwise complicated algebraic relations derived
with much effort in [1]. These identities are important as they are central to the construction of
the metric on M and showing that it is Kéhler. Using the extended quantities on X we re-derive
the metric on M in a concise fashion.

At this point it is useful to pause, and recall what happens in special geometry when the gauge
connection is identified with the spin connection, ) A =00©. We do not rely on being connected to
this example, but it serves the purpose of illustration for the more general case below. The only
independent variations are contained within dg,,, and 6 B,,,,. Denote the a'-expansion of fields as
B=B"+a'B'+... ,w=w+a'w +....

A variation of the metric is

0:(ds®) = 28 90w do* @ da” + 2(0eg) yp da* @ da” .

Since dgpr and 09, separately solve the Lichnerowicz equation, they can be varied independently of
each other, so we can assign independent parameters to these variations. The mixed component,
d9,w, is a zero-mode of the Lichnerowicz operator if and only if it is a harmonic (1, 1)-form.
Similarly, the B-field satisfies d6B° = 0 and is gauge-fixed d'6B° = 0, so 6 B° can be expanded in
harmonic (1, 1)-forms. In sum, we associate parameters to field variations as follows:

dgmw = 02"Aqqw) , 02 €C, fora=1,. R
bw = d'e,, 0B =du"e,, ou",0v" €R, e.€ H'(X,R) forr=1,... a4 (3.8)
The conventional choice of gauge fixing, V"0gp, =0, implies VFA, 7 =0. When this is so, each

tensor Ay is in one-to-one correspondence with a harmonic representative A, » € H'(X,T).
To see this vary the Kéhler condition dw = 0 with respect to complex structure to give

0D =0.

As h%2 =0,
Dow’? = 1A gy da’da” = Ok,
for some (0, 1)-form k,. Co-closure of A/ gives 0" Ay = 0"Aqpw) = 0 and, as X is compact,
this forces A, = 0. Hence, A ? is in one-to-one correspondence both with the metric variations
0w Via
9”00 = 02N, (3.9)

and with harmonic (2, 1)-forms y,, via

1 - _
Xa = §ng”Adexpdx”dm“. (3.10)
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The inverse of this last relation is

T .
Al = 2HQ||2QM "Xarpz da” . (3.11)

We have seen these relations before, though now we have specialised to the case o' =0, for which
Ay =0, and this has allowed us to write (3.9) in the given form. It is easy to see x, and A/
are also O-closed and co-closed. This establishes an isomorphism H'(X,T) = H>'(X,C).

Promoting the parameters to dynamical fields, denoted by corresponding capital letters, for
example u” — U"(y), L, is

1 o
L, =55 | Cov/5e" g (00900 (3u0) + 0.(09,7) (35,))
_ _% 0/ (0.2°0° 77 D) A + Do ) (3.12)

= 2G5 0,2°0°2° + G, 0.V OV .
where we identify the special geometry metrics
GO——;/X * X7 GO—L € % €
et Ty | S

We have used the Kaluza—Klein ansatz (3.8) in writing J.w = 0.V "e, and 0.(dgz) = 0.2 Ao
together with (3.11). The H-field gives

Ly = G°0U"9U* .

The complex structure moduli space automatically gives a Kéhler moduli space metric Ggg- The
Kahler moduli space M is also complex but the choice of complex coordinates in terms of u”, v" is
ambiguous. The canonical choice is to associate a point p € Mg with a complexified form B + iw.
As dimc Mg = h'! there are local coordinates t*,t° for p,& = 1,...,h%! to be identified. The
tangent space Tp/\/l% is a complex vector space, and the complex structure facilitates a splitting:
LM% = T,M}° @ T,M%'. The e, are a basis for the complexification H"'(X,C) and so the
conventional choice is

0B +idw = (du” +idv’)e, € Tpl’OMK ~ g4 (X,C) .
Similarly, deformations of B — iw are identified as
0B —ibw = (6u” —iov”)es € T,))' My = HY'(X,C) .

The special geometry metric is then given by identifying the metric of the kinetic terms in the
Lagrangian (3.12): B
ds? = 2G05d=d2" + 2G), dtgdeg
where for harmonic forms e,, x, we can write the metrics in a form that depends only on the
cohomology classes:

0o __Jxxz _EL/ : L/z_i/ )
Gaﬁ— fQﬁ’ G’)U_2<2V epw Y ez W e we, e -
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Now we proceed to the general case, including the o' -correction and assuming a general choice
of holomorphic semi-stable vector bundle. The Kaluza-Klein ansatz includes a correction that
allows for a dependence on all parameters:

Sw = ov"e, + o' dy™M Dyw, §H = d(sue, +a'oy™By) .

When substituted into the Ricci-scalar and H-field kinetic term, we identify the metric through
the kinetic terms arising from ds? and ds7; respectively:

1 1 - 7z
ds? = GYdv"dv® + ' (V/Q)gwl * es) dyfdv® + o' (V/er * Q)ﬁw1> dv"dy" + 2Gggdzadz5,
2 0 1,8 \ 1 1 £1,,8 \ 1 1 T 1,7
dsy = G, du"du’ + o B xes | dyrdu’ + v e, x By | du'dy
1 1 £1,,8 s\ 1 1 r 1,1
v Dew™ % es | dy*du’® — i v ey * Dyw™ | du"dy
1
v

1 _
+a /er *’yél) du"dy® + o' <v/er *fy%) du"dy" |

where we have substituted spacetime fields kinetic energy terms for metric coordinates on M e.g.

(v
= G du"du® +ia’ (
{

0.U" — du”. In the last equality, we have used the supersymmetry relation @; 1= 1Dewt? —1—751 4
0

rs?

[d(...)]"'. We have written the special geometry metric G2, and we identify the a'-correction to

it:

1 1
GSS - W €r % €5, Gés - W/Q)gwl*es . (313)

The freedom to shift by d-exact terms means we can expand 7; in harmonic (1,1) forms, v} =
V¢ *es giving

a' a'
(W /e,, *fyfl) du"dy® = <W / ey * es) Yeldu'dyt = o' Ghye® du'dyt .
Adding dsg and ds? together
ds? +dsy; = QGZB dz*dz? + G, (dvrdvs + du'du’® + o'y "dytdu’ + o vérdyﬁdw)
+ 210’ Gg, dy* (du® — idv®) — 2ia’ G (du” + idv”) dy”
= 26, d="d + G, (du’" +ide” + 'yl dyﬁ> (dus —idv® + a4} dy5>
+ 20" G, dy* (dv® +idu’) + 20" G (dv” — idu”) dy” .

The penultimate line indicates the complex coordinates on the parameter space M are modified
at first order in o'. We can view this as a change in special geometry complex structure.
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4 The contribution of ®,0 to the moduli space metric

We are now in a position to compute the last term of (3.6). The connection in that metric is the
Hull connection (e’p) = (1,0), though in fact e drops out of the following calculation and so it
is valid for a 1-parameter family. The integration is evaluated for a fixed point y € M giving a
simplifying rule e™ — daz™.

We use the result (2.14) to find

Tr (@a@wﬁ@) _ 9 (v@%auiv“ @aw(1’1)> X <v<0 DAF — i V7 D) ) Qv

where VEOA # = dz¥ V, A M.
Using D,w®? = O(a') we find

Oé\

- Tr<@ ©+D50) =

\

a' _
—— [ VEOA X VODAT g —
V /x * B 2V

/ VD w*V, Qﬂw

i i _ 9
— [ VIIAI SV, D — —— / Vi Dow* VOUAT + O(a'?) |
Vv /X ag") o2V X B + ( )
At this point, we notice a series of useful identities. The variation of the complex structure satisfies

VIV, At = ARz da and V,VEOA K = 0.

oAV

where we used the vanishing of the pure part of the curvature tensor for ©: R, ,\* = 0.
For the Kéhler form variation we find

VoViDow = Rp" Dowerdatda? and ¢"" V'VyD,wrzdz® = 0.

After integrating by parts, using the terms above and metric compatibility of V we find to
first order in o':

O{\

%

O{\

Tr(D,0%x9:0) = Aa wAz + Do Dgwer RFPVO
5 o 7S o V5

This expression agrees in form with that derived in [9].

We derive the moduli space metric from the Kéhler potential in a concise manner using ex-
tended forms on X. As in the previous section, we set Sy, = 0 and within integrals over X we
have the rule e™ — da™, e, — 0,.

The moduli space metric giB has the associated Kéahler form

Wt = igiﬁ dyadyE
We show using X that
i N 4 3 . =
= 19DK , where X = X1+ K, =—log 3 w’ ] —log (i [Q2Q]) .
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That is, we are showing that X is the Kéhler potential for the moduli space metric.

We adopt the convention that when a universal form appears within an integral over X, the
only surviving part is that which makes the integrand a top form on X. Some useful statements
illustrating this are

/wzF:/uﬂF:O,
X X

%/ WTrF? = /wQTr (F F.5—Fa Fg) dyadyB = /wQTr (CDQA”DEAT) dyo‘dyg, (4.1)
X X X

/wQQEw = /a)?tﬁgw = /w2@5
X X X

where we use the relations w?F = 0, DgA = 0 and d(w?) = d(w?) = 0. We will also use, within

the integrand, 2 1
Recall that dQ = —k*Q+ with = Ixaupdy®detde’da? and k* = DK 5 = dy*0, K » and we

use dQ = D0 = 0.
Consider first the derivatives of X 1,

I
-9 (W/Xw @w)

1 — i -
Tv/X@w*Qw—W/Xw@@

DK,

. \ (4.3)
4 ., @ 2 2 _ 2
—Tv/)(i)w*@w 16V/)(w (TrF TrR)
1 ia' w1 B
= (V /X Dow * Dgw + o5 /X W Tr (Do ADZA —@ﬁ@ﬂ)) dy“dy”
where we have used (4.1) and (4.2).
While for the derivatives of K o we have
_ QD0
[ QQ
_ (1298 [0 J, 0050 o
(fx Q)2 Jx Q8
fX XaYﬁ 3
1 fXQQ y-ay

where we use 9Q = 9Q + D = 0 and, in the second line, several terms vanish owing to consider-
ations of holomorphic type.
Finally, combining (4.3) and (4.4), we obtain the desired result

iDDK = b,
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4.1 The Symbols for the Levi—Civita connection

These are the symbols for the Levi-Civita connection. We first invert the relation and decompose
the indices, giving

mn = _Cam bn+ mna
an - an )
(4.5)
M= =" =" e+ v+ Mha"+da™,
llb — (lb _"_ (Ln Cbn .
Using the symbols for *°) we have
1
" = da™ (FLCmnk tgo" g @dgmk)+
1
+ dy* (Cam T + ca™ " §** D agmp + Orca™ + 3 9" Dagi + " g Sud glk) ,
b Lo tbd Lol m tbd tod o 1
=g dz™ ¢*"* D agmk — §dy <Ca 3" Dagmi + 97" Sad gm) :
n m LC n k k 1 n  t#bd k 1 nl 1 n _#bd l
c = dz (F m' 'k Ce + Omce tsa g D aGmk Ce +39 ®cgzm+§cb [ glm)
+ dya (aaccn + (akcan>cck + Cam Cbn CCkFLCmnk . Cbn FﬁLCabc (46)
1 m ., n  fbd k 1 m _nl 1 k nl
to" ey D agmk Ce t5cy ©cgzm+§cc 9" Daguk
1 n 1 I, m _n tbd 1 Il .n , k tbd
+ §Sac + §Scd Co Cp ¢ glm+ §Sad Cy Cc g glk) )
1
Yo = —5 da” (cck 7" Dy g — Sac’ g** gzm>
a(ptLc b Lok ted Lot m otba Lot s k
+dy (F ac_ica Ce g Ddgmk+§sdc Ca ¢ glm_isadg glkcc>~
4.2 The Nijenhuis tensor for X
The Nijenhuis tensor for J is
Ny = (IP0pI° — Jp%dI")0y , (4.7)

where u = (y*, 2™) denotes a point in X and we write J¥ = Jg”du®. The complex structure is
triangular in the coordinate basis:

J = J,"e"@e, + Jl e @ey = Jp"dr™ @0, + (ca™ " — Jﬁabcb") dy* ® 0, + J*.b dy* @ 9, .

Thus,
J,* =0, J. "= J,e,™ — Jhe™
The terms in (4.7) decompose according to tangibility. In the following, we suppress the ® in writ-

ing out the tensor structure of N3 to simplify notation, so for example Ny = %N 3 PQRdUP du®0p.

18



1. The first term, proportional to dz™dxz", reduces to that on X

1
AL mn?dr™dz" 09 = Ny . (4.8)

2. The next term has mixed tangibility dy*dz™
N3 am2dy*dz™dg = Nyjpple,™ dy*da™ 0y + (J%6,% — 6.°0,7) ey (Jin®) Oy +
+ (JuabJpqém” — Jﬁb“Jm”(Spq> [en, ep]? dy*dz™0, .

where

ep(Jml) = O — "0t and e, ep] = —(0ncp?) 0, -
We use the projectors to rewrite the Nj am® components
N3 an®dy*da™0g = Njmplc,™ dy*da” 0, + 21 (P.°Qp" — QuPp)ec(Jw?) 9y +

(4.9)
n 4<Pach”qu + Q;@pr) len, P dydz™a), .

3. The final term of (4.7) has tangibility dy®dy®

%Na w2y dyy = %Nﬂ o Ay dy’ eq + %NJ mna™ ey dy®dy’ e, +
(Jﬁac ec( )t — Jn? ea(me)cbp> dy“dybﬁq +
(5;5&5; bR T8, — TR TR0 0+ Jﬁdep%;) (Beca?)dy dyd, +
(5a05bdjnmJpq—(sacﬁbdjnmapq—Jﬂa05bd5nmquﬂacﬁbdanmapq) " (Omea) dydy’ , .
In terms of projectors

1 1 1
5NJ 22dy dy’oy = §Nﬂ wdy?dy® eq + §NJ mnlca™ ey dy dy’ e, +

2i<Pachq _ Qachq> ee(JnP)ey™dy dyd, — 2<PcPde i QCQde> lee, eal” —

4(PCPdean +QQP,Q.™ + PYQYQ. P, + QCPdanQp> e [em, €al? - (4.10)

Gathering (4.8), (4.9) and (4.10), and simplifying we find

1
Ny = SNy mae"e"e, + 2iec (Ju) (PﬂcemQ,, - Qﬂcempp) -

1
4[60, eﬂ]P(PﬁanQp + QﬁCQan> _ 2[‘%7 ed]p <Pﬂcpﬁde + QﬁcQﬁde> + éNJIi abceaebec '

(4.11)

The second and third terms combine in virtue of the relation
(P!, P, JPdye™ = —%Pﬁc ee(JmP)e™ + P*P™[e,., ep]P .
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Note also that
(P!, PH7 = PfaPt ey, ep)? .

These relations, together with (4.11), give the final expression

1
Ny = 3 Jmnqeme”eq—4[P2,Pm]qeaequ—4[Qﬁ,Qm]qe“equ

1
— [P, Pl7ece? Q, — 2[QF, QF)7 e e P, + §Nﬂ dfeele, .

The first and last term are N; and Nj;.

4.3 The holomorphic form 2

We define the holomorphic three form on X to have an extension which is purely vertical

1
Q= gﬂw,pe“e”e”, (4.12)

where e*? is the constant antisymmetric symbol and the function f depends holomorphically on
the coordinates. As x{2 = —if2, it follows €2 that is d-harmonic. Supersymmetry implies that it is
covariantly constant with respect to the Bismut connection V") = 0. Decomposing according to
holomorphic type yields two relations

ViR = (9ulog |0~ Hu' ) 2 = 0,
VEQ = —g" (0505, — Oxgm) Q. = Hix* Q = 0,

which are solved by
H,"” =0, Gulog”QH2 =0.

The three—form €2 is a section of a line bundle over the moduli space M with a C*~gauge symmetry
Q= Ay)Q, AeCr. (4.13)

Now consider variations of 2, which need to be covariant under (4.13). The derivative ¢ is
decomposed into holomorphic type on X:

%0 = (D)0 1 (DE0)2Y

where the superscripts refer to holomorphic type with respect to J. Using {D,D*} = 0, applying
D% to DQ = 0 and decomposing according to

API)EY = 0 and IBIO)EY LBIY)EY = 0. (4.14)

The first equation defines a O-closed form y, = A, Q. For the second equation the Hodge
decomposition of (DfQ)39 with respect to the d-operator gives the sum of a harmonic form
and a O0-exact term. As h3Y = 1, the harmonic term is 2 multiplied by a parameter dependant
coefficient K 5,

BIO)EY = K, Q+3C, . (4.15)
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Multiplying this equation by Q and integrating over X, we see the coefficient X 5, can be written
as a derivative

'](201:8047(2; KQ :—lOg(/ IQQ) .
X
Under small diffeomorphisms, there is a transformation law for 6Q = dy*D*
60D — QB0 —gerQ,) and Q3D — QY —J(e" Q) .

Comparing this equation with (4.15) we see that we can solve e* Q,, = 0y“(, with explicit solution

given by
V= 1 QQVPU((SZ/QC;;U"’ (65(1,0))1)0) ’
2|12l

where €19 is an arbitrary one form. With this choice §Q®9 is harmonic. We see that £1:0) ig
11)

a residual gauge freedom that does not affect §€2. This choice coincides with dw = dy*D¥w(
being also harmonic. Firstly, because w is closed it follows that dw(V) is d-closed. Secondly, it is
co-closed for the following reason. We write Df Q9 in two different ways. The first is in (4.15)
with ¢, = 0. The second is to use that €, = fe,., with f a holomorphic function of parameters
to give

PG — (aalog\|m|2+wWDwa>Q. (4.16)

We also used |f]? = /7|)* and P%/g = w*"Diw,p. Furthermore, 30w = 0, so the Dfwh!
form a basis for H2(X,R). Comparing with (4.15) and using that %X s, and [|||* depend only
on parameters, it follows that w’ngwW can also only depend on parameters. The Hodge dual
relation is

1 _
*Df = 3 (W Dlw) w? — (Diw)w .

From this, it follows that D¥ w1 is d-coclosed and so it is harmonic.
Returning to the second equation in (4.14), we see that it implies x,, is 0-closed.
The derivative of Q that is covariant both with respect the symmetry (4.13) and diffeomor-
phisms is
D, = (Dua + 17(2&) Q = xa =AQ2, .

5 Integrability of the Supersymmetry Equations

In this section we provide a general analysis of the relation between supersymmetry and equations
of motion in terms of the integrability conditions of the supersymmetry variations. Strictly speak-
ing, gaugino condensates only make sense in the lower dimensional effective actions obtained from
compactification. However, we perform the analysis of integrability in the full ten-dimensional
theory, treating the condensate as a formal object. The aim is to derive the most general set of
constraints, which can then be applied to specific compactifications.

In absence of a condensate, it is possible to build combinations of squares of the supersymmetry
variations that reproduce the equations of motion
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1 1 1 L 1
Y Dy Dype — §D?\,(Poe) + §POD?\7€ = _ZE%PFPe + gB?VPFPG + §LN5HOE’

1 1
P’ — (D°M — 20M $)DY,e = —gp% +0H (5.1)
where %, B and D denote the Einstein, B-field and dilaton equations of motion. §H is the
Bianchi identity. Since the left-hand side of both equations in (5.1) vanishes on supersymmetric
solutions, the equations of motion are also satisfied, provided the Bianchi identity holds.

When the condensate is included, the first equation in (5.1) becomes

1 1 1 1
FMD[NDM}E — §DN(PE) + §PDNE = _ZgNPFPG + gBNPFPE

1 o
—in0He — —An(2 5.2
+ 2LN € 32 N( )6, ( )
where now Enar, By, D are the Einstein, B-field and dilaton equations of motion with non-zero
condensate, and the extra term Ay () is given by

AN(E)E = ANPFPG + ANPQRFPQRE + ANPQRSTFPQRSTG

1
= [€2¢VM(€72¢EMNP) + §ENR5HRSP + HE(SNP] FPG

1 1
+ 5 [€2¢VM(6_2¢EMPQ)5NR + 56_2¢VN(€2¢ZPQR)

+ VrEnro — HpsrSo  dnr|TF e
1

1
5 [VsEporonT + = HypgErsr] TP e. (5.3)

2
Note that the tensors {Ann, ANpor, ANpPorsT} do not have any symmetry property. The ana-
logue of the second equation in (5.1) contains extra terms in ¥ that cancel non-tensorial terms

1 1 «
(DM oMy LypM _EeMyp e - “Det “§He — S B(X 4
DPe — ( oM 162 M )Dre 8€+4(5€ 32()e, (5.4)

where the extra contribution from X is

B(X)e = Be + BypI™ e + Bynpol MNP
=6H_Ye¢+3 [€2¢VM<€72¢EMNP) + HNQREPQR] NPe

+ % [6_2¢VM (62¢2NPQ) — ; HMNSEPQS] FMNPQG . (55)

The left-hand sides of (5.2) and (5.4) still vanish because of the supersymmetry variations, but
now the analysis of the right-hand sides is more involved. For zero condensate, after imposing
the Bianchi identity, the only terms left are £%,, and BY%,, multiplying one gamma matrix, and
they must vanish separately because of their symmetry properties. In presence of condensate, the
extra terms A(X) and B(X) in (5.2) and (5.4) contain several terms involving different numbers of
gamma matrices, which, in ten dimensions, are not independent and hence cannot be set to zero
separately.
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We describe an alternative approach to study the relation between supersymmetry variations
and equations of motion that generalisese Lichnerowicz theorem. Let us consider first the case
when the condensate is zero. The starting point is the Bismut-Lichnerowicz identity. Provided,
the Bianchi identity is satisfied, the Bismut-Lichnerowicz identity allows to write the bosonic
Lagrangian as

1 o
1_1['1’6 + (a?) = DY, D" Me — JﬁOJZ)Oe + % (Tr FFe—Tr R R 6) —2VMp DS e, (5.6)
where DY, and lDO are the gravitino and modified dilatino equations, with zero condensate. R~
is the curvature two-form derived from the torsionful connection V~ (note that the gravitino
variation involves V). Multiplying (5.6) by e 2%¢' and integrating it, gives the action

Sy = —4 \/—ge’%’ [eTlDOZDOe - ETD%DOMG

Mo

+2VMp et DY e — % (Tr P Fe—Tr GTR_R_6> } + (a?), (5.7)

where we assumed that efe = 1.

We would like to write the action as a BPS-squared expression, since its variations will give the
equations of motion in terms of the supersymmetry variations. If the theory were Euclidean, we
could integrate (5.7) by parts, and end up with such an action. Unfortunately, when the metric
has Lorentzian signature it is not possible, in general, to reconstruct the supersymmetry operators
DY, and lDO after the integration by parts. Since the problematic terms always involve components
of the fields with one leg along the time direction, one can restrict to solutions where none of the
fields has components of this type. This means

Hoyn = Xomun = Four =0, (5.8)

and, for the metric
552y = —*0t* + G002t (5.9)

where A = A(z™), g = g(«™) and {z™, 2", ..} denote spatial coordinates. Note also that, in order
to perform the integration by parts, we assume that the fields vanish at infinity where the metric
is flat. Under these assumptions the action can be integrated by parts to give

/M L, =4 /M e[ e) P — (DYye) DM
+ 1% (Tr e —Tr e”}?fﬂi*e)] + (a?). (5.10)

The variations of (5.10) with respect to the metric, dilaton and B-field give the corresponding
equations of motion written in terms of the supersymmetry conditions. Thus solutions of the
supersymmetry constraints also automatically solve the equations of motion. The variation of the
second line in (5.10) also vanishes. Its variation is proportional to

— _ P P
RMN €= PQMNF Qe = R]T/[NPQF e+ () = (),
which vanishes on supersymmetric solutions to the appropriate order in «.
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For non-trivial condensate the same analysis gives, up to (a?) terms,

Sy= BPS*+ 5 | y=ge [ (Be)lYe + (Te)! Pe

8 Mo

+ = (Dare) XM + (FTMe) Dyye) — HJE} , (5.11a)

1
2
where H.Y = 5 HYNPS ) vp, and BPS? denotes the part of the action that can be written as

the square of the supersymmetry variations

BPS? = V—ge [(IDE)UDE — (Dye)TDMe + % <Tr e FFe—Tr ETR_R_E) } . (5.11b)
Mo

Note that because of the extra terms involving ¥ on the right-hand side of (5.11a), the action
can no longer be written as a BPS-squared expression. The equations of motion for gy;n, ¢ and
By obtained by varying (5.11a) will contain a term coming from its BPS part, which vanishes
for supersymmetric configurations, and terms in >, which will provide additional constraints to
be imposed on the supersymmetric solution. These extra terms have a relatively simple structure
and in particular do not contain the curvatures F' and R~. More concretely, the extra terms in
the dilaton and B-field equations of motion are respectively

HynpE"NE 4+ 22VM (7226 Ty npoXV %) = 04 (a) (5.12a)
VM (e7* e {Tarpg, Lle) = 0+ (o) . (5.12b)
Both equations are only linear in derivatives. Note the resemblance between (5.12b) and the usual

flux equation of motion. The metric equation of motion evaluated on a supersymmetric solutions
gives the equation

eV y [e_2¢ (ETFN(Per)E —2gMPTNY e + QQN(METFP)ZE)} = VWM TP Ye
+2¢MPH Y — HpgMuPBES _ 3 Hy M TPNYIEe 4 (a), (5.13)

We also need to vary the vielbeine in the gamma matrices as 6T'™ = §e, T'* and in the gaugino
bilinear

Sune = XPunex = XPascxen enep”. (5.14)

The equations above can can be further simplified, using the fact that
H=06p=0+ (a). (5.15)

This follows from imposing that the fields must vanish at infinity. Indeed, substracting 1/4 of the
trace we find

1 1
§V2¢ — (Vo)* + 1 H*>=0+(a), (5.16a)
or, alternatively,
1
VM (e7V o) + 3 H?> =0+ (a). (5.16b)

Multiplying by e~2? and integrating over spacetime then gives
/ e H? =0+ (a) . (5.17)
Mo
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As the integrand is positive, it has to vanish point-wise, which implies (5.15). Integrating (5.16a),
we also find that ¢ = 0+ («). Using this result, the equations (5.12a) -(5.13) become (modulo
(cv) terms)

PMNP 1 Svpg =0, (5.18a)
- 1~

VPEpun + Uporu VIEH g — éq}MNPQvRERPQ =0, (5.18Db)

N 1.

‘IJMPQ(RVMEN)PQ - E\D(T;QVN)ETPQ =0, (5.18¢)

where, for simplicity of notation, we have defined U oasn PQ = TN PQE-

Poincaré invariance in four dimensions forces the three-form flux H and the three-form con-
densate to have only non-trivial components in the internal space. We are still taking a ten-
dimensional expectation value, (3/np). We should also remember that the ten-dimensional gaug-
inos are in the adjoint of Eg x Fg or SO(32). Denoting the external four-dimensional gauge group
as G, and the internal group as H (G is the stabilizer of H in the ten-dimensional group), we may
decompose the ten-dimensional product representation as 496 ® 496 — > .(R(G);, R(H);). Of
course the details very much depend on the choice of G and H, but in general the ten-dimensional
trace over fermion bilinears will break into a sum of many terms:

(E) mnp = <trY(10)anpX(10)>

(4), (4) (4), (4)

_ —(4) (4
= Z<trR(G)iX+ X te g X Ymnpx ) — Z@TR(G)Z-X_ X4t X Ymnpx+)

i

= -2 Re(AX,,.). (5.19)

Here we have defined internal three-forms Zinnp as

Einnp - trR(H)z'XJL’ymnp X+ (520)
and a four-dimensional condensate vector A; as
A= trR(G)iY(_ZL)Xf) . (5.21)

From now on we shall suppress all the traces and the G and H representation indices. To simplify
the notation, in the rest of this section we will set (X) = 3 = —2Re(AX). The ten-dimensional
supersymmetry equations can be written as a set of conditions on the forms €2 and J defining the
SU(3) structure.

6 The Effective Field Theory of Heterotic Vacua

We are interested in heterotic vacua that realise N'=1 supersymmetric field theories in R, At
large radius, these take form R*! x X where X is a compact smooth complex three-fold with
vanishing first Chern class. We study the Fgx Eg heterotic string, and so there is a holomorphic
vector bundle ‘E with a structure group H C Eg x Eg and a d=4 spacetime gauge symmetry given
by the commutant & = [Fgx Eg, H]. The bundle £ has a connection A, with field strength F
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satisfying the hermitian Yang-Mills equation. The field strength F' is related to a gauge-invariant
three-form H and the curvature of X through anomaly cancellation. The triple (X, E, H) forms a
heterotic structure, and the moduli space of these structures is described by what we call heterotic
geometry. In this paper, we compute the contribution of fields charged under the spacetime gauge
group & to the heterotic geometry.

The challenge in studying heterotic vacua is the complicated relationship between H, the field
strength F' and the geometry of X. Supersymmetry relates the complex structure J and Hermitian
form w of X to the gauge invariant three-form H:

1
H = dw, dw = §Jm1”1 Iy 2 s (Ony Whony ) dx™ da™2da™ . (6.1)
where 2™ are real coordinates on X. Green—Schwarz anomaly cancellation gives a modified Bianchi
identity for H

OZ\
dH =~ (' F* ~ T R?) (6.2)

where in the second of these equations R is the curvature two-form computed with respect to
a appropriate connection with torsion proportional to H. This means the tangent bundle Ty
has torsion if H is non-zero. Unless one is considering the standard embedding — in which E
is identified with Ty the tangent bundle to X — the right hand side of (6.2) is non-zero even
when X is a Calabi-Yau manifold at large radius. This means that H is generically non-vanishing,
though subleading in o', and so even for large radius heterotic vacua X is non-Kéhler. Torsion is
inescapable.

The effective field theory of the light fields for these vacua are described by a Lagrangian with
N = 1 supersymmetry, whose bosonic sector is of the form

1

2
2K

L= —+\/-G, <R4 - ;LTr |F,|> — 2G ;5D 2D, " — V(®, D) + - - ) . (6.3)
Here k4 is the four-dimensional Newton constant, R4 the four-dimensional Ricci-scalar, Fy is the
spacetime gauge field strength, the ®* range over the scalar fields of the field theory and their
kinetic term comes with a metric G4. The fields ®4 may be charged under g, the algebra of
the gauge group &, with an appropriate covariant derivative 236. Finally V(®, ®) is the bosonic
potential for the scalars.

When £ = 7Ty the moduli space of the heterotic theory reduces to that of a Calabi-Yau
manifold, and is described by special geometry. The unbroken gauge group in spacetime is Eg, and
the charged matter content consists of fields charged in the 27 and 27 representations. The Yukawa
couplings were calculated in supergravity. The effective field theory of this compactification was
described in a beautiful paper, in which relations between the Kéhler potential and superpotential
were computed using string scattering amplitudes, (2,2) supersymmetry and Ward identities.
The Kahler and superpotential were shown to be related to each other and in fact, were both
determined in terms of a pair of holomorphic functions. These are known as the special geometry
relations. A key question is how these relations generalise to other choices of bundle E.

We work towards answering this question by computing the effective field theory couplings
correct to first order in o'. In a previous paper [1] we commenced a study of heterotic geometry
using o' -corrected supergravity. This is complementary to a series of papers who identified the

26



parameter space with certain cohomology groups. In the context of effective field theory (6.3),
one of the results of [1| was to calculate the contribution of the bosonic moduli fields to the metric
G 4. In this paper, we compute the contribution of the matter sector to the metric G 4, and the
Yukawa couplings, correct to order o'. We describe an ansatz for the superpotential and Kéhler
potential for effective field theory:

K = —log <§ / w3> — log <i / Qﬁ) + G Tr C4C" + Gz Tr D™ D?,

(6.4)
W = —iv/2e7 / O(H - dw).
The superpotential is normalised by comparing with the Yukawa couplings computed in the di-
mensional reduction using the conventions of Wess—Bagger.
The moduli have a metric

ds? = 2G,5dy" ® dyﬁ ,

| ) |
GOcB = W AaM*AB guy—Fm/Za*Zﬂ—l— (65)

\

+%/Tr <DQA*DEA> . Z‘—V/Tr (Da@ % DB@T) ,

where Z, = B, + i0,w is the a'-corrected, gauge invariant generalisation of the complexified
Kahler form 0B + idw, the y, form a basis of closed (2,1)-forms, and the the last line is the
Kobayashi metric, extended to the entire parameter space, including deformations of the spin
connection on Zy. The metric expressed this way is an inner product of tensors corresponding
to complex structure A,, hermitian moduli Z,, and bundle moduli D,A. The role of the spin
connection D0 is presumably determined in terms of the other moduli as they do not correspond
to independent physical fields. The tensors depend on parameters holomorphically through

A7 =0, Zz = Be+idew = 0, DA =0, D" = 0. (6.6)

de la Ossa and Svanes [14] show that there exists a choice of basis for the parameters in which
each of the tensors in the metric are in an appropriate cohomology, hence, the moduli space metric
(7.2) is the natural inner product (Weil-Peterson) on cohomology classes.

The matter fields are C¢ and D™ and appear in the Kéhler potential trivially, as they do
in special geometry. The matter metric is the Weil-Petersson inner product of corresponding
cohomology elements

o o
GTJZWLwT*wgv anzﬁ/x¢f*¢na (67>

where ¢¢, 1, are (0,1)-forms valued in a sum over representations of the structure group H.

In some sense it was remarkable that one was able to find a compact closed expression for the
Kéhler potential for the moduli metric. This was not a priori obvious, especially given the non-
linear PDEs relating parameters in the anomolous Bianchi identity and supersymmetry relations
(6.1)-(6.2). Indeed, it turned out that the Kéhler potential for the moduli in (6.4) is of the same in
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form as that of special geometry, except where one has replaced the Kéhler form by the hermitian
form w. At first sight this is confusing as the only fields appearing in the Kéhler potential are
w and (). Nonetheless, the Kéahler potential still depends on bundle moduli in precisely the right
way through a non-trivial analysis of the supersymmetry and anomaly conditions. The hermitian
form w contains, hidden within, information about both the bundle and hermitian moduli.
Expand the fields ¢ and ¢ in a harmonic basis for H'(X, ‘E,) and H'(X, &) respectively:

6= 6:Ce(rR), =D €FR), (6.8)
6 T

where ¢ € H'(X, E,) and ¢, € H'(X, E,) are harmonic forms
¢£ = ¢£ﬁdxﬁ er, ¢T = wTﬁ da" e 7 . (69>

while C¢ and D™ are valued in R and R respectively.

For example, consider the standard embedding. Then, E3 = ‘Z}CLO and ¢¢ € H'(X, ‘13(1’0);
Fs =T, with the ¢, € H'(X,T)"). C¢ and D™ are in the R = 27 and R = 27.

We need to satisfy the reality condition ®' = —W, which forces ¢ = —1) and so in terms of
the (¢¢, 1) basis:

O = > ¢C=> D7, U =) y,D =) ¢C. (6.10)
I3 T T

We denote conjugation through the barring of the indices. For example, ¢_(¢¢)" is a (1,0)-form
valued in 7 of h and C=(C%)! is in the R of g.
The spirit of KK reduction is to promote the coefficients to spacetime fields: Y*(X), C*(X), D™(X),

and integrate over the six-dimensional manifold to get an effective four-dimensional theory. With
the conventions of [1|, the D = 10 e¢g Yang-Mills field contribution to the D = 4 effective field
theory is: \

Lr = = [ e gTesF P, |FP = ~FunFYY | (6.11)

4V [y 2

We dimensionally reduce, doing a background field expansion. A small fluctuation of the field
strength is given, and so

Tr|6F > = Tr (da(6A) % da(0A)) + Tr (dayp® * dayp¥) 6.12)
FTr (dayp¥ % darp®) + Tt (dpdB * dpdB) | '

The first term involves just the bundle moduli, contributing to the moduli metric considered in
[1]. The middle two terms involve the matter fields and the last term gives rise to the kinetic term
for the D=4 spacetime gauge field. The terms involving the matter fields are:

darg® = (0.9 + ®B.)dX® + (O Py + Ay ®y) dz™Mda™
= D, PdX® +d, , (6.13)

duspV = DU AXE +du0 |
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where 756 is the spacetime g-covariant derivative and d4 the h-covariant derivative. Hence, using
Tr|0F]? = %TréFMN(SFMN = 2TroF., 0F* | where Tr (0F,,0F*) = Tr (6Fz0F), and
ignoring the moduli fields for the moment, we find the kinetic terms for the matter fields come
from middle two terms in (6.12) and are

T |0F,[2 = — 2T (ﬁe@ﬁ@e@ﬁ) Ty (ﬁe%ﬁeqﬂ ﬁ) . (6.14)
It is convenient to introduce the indices denoting representations of h & g with ¢,7=1,--- ,r
for representations r of h; a,= 1,--- , R for representations R of g. We have used the reality

condition ®' = —W¥. The matter fields have a KK anstaz, given by (6.10), which when substituted
into each of the above terms gives

d’giTr (D, D 017)

) (6.15)
6203 Tr (ﬁe\pﬁﬁe\w) - ﬁeDJM(X)@/Jgﬁ(:E)) <13€D?N(X)) YE (2)050 (x 1)
)

= (DD™(X)) (DD7(X)) ($d() % () dzonr
where indices for the representation R and r are explicit. The trace projects onto invariants
constructed by the Kronecker delta functions d;; and dp,. In the following we will suppress the
indices and delta symbols where confusion will not arise.
Substituting (6.14) and (6.15) into L in (6.11), reintroducing the moduli contribution, calcu-
lated in [1], we find a kinetic term for both the matter fields and the moduli fields:

Lr = —2G,50.Y*0Y? —2Gg D.CEDC" - 2G,» D.D” DD’ (6.16)

from which we may identify the moduli space metric and matter field metric.

7 The Moduli, Matter Metrics and Yukawa Couplings

The effective field theory has A" = 1 supersymmetry, with a gravity multiplet and a gauge sym-
metry g. The N’ =1 chiral multiplets consist of

e g-neutral scalar fields Y* and fermions Y“ corresponding to moduli;
e g-charged bosons C¢ and fermions C¢ in the R of g;

e g-charged bosons D? and fermions D” in the R of g;

The final result is expressed as a Lagrangian with normalisation conventions matching
L = —2Ge0.Y* OV — 2Ger D.CE D*CT — 2G e D.D” D D" — %Trg <+ 7 D.¢,)
~ 26,5175 0. V" — 2G&1C¢0° DT — 2G»175° D, D"
— (%P2 (V726K e, (CEDT) + c.c.) = (46X 200r (CYDT + CEV DT + CY°DT)
+2e%20,, (SCTCT) + 2e X2, (PDIDT) + 2e X295 (CYP YY) + c.c.) : (7.1)
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The kinetic terms for fields contain metrics. The metric for fermions and bosons are identical,
consistent with supersymmetry. The moduli metric, derived in [1], is:

d82 = 2G0¢B dya (039 dyﬁ s

1 , 1
GaE = W AO&H*AE guy+w/za*zﬁ+ (72)
\ Of\
- _ - _OT
+ 1 [ T (DaAx Dpa) - = /Tr (Du® * D30) .

The metric terms for the fermionic superpartners to moduli Y* are fixed by supersymmetry from
the the bosonic result. The matter field metrics are given

ia'
G@ = W w2Tr¢§¢ﬁ7 (bﬁeHl(xuzT)?
GTE = 17 WQTI' wow?u ¢0 eHl(xa Z:F) :
sV Jx

We have used w? = %*w to rewrite these metrics in a form analogous to that in (3.6). This makes
explicit that the metrics are of the same form, being the natural inner product analogous to the
Weil-Petersson metric.

The mass terms written vanish m,3 = me¢, = 0. The Yukawa non-zero couplings are

Vor = 2 [ O (6edono)) . Doy = 2 [0t (0rnn)) . (1)
T r y P ) Top — r 1Yo . :
&n 9 \/5 v E1¥n p 9 \/5 Y p

The similarity of the Yukawa couplings and mass terms suggests a unification through a suitable
master index incorporating the moduli and matter fields. Using the covariant derivatives of
fields as a basis for a Kaluza-Klein reduction, with the harmonic gauge fixing, gives the moduli
space metric. It is Kéahler after taking into account the second order relations between fields.
This observation can be generalised to account for the charged matter fields and their fermionic
superpartners in order to give the matter field metric as derived in [24]. This normalises physical
Yukawa couplings.

The effective field theory has N' = 1 supersymmetry in R*!, and so the couplings ought to be
derivable from a superpotential and Kéhler potential. The Kéhler potential for the moduli metric
couplings was proposed in [1], and checked against a dimensional reduction of the o'-corrected
supergravity action. It is

K modui = — log (%/w?’) — log (i/Qﬁ) . (7.5)

in which w is the hermitian form of X. The o'-corrections preserved the form of the special
geometry Kéahler potential, and the second term remains classical.
The Kéhler potential for the matter field metric is trivial and given by

K matter — G{ﬁchCﬁéM + GpF(SMDTMDﬁ ) (76)

where a,b = 1,..., R label the R representation and the trace is taken with respect to the delta
function.
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The F-term couplings for the D = 4 chiral multiplets are described by a superpotential. In
the language of D = 4 effective field theory, this superpotential takes the general form

1 1
WY C5 D7) = ggngr CeC"0™ + g9f,m,T1~ D’D™D’ + .. | (7.7)

where the Tr projects onto the appropriate R-invariant and we are to view these as chiral mul-
tiplets in N = 1 D = 4 superspace in the usual way. The omitted terms are the quartic and
higher order couplings and non-perturbative corrections. It is important that W gives no singlet
couplings, and this means all parameter derivatives of W vanish.

We would like to study a superpotential in a similar vein to the Kéhler potential proposal
(7.5). As ten-dimensional fields A, and H depend on both parameters and matter fields. The
fields d°w and §2 are valued on X and depend only on moduli fields. The spirit of the dimensional
reduction is to promote the parameters to D = 4 fields. In this vein define a superpotential

WY,CEDT) = —iv2e / Q(I—[—d%u) , (7.8)

in which the fields are regarded as functionals of the D = 4 chiral multiplets. The couplings in
the effective field theory are specified by differentiating W and evaluating the integral after fixing
the parameters y = .

The rules for differentiating fields in the expressions for K and W with respect to parameters
have been described in [1], which is complicated by virtue of h gauge transformations being
parameter and coordinate dependant. These transformations are, however, independent of matter
fields, and so the rule for matter field differentiation is simple

DA,
aCe

OcAes = = ¢ .

It is important that we have written the ten-dimensional eg gauge field A,,, and not Ay, as this
is the functional of the matter fields — C%, D™ — as illustrated in, for example (??) and (6.10).
The integrand in ‘W is a functional of the ten-dimensional H so that it depends on matter fields.
The rule is to differentiate as noted above, and then evaluate the integral on the fields’ vacuum
expectation values (VEV). Note that it is the VEV of H that satisfies d°w = H, and the matter
fields VEVs vanish C¢ = D7 = 0.

For example, the tadpole matter and moduli couplings for a vacuum at the point y = yq are

(afw)|y:yo ~ /98€H|yyo ~ /QTYF¢£|yyo =0,

(7.9)
(OaW)ly=yo ~ / ((Xa — kaS2)(H — dw) + (5(32’2 + i@aWD’Q)) ) ly=so = 0.
where we use d,H and 0,d°w, and we evaluate them on some fixed y = y,.

As an ansatz W must satisfy a number of tests: it must be a section of a line bundle over the
moduli space; any derivative with respect to parameters must vanish viz. 9,059, -+ W = 0; be
a holomorphic function of chiral fields; tadpole and mass terms for the matter fields must vanish;
capture the F-term couplings derived through dimensional reduction in this paper. The expression
(7.8) passes these tests.
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The argument clearly extends to higher order. Consider the kth derivative

(aal---aakw)yy:yo - /((aal...aakg) (H — d°w)+

+ka{a2"'aakgaa1}(H_dcw) +"'>|y=yo = 0.

This vanishes on any supersymmetric background: W/ is independent of moduli fields, and so ‘W
does not give rise to any singlet couplings in agreement with the dimensional reduction.

An analogous argument, together with €2 being holomorphic, shows that despite neither H
nor d°w being holomorphic, W is a holomorphic function of fields. For example, the first order
derivative is

Oy [ (00 -aw) = o [B(2B - D)) |y = 0

Using all higher order anti-holomorphic derivatives of Q(H — d°w) vanish. It is also the case that
(8)"‘7/1/ =0 for all n > 1. So, W is a holomorphic function of chiral fields.
The expression for the masses can be written as derivatives of W

Mag = &ﬁgW = O, Mmer = 8§6TW = 0, (710)

where for the second term we use that d°w, 2 do not depend on C*, D™ while 9.0, H is given with
D,A — 0:A = ¢¢. As A depends linearly on the matter fields, all second derivatives vanish.

The Yukawa couplings 9 are also all derived from /. Using, we find agreement with the
functional forms in (??), of which the non-vanishing terms are

1 1
%nﬂ = §a§ana7rW, %’Tp = §3£3a87‘l/l/. (711)

Even though the singlet couplings vanish, one can check that their functional form is correctly
derivable from W/. The fact of 1/2 is in order to agree with the convention given in the literature. It
is satisfying that the superpotential consistently captures the couplings derived in the dimensional
reduction, both involving moduli and matter fields. Furthermore, it manifestly does not give rise
to any singlet couplings.

Having seen how the infinitesimal deformations work, at least up to second order in deforma-
tions of the superpotential, it is interesting to consider higher order deformations of the theory.
Generically, it is known that not all infinitesimal deformations can be integrated to finite defor-
mations. The barriers to doing so are known as obstructions in the mathematics literature. For a
holomorphic structure D, the condition for the deformations to be unobstructed is that they are
in the kernel of the obstruction map

ko HOD() = HOD(Q),

often also referred to as the Kuranishi map. The true moduli of the theory are thus the ones in the
kernel of this map, while deformations not in this kernel will be obstructed. These obstructions are
known to correspond to higher order Yukawa couplings in the four-dimensional effective theory.
To show exactly how this works requires us to do higher order deformations of the superpotential,
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and show how these Yukawa couplings correspond to obstructions in the deformation theory of
D. This is quite involved and we leave the full treatment for future work. Instead we only
investigate a couple of features of the obstructions here, in particular for compactifications where
Xp is Calabi-Yau. It should also be noted that obstructions and their correspondence to Yukawa
couplings have been considered at length in the literature before.

In terms of holomorphic structures defined by an extension sequence, it can be shown that
the obstruction maps in the corresponding long exact sequence commute with the other induced
maps in cohomology

.= HOE) 2% O (T X) - OV () - gOD(E)
b Krex I kK I KE (7.12)
L HOY(T*X) - HO() & HOD(E) -0,

where the last zero follows from the slope-zero stability of 7*X. The obstruction map kg can
further be sandwiched between obstruction maps of the bundle and base as

0 =HOY(End(TX)) ® HOY(End(V)) - HOY(E) - HOV(TX)
b KEnd(Tx) b KEnav) l kg I krx (7.13)
HHOD(End(TX)) @ HOP (End(V)) 25 HOD(E) - HOY(TX) — ..,

where we have named the map pg as it will appear in the following computations.

Let us begin by performing a second order deformation of W at the supersymmetric locus
W = dW = 0. We take d; to be a generic deformation while ds is massless deformation. According
to the above discussion, we need that

52§1W’0 = / (57’1 /\529 +/ g (TI' ((5114 N 52(F N Q)) —Tr ((51@ A(SQ(R/\ Q)))
X X 2
(7.14)
+/ do(H + idw) A 612 + / (H 4 idw) N 026,22 =0,
X X

for all deformations ¢; if the deformation ds is to be massless. Here the zero in 20, W |y denotes
we are imposing the ten-dimensional supersymmetry conditions found in the previous section.
We next consider the second line of (7.14). Writing the first term out, we get
/ do(H + idw) A 6:Q2 = / (%(Tr ag AN F —Tr kg A R) +5T2> A0,
X X
The second term of the second line of (7.14) is given by

X X

Noting that H +iw = 24w, it is clear that only the (1,2)-part of §20,§2 contributes

(62019) 5 = A% A Xoapz 02°° = A% A AY Qe dae .
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Using this, we can rewrite

22’/ Ow A 830, = 22’/ Opawiye dz° A AL Qaep A A[Ze A dzleb
X X
—21 / 8[awb]5 dZE VAN Al{l Qdef VAN A[2a A de]ef
X

= —43 /X A5 A Oawi)e 52" A X1,
where in the second line we have used
0 =2AFAdz®) = Al A dzfleb 1 Ale A @2tles
Putting it all together, and requiring 6,2 generic, we find that we need
—4AG N 10wy 627 + %(Tr (as AF)—Tr (ko AR)) + 87’20 247 (1 V=o.

The first equation imply that 7(%?) is -exact, that is
0 (0,2) _ B(O 1)

for some (0, 1)-form S, The second equation then gives the following condition

— AAS N 10wy 627 + %(Tr (ag A F) = Tr (k3 A R)) + 75" — 980 (7.15)
which can be rewritten as 1 o
— H(z2),02" = 3 ( — g ) (7.16)
where H is the map defined by
H=H++: QPI(E) - QP (TrX), (7.17)

and
~ _ Q _ _
H(x), = A% A Hypz 02° — 1 (Tr (N Fpedz®) — Tr (kA RbE(SZC)> ;

C(Licl) 52°.

Hpe 02° = 2101wz 02° =

We have extended the definition of the maps and to forms z = (k, @, A) with values in £. In
fact, and are understood as acting on both 7T'X-valued forms as before, and on ~-valued forms
by the trace on the endomorphism bundles. That is, we are extending the definition of these maps
so that

o

Fr(a) = 1 Tr(Fedz*Aa), acQP9(End(V)),

Ru(k) = —% Tr (R dz°AK), k€ QPD(End(TX)) .

Alternatively the pre-factors =% could be pulled into a re-definition of the trace on 7. Note the
different sign of the action of relative to the action of . Altogether, these maps act as follows

(k) 0 a(K) — S Tr (Ry A )
@W=] o) |=| 2TEA) |, @=| (@ |= 0 ,
(A) ab d(L’b A A® (A) Rag d{lfb AWANS
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where F, = Fagézg and R, = Ragézg. We will see below that the map H is in fact a map between
cohomologies. Hence, we see that the equation for moduli (7.16) for x5 can be equivalently stated
as xo = ker (H). This of course is in agreement with what was found from the ten-dimensional
supergravity perspective in [13, 14].

The anomaly cancellation condition induces a holomorphic structure D on Q and the moduli
of the Strominger/Hull system is then given by the elements of the cohomology H%(Q). The
extension Q; of Qi by End‘Zx is necessary to enforce the connection on the tangent bundle
appearing in the anomaly cancelation condition to be an instanton. In fact, this is needed to
satisfy the equations of motion. We do not give here the derivation of the holomorphic structure
D on Q nor the derivation of the cohomology groups corresponding to the moduli space. The result
however is that the moduli for the heterotic structure correspond to elements of the cohomology

group
HY(Q) = H'(X, I{) @ker M, kerH C H'(X, Q) , (7.18)

where

HY(X,Q,) = H'(X,EndTy) @ H'(X,End E) @ (ker F Nker R) . (7.19)

The first factor in (7.18) corresponds to complexified o' -corrected hermitian moduli. The second
factor contains a map H : H'(X, Q) — H?*(X,Z,) defined by

\
Mok, A) = Hﬁ’%) da? N AV — (Z— (Tr (Fpdz” A a) — Tr (R,pda” A H)) ,

where « is a (0, 1)-form with values in End ‘£ and & is a (0, 1)-form with values in End Zy. There
is a subtlety in that the parameters in (7.19) corresponding to H'(X, End Zy) are not physical and
can be removed by field redefinitions [15]. The map R in (7.19) is the Atiyah map appropriate for
the deformations of the holomorphic tangent bundle. Finally, we remark that the same results for
the moduli problem of heterotic structures was obtained from first and second order deformations
of a heterotic superpotential.

Armed with these complex coordinates on the space of N' = 1 structures, we can expand the
superpotential in them around a supersymmetric point where W = W = 0. As the superpotential
in N = 1 supergravity must be a holomorphic function of the complex scalar fields, we have that
the variation of the superpotential is exactly equal to its holomorphic variation. Thus we expand

W+AW:AW:/(H+idw+d(AB+iAw))/\(Q+AQ)
X
:2/ (ud/\éder%ud/\ue/\Hde (7.20)
X
—l—,LLd/\ue/\ﬁdxe—%udAadl;)/\Q

where we have suppressed the anti-holomorphic form indices. Strictly though, we have solved a
different problem to the original moduli problem, as we introduced extra degrees of freedom to
the theory. The true moduli space will then be a subspace of the moduli space found in this way,
on which the additional gauge field is fixed to be the Hull connection. How best to describe these
additional constraints remains an open problem.
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8 Conclusion

We have calculated the effective field theory of heterotic vacua of the form R3*! x X at large
radius, correct to order o'. The field theory is specified by a Kéhler potential and superpotential.
Supersymmetry forbids W from being corrected perturbatively in o', but is in general corrected
non-perturbatively in o'. For E obtained by deforming Zx, some of these non-perturbative
corrections have been computed as functions of moduli using linear sigma models. One can now
use the results obtained here and those in [1] to determine the normalised quantum corrected
Yukawa couplings, in examples that may be of phenomenological interest. Although the Kéhler
potential is corrected perturbatively in o', it was conjectured in [1] that the form of the Kéhler
potential does not change to all orders in perturbation theory, and that the o'-corrections are
contained within the hermitian form w. This conjecture is consistent with the work in [14, 15]
and it would be very interesting to prove this conjecture, at least to second order in «'. It should
however be noted that this need not have an effect on the physical matter spectrum. Indeed,
the authors of in the current research suggest to use the hidden Eg -bundle to stabilize complex
structure moduli in more phenomenology oriented models. In this case one only lifts bundle
moduli corresponding to deformations of the hidden bundle, and hence the physical spectrum
important for phenomenology is unaffected. Finally, we collect some useful facts about geometries
where the large volume limit is a compact Calabi-Yau. In particular, recall that a sufficient
condition for a complex manifold (X, J) to satisfy the 0-lemma is the existence of a Kdhler form
compatible with J. Since the complex structure does not change under a-corrections, and since
there must exist a Kéhler form wy corresponding to the zeroth order Calabi-Yau geometry Xy, it
follows that the corrected geometry X satisfies the 0-lemma. Moreover, as the Dolbeault operator
remains unchanged under a-corrections, we can conclude that the Hodge-diamond of X does not
change either. Indeed, as the Dolbeault cohomologies of a Calabi-Yau manifold are topological,
and as we have seen X admits a Kahler metric, any change to this at higher orders in o implies
topological changes of X which contradicts the assumptions of the a-expansion. Note that a
similar statement need not hold for bundle valued cohomologies, as the connections on the given
bundles can potentially receive corrections, and the bundles need no longer be holomorphic in
general. Of course, an enormous amount of work remains before such torsional compactifications
are fully understood and potentially able to lead to fully realistic low energy phenomenology.
An obvious omission is our present lack of knowledge of the Kéahler potential, although this is
the subject of current work. It may be hoped that, given the holomorphic structures discussed,
the Kéhler potential will take a fairly simple and elegant form. Indeed, holomorphic structures
usually come equipped with some form of Weil-Peterson metric on their moduli space, and one
can speculate that the Kéahler metric one obtains upon dimensional reduction corresponds to
such a metric. However, for this present time this remains an open question. The story with
Yukawa couplings is also far from complete. In particular, the connection between higher order
deformations of the superpotential and obstructions has not yet been made explicit and it would be
interesting to see how the details of this emerge. Knowledge of the Yukawa couplings is also very
important for phenomenological purposes as well. It would also be very interesting to study explicit
examples of compactifications with torsion. Compactifications where a large volume Calabi-Yau
locus exists are fairly easy to construct once the zeroth order Kéhler geometry is known, and it
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would be interesting to investigate further what effects the generated torsion has for lifting further
moduli. Studying examples where no zeroth order limit exist is more challenging. Examples of
this kind found in the literature have been shown to negate some of the assumptions we make.
It is hence less clear counts the true moduli for these types of compactifications, but it can be
taken as a conjecture. In the longer term, it may even be hoped that there is the possibility of
constructing examples with all moduli either removed from the low energy theory, or otherwise
stabilised with phenomenologically acceptable masses. Investigations of other aspects of the low
energy phenomenology, the number of Standard Model generations, exotic matter present, may
also be possible and interesting.

References

[1] P. Candelas, X. de la Ossa, and J. McOrist, “A Metric for Heterotic Moduli,” Commun.
Math. Phys. 356 no. 2, (2017) 567-612, arXiv:1605.05256 [hep-th].

[2] M. Atiyah and I. Singer, “Dirac operators coupled to vector potentials,” Proc. Nat. Acad.
Sci. USA. 81 (1984) 2597.

[3] S. Donaldson, “Polynomial Invariants for Smooth Four-Manifolds,” Topology 29 (1990) 257.

[4] S. K. Donaldson, “The Orientation of Yang—Mills Moduli Spaces and 4-Manifold Topology,”
J. Differential Geometry 26 (1987) 397.

[5] E. Witten, “Topological Quantum Field Theory,” Comm. Math. Phys. 117 (1988) 353.

[6] J. A. Harvey and A. Strominger, “String theory and the Donaldson polynomial,” Commun.
Math. Phys. 151 (1993) 221-232, arXiv:hep-th/9108020 [hep-th].

[7] J. P. Gauntlett, “Low-energy dynamics of N=2 supersymmetric monopoles,” Nucl. Phys.
B411 (1994) 443-460, arXiv:hep-th/9305068 [hep-th]."

[8] N. Hitchin, “What is a Gerbe?.” Notices of the American Mathematical Society.

[9] L. Anguelova, C. Quigley, and S. Sethi, “The Leading Quantum Corrections to Stringy
Kahler Potentials,” JHEP 1010 (2010) 065, arXiv:1007.4793 [hep-th]. "

[10] K. Yano, Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press,
1965.

[11] P. Candelas, “Yukawa Couplings Between (2,1) Forms,” Nucl. Phys. B298 (1988) 458.

[12] P. Candelas and X. de la Ossa, “Moduli Space of Calabi-Yau Manifolds,” Nucl. Phys. B355
(1991) 455-481.

[13] L. B. Anderson, J. Gray, and E. Sharpe, “Algebroids, Heterotic Moduli Spaces and the
Strominger System,” JHEP 07 (2014) 037, arXiv:1402.1532 [hep-th].

[14] X. de la Ossa and E. E. Svanes, “Holomorphic Bundles and the Moduli Space of N=1

Supersymmetric Heterotic Compactifications,” JHEP 10 (2014) 123, arXiv:1402.1725
[hep-th].

37


http://dx.doi.org/10.1007/s00220-017-2978-7
http://dx.doi.org/10.1007/s00220-017-2978-7
http://arxiv.org/abs/1605.05256
http://dx.doi.org/10.1007/BF02096766
http://dx.doi.org/10.1007/BF02096766
http://arxiv.org/abs/hep-th/9108020
http://dx.doi.org/10.1016/0550-3213(94)90457-X
http://dx.doi.org/10.1016/0550-3213(94)90457-X
http://arxiv.org/abs/hep-th/9305068
http://dx.doi.org/10.1007/JHEP10(2010)065
http://arxiv.org/abs/1007.4793
http://dx.doi.org/10.1016/0550-3213(88)90351-3
http://dx.doi.org/10.1016/0550-3213(91)90122-E
http://dx.doi.org/10.1016/0550-3213(91)90122-E
http://dx.doi.org/10.1007/JHEP07(2014)037
http://arxiv.org/abs/1402.1532
http://dx.doi.org/10.1007/JHEP10(2014)123
http://arxiv.org/abs/1402.1725
http://arxiv.org/abs/1402.1725

[15]
[16]

[17]

18]
[19]
[20]

[21]
22]

23]

[24]

X. de la Ossa and E. E. Svanes, “Connections, Field Redefinitions and Heterotic
Supergravity,” JHEP 12 (2014) 008, arXiv:1409.3347 [hep-th].

M. Garcia-Fernandez, R. Rubio, and C. Tipler, “Holomorphic string algebroids,”
arXiv:1807.10329 [math.AG].

A. Otal, L. Ugarte, and R. Villacampa, “Invariant solutions to the Strominger system and
the Heterotic equations of motion,” Nuclear Physics B 920 (July, 2017) 442-474,
arXiv:1604.02851 [math.DG].

P. Gauduchon, “Hermitian connections and Dirac operators,” Bollettino U.M.I 11-B 7
(1997) 257-289.

T. Eguchi, P. B. Gilkey, and A. J. Hanson, “Gravitation, Gauge Theories and Differential
Geometry,” Phys. Rept. 66 (1980) 213.

K. Becker, M. Becker, and J. H. Schwarz, String theory and M-theory: A modern
introduction. Cambridge University Press, 2006.

A. Strominger, “Superstrings with Torsion,” Nucl. Phys. B274 (1986) 253.

E. Bergshoeff and M. de Roo, “The Quartic Effective Action of the Heterotic String and
Supersymmetry,” Nucl. Phys. B328 (1989) 439.

E. Bergshoeff and M. de Roo, “Supersymmetric Chern-Simons Terms in Ten-Dimensions,”
Phys. Lett. B218 (1989) 210.

J. McOrist, “On the Effective Field Theory of Heterotic Vacua,” Lett. Math. Phys. 108
no. 4, (2018) 1031-1081, arXiv:1606.05221 [hep-th].

38


http://dx.doi.org/10.1007/JHEP12(2014)008
http://arxiv.org/abs/1409.3347
http://arxiv.org/abs/1807.10329
http://dx.doi.org/10.1016/j.nuclphysb.2017.04.021
http://arxiv.org/abs/1604.02851
http://dx.doi.org/10.1016/0370-1573(80)90130-1
http://dx.doi.org/10.1016/0550-3213(86)90286-5
http://dx.doi.org/10.1016/0550-3213(89)90336-2
http://dx.doi.org/10.1016/0370-2693(89)91420-2
http://dx.doi.org/10.1007/s11005-017-1025-0
http://dx.doi.org/10.1007/s11005-017-1025-0
http://arxiv.org/abs/1606.05221

	Introduction
	The Universal Geometry of Heterotic Moduli
	The extension of A
	The extension of B and H
	The extension of dc 
	The relation H= dc , Bianchi identity and second order relations
	The covariant derivative of (e,)

	The Metric for Heterotic Moduli
	The contribution of D to the moduli space metric
	The  Symbols for the Levi–Civita connection
	The Nijenhuis tensor for X
	The holomorphic form 

	Integrability of the Supersymmetry Equations
	The Effective Field Theory of Heterotic Vacua
	The Moduli, Matter Metrics and Yukawa Couplings
	Conclusion

