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Abstract

In the present article we construct universal representations of a heterotic vacua in the conditions
of the complex structure and hermitian moduli spaces. We show that it agrees with the results that
have recently been obtained from a ten-dimensional perspective where supersymmetric Minkowski
solutions including the Bianchi identity correspond to an integrable holomorphic structure, with
infinitesimal moduli calculated by its first cohomology. As has recently been noted, interplay of
complex structure and bundle deformations through holomorphic and anomaly constraints can
lead to fewer moduli than may have been expected. We derive a relation between the number of
complex structure and bundle moduli removed from the low energy theory in this way, and give
conditions for there to be no complex structure moduli or bundle moduli remaining in the low
energy theory. The link between Yukawa couplings and obstruction theory is also briefly discussed.



1 Introduction

Heterotic geometry is the geometry associated with the moduli space of a heterotic vacua of
superstring theory. The geometrical background, associated with the vacua, is understood, at
large volume, as R1,3×X, where X is a complex 3-dimensional manifold with vanishing first
Chern class. This geometry is endowed with a holomorphic vector bundle E → X, admitting a
connection A that satisfies the Hermitian Yang-Mills equations. The metric on the moduli space
of heterotic supergravity metric was computed, correct to O(α8 ) by a dimensional reduction of
heterotic supergravity. This metric has to be Kähler as a consequence of supersymmetry. It should
not be surprising, therefore, that verifying that the moduli superspace is in fact Kähler requires
taking into account the relations between H, the connection on the bundle E , and the hermitian
form ω on X, since these relations follow from both the anomaly cancellations condition and the
requirement of supersymmetry. The purpose of this article is to show that considering structure
is worthwhile. Before entering into technical matters it may be helpful to indicate why this might
be expected to be the case. To start, consider for example the deformation of a manifold, which
is part of our data. In general relativity one often thinks of a three-geometry that evolves in time.
We think of time as a parameter which governs the evolution. Our aim is to describe the metric on
the space of heterotic vacua. This parameter space geometry, which we term heterotic geometry, is
the generalisation of the special geometry of type II string theory. The heterotic vacua of concern
here derive from compactifying heterotic string theory, at large radius, on R3,1×X , where X is a
smooth complex threefold with vanishing first Chern-class that is endowed with a holomorphic
vector bundle E , that has a connection satisfying the Hermitian–Yang–Mills (HYM) equation
and a gauge invariant three-form H. These quantities satisfy an anomaly condition, that will be
discussed shortly. These vacua are of physical interest since, at low-energies, they realise quasi-
realistic four-dimensional theories of relevance to observable particle physics. These equations
already imply that the moduli space has a recondite character, since the deformations of F , ω
and H are intricately related. By contrast to the case of type II vacua, where the roles of the
complex structure parameters and the Kähler class parameters are strictly separated, there seems
to be no useful distinction, in the heterotic context, between what are conventionally labelled the
complex structure moduli, hermitian moduli and bundle moduli. The deformations of a heterotic
structure, within a given topological class, correspond to the points of the moduli space M , which
is itself a complex manifold. The geometry of the moduli superspaces of these vacua are also
of mathematical interest. The metric on the local moduli space of holomorphic hermitian Yang-
Mills (HYM) bundles E constructed over an arbitrary but fixed complex manifold goes back to
Kobayashi and collaborators. By constructing local coordinates in the spirit of Kodaira-Spencer,
this metric was shown to be Kähler by Itoh. However, the restriction to a fixed CY manifold
is artificial from the point of view of string theory: the moduli space includes deformations of
X , the gauge-invariant three-form H and the vector bundle E simultaneously. We call the triple
(X ,E , H) a heterotic structure. The present work is complementary to a series of papers, which
describe this heterotic structure and identify the moduli of the vacua with certain cohomology
groups. Within the fibration U lies the fibration of the manifold X over M. This is the natural
context in which to discuss the Ehresmann connection — equivalently, the projection ∂ — the
metric g and complex structure J for the extended space. The connection cam allows us to restrict

2



g and J to fibres covariantly and, when this is done, they are identified with the metric g and
complex structure J on X. Furthermore, using ∂ we can also project g and J to the moduli space
metric g] and complex structure J ]. We describe the differential calculus of X and its relation to
deformations. For example, we show that the covariant derivatives are identified as Lie derivatives
acting tensors on X. This leads to an interpretation of deformations with flows on X. We start to
see the profits of our labour. We introduce on X extensions of the connections A and Θ, denoted A
and � respectively, which allows to discuss the extended symmetry groups mentioned above. The
fields A and � are holomorphic connections for the vector bundle U → X. Moreover, we define
the extensions of ω and H, denoted � and H respectively, and suppose a relation H = dc�, as
the extension of the supersymmetry relation. Surprisingly, this relation together with its Bianchi
identity, encapsulate in a simple pair of tensor equations, a set of long and otherwise complicated
equations relating covariant derivatives which were crucial to the derivation of the Kähler moduli
space metric. This is similar to how the laws of electrodynamics when viewed relativistically are
unified into a simple tensor equation.

2 The Universal Geometry of Heterotic Moduli

The central results of this paper were originally derived with the goal of finding the natural Kähler
metric on the moduli of heterotic structures. In the broader context of the heterotic superstring we
show how this is extended to the holotypical derivative and how it is interpreted as a connection.
Remarkably, however, we have found they have a natural geometric interpretation when viewed
in the context of what is known as the universal bundle. The salient point is that geometrising
our algebraic structures is a powerful way of viewing the moduli superspace. Finally, we remark
that the same results for the moduli problem of heterotic structures was obtained in the present
literature from first and second order deformations of a heterotic superpotential.

2.1 The extension of A

The covariant derivative for A defined in [1] transforms covariantly under gauge transformations.
It needs to be generalised to transform, additionally, under bundle diffeomorphisms. To do this
we define an extended connection A for the extended vector bundle U → X

A = Ame
m + A]ady

a , A]a = Λa − Amcam ,

where the components of the corpus Am are identified with the connection along X. In the
following, we will denote the corpus of A by A = Ame

m in the e-basis, the animus by A] = A]adya.
We can divide the form into holomorphic type

A = AAA−AAA† , AAA = A(0,1) .

We will not be specific about the structure group of the universal bundle U beyond requiring it
contain G as a subgroup when restricted to X appropriately. This restriction is important in later
sections when we discuss deformations of TX .

The form AAA can be decomposed into its animus and corpus

AAA = A]α dyα +Aµ eµ .
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The field strength of A is defined as usual

F = dA + A2 . (2.0)

This can be decomposed according to tangibility and in terms of the covariant derivatives Ð ,Ð ],
respectively

F = (Ð + Ð ] − S)(A+ A]) + (A+ A])2 =
1

2
Fmne

men + dya F]a +
1

2
F]ab dy

adyb . (2.1)

Let us unpackage each of the three components of F. The corpus is the field strength of A on X,

Fmn = ∂mAn − ∂nAm + AmAn − AnAm .

The second term defines a covariant derivative that transforms homogeneously under gauge trans-
formations and is invariant under bundle diffeomorphisms:

F]a = DaA , where DaA = ea(A)− (Ðcam)Am −ÐAA
]
a , (2.2)

here
ÐAA

]
a = ÐA]a + [A,A]a] ,

and
ea(A) = ∂aA− cam∂mA .

On a gauge neutral object, Da reduces to Ð ]
a.

In holomorphic coordinates, using the identification of ∆α, we find it is the appropriate gen-
eralisation of the holotypical derivative introduced in [1]:

DαA = eα(A)−∆α
ν A†ν − ðAA]α .

The third equation of (2.1) is

F]ab = 2Ð ]
[aA

]
b] + [A]a, A

]
b]− Sab

mAm , where Ð ]
aA

]
b = ea(A

]
b) .

We take U to be holomorphic meaning

F(0,2) = 0 .

The corpus of F automatically satisfies this requirement in virtue of F (0,2) = 0. The tangibility
[1, 1] component is the condition that A depend holomorphically on parameters

DβA = 0 .

The tangibility [2, 0] component implies F]
αβ

= 0. That is, that the bundle U restricted to M is
holomorphic. In deducing this we have used Sαβ = 0.

Consider now the Bianchi identity for F

dAF = 0 . (2.3)

4



The corpus realises the Bianchi identity on X. The animus gives two further identities

ÐA(DaA) = DaF and [Da,Db]A = −ÐA(F]ab) + Sab
m Fm = 0 ,

where

ÐA(DaA) = Ð(DaA) + [A,DaA] , DaF = Ð ]
aF + [A]a, F ] ,

Da(DbA) = Ð ]
a(DbA) + [A]a,DbA] , ÐAF

]
ab = ÐF]ab + [A,F]ab] .

The relations (2.4) can be derived directly from the definition of the covariant derivative as in [1]
with some labour. What we see here is an alternative derivation through the Bianchi identity.
This also has the advantage of unification, reducing a pair of identities to a single identity.

The Atiyah constraint comes from taking a = α in the first equation of (2.4), and considering
the (0, 2)-component together with the identification of ∆α:

ðA(DαA) = ∆α
µ Fµ .

2.2 The extension of B and H

The field H is the extension of H, and defined as

H = dB− α8

4

(
CS[A]− CS[�]

)
, where CS[A] = Tr

(
AdA +

2

3
A3
)
, (2.4)

where B is the extension of the Kalb–Ramond field

B =
1

2
Bmn e

men + B]am dyaem +
1

2
B]ab dy

adyb = B + B]a dy
a +B] .

H decomposes as

H =
1

3!
dyabcH]

abc +
1

2
dyabH]

ab + dyaH]
a +H ,

where the [1, 2] term will be relevant in what follows. It is given by

H]
a = Ð ]

aB −ÐB]a −
α8

4

(
Tr (A]aÐA)− Tr (Θ]

aÐΘ)
)

+
α8

4

(
Tr (ADaA)− Tr (ΘDaΘ)

)
. (2.5)

We can now rewrite this in terms of covariant derivatives

H]
a = DaB +

α8

4

(
Tr (ADaA)− Tr (ΘDaΘ)

)
−ÐB]a , (2.6)

with the covariant derivative DaB is defined as

DaB = Ð ]
aB −

α8

4

(
Tr (A]aÐA)− Tr (Θ]

aÐΘ)
)
,

which sharpens the relation derived in [1]. We will see why this is a covariant derivative shortly.
By demanding H be gauge invariant, we see that the field B transforms under gauge transfor-

mations:
B→ Φ,ΨB = B +

α8

4

{
Tr
(
YA− Z�

)
+ U−W

}
. (2.7)
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Given the above relations the field strength H is invariant. As the animus of B transforms inho-
mogeneously, it is inconsistent to try to set it to zero. Here Y, U are the extensions of Y and
U :

Y = Φ−1 dΦ , dU =
1

3
TrY3 ,

with Z,W being the spin connection counterpart.
The right hand side of (2.6) is the combination of terms identified in [1] as being gauge invariant.

This we now understand since Ba = H]
a and H is gauge invariant.

The covariant derivative is defined such that it transforms in a manner parallel to the B-field
itself:

(Φ,Ψ)DaB = DaB +
α8

4

(
Tr (Y DaA) + Ya − Tr (ZDaΘ)− Za

)
.

We have also defined

Ya = Ð ]
aU − Tr (Y ]

aY
2) + Ð

(
Tr (Y ]

aA− AY ]
a )
)
,

Za = Ð ]
aZ − Tr (Z]

aZ
2) + Ð

(
Tr (Z]

aΘ−Θ]
aZ)
)
,

Using that the form Y satisfies dY = −Y2, we find that this quantity is Ð-closed

ÐYa = 0 .

In addition to the gauge transformations above the field strength H is invariant under an
additional symmetry, in which B shifts by a d-exact amount,

B→ B + d� , � = βm e
m + β]a dy

a ,

where the one-form � is gauge-invariant. Decomposing this into tangibilities we have

B → B + Ðβ ,

B]a → B]a + Ð ]
aβ −Ðβ]a ,

B]ab → B]ab + Ð ]
aβ

]
b −Ð ]

bβ
]
a − Sabm βm .

(2.8)

The first line corresponds to shifting B by a Ð-exact term. The second line corresponds to shifts
of B]a. The way to think of B]a is that it is another connection; its purpose to is define an invariant
quantity Ba as in (2.6). This invariance can be checked directly, but an easier way to see this
is to note that H is invariant and so H]

a = Ba is invariant. The quantity Ba, mentioned in the
introduction, plays an important role as Ba + iDaω plays the role in heterotic geometry analogous
to the role of complexified Kähler class in special geometry. All this goes to show that the animi
of A and B are connections which are needed to define covariant derivatives on the moduli space.

Although we have not fully explored this aspect, we believe the quantity B]ab with the trans-
formation rules as in the third line above, provide connections that enable one to define second
and higher order derivatives. For example, see [1] where a second order covariant derivative was
defined.
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2.3 The extension of dcω

We will shortly have need for the quantity

dc� =
1

3!
JPJQJR(d�)PQR .

In a holomorphic basis � is (1, 1) and so

dc� = i(d�)(2,1) − i(d�)(1,2) .

The term dc� has vanishing [3, 0] term due to the fact that g]
αβ

is Kähler, while the remaining
components are given by

(dc�)α = iDαω
(1,1) − iDαω

(0,2) ,

(dc�)αβ = − iSαβµ ωµ , (dc�)αβ = iSαβ
µ ωµ ,

(dc�)αβ = − iSαβ
µ ωµ + iSαβ

µ ωµ .

(2.9)

Note that the action of the covariant derivative Dα on a gauge neutral object is the same as Ð ]

so that Dαω
(p,q) = Ð ]

aω
(p,q). In the sections to follow, where no ambiguity will arise we will use

Dα to prevent an unnecessary proliferation of symbols.
On setting S = 0 the expression simplifies significantly

dc� = i(ð− ð)ω + idyα(Dαω
(1,1) −Dαω

(0,2)) + idyβ(Dβω
(2,0) −Dβω

(1,1)) .

While ω is type (1, 1), its derivative Dα is type (2, 1)⊕ (1, 2): Dαω = Dαω
(1,1) +Dαω

(0,2), and this
expresses the type changing property of variations with respect to complex structure.

2.4 The relation H = dc�, Bianchi identity and second order relations

We suppose that the extended supersymmetry relation (3.7) holds on X This imposes some con-
straints on the variations of a heterotic structure. The tangibility [1, 2] part of this relation gives

Bα
(2,0) = 0 ,

Bα
(1,1) − iDαω

(1,1) = 0 ,

Bα
(0,2) + iDαω

(0,2) = 0 .

(2.10)

We define
Zα = Bα + iDαω , and Zα = Bα − iDαω ,

which are the generalisation to heterotic geometry of the variation of the complexified Kähler class
familiar in special geometry δB + iδω. In terms of Z,Z, (2.10) can be written as

Zα
(2,0) = Zα

(2,0) = 0 ,

Zα
(1,1) = 0 ,

Zα
(0,2) = 0 .

(2.11)

7



These equations described first order conditions on the heterotic moduli which were derived in
[13–16] and in this notation in [1] by taking partial derivatives of the supersymmetry relation
H = dcω. We identify Ba with ba and note that H = dc� captures all of the moduli equations
except one. For the remaining one we turn to the Bianchi identity for dH on X:

dH = −α
8

4

(
TrF2 − TrR2

)
= d(dc�) .

The curvatures F and R are of type (1, 1) and so only the type (2, 2) part of this relation is
non-vanishing.

We start with tangibility [1, 3], focusing on holomorphic variation with index α. The first
equality of the previous equation is

(dH)α = −α
8

2

(
Tr (DαA F )− Tr (Dαϑ R)

)
.

Meanwhile (ddc�)α is simplified using

Ð(dc�)α = iÐ(Dαω
1,1 −Dαω

0,2) ,

Dα(Ðcω) = 2i∆α
µ (ðω)µ − 2i ð(∆α

µ ωµ) + i(ð− ð)Dαω ,

and by using (2.10) we get

ð(Z(1,1)
α ) = 2i∆α

µ (ðω)µ +
α8

2

(
Tr (DαA F )− Tr (Dαϑ R)

)
. (2.12)

Let us now turn our attention to tangibility [2, 2]. Assuming that S = 0, this consists of two
relations

Dα(dc�)β −Dβ(dc�)α = − α8

2

(
Tr (DαADβA)− Tr (DαϑDβθ)

)
,

Dα(dc�)β −Dβ(dc�)α = − α8

2

(
Tr (DαADβA†)− Tr (DαθDβθ

†)
)

− α8

4

(
Tr (F]

αβ
F )− Tr (R]

αβ
R)
)
.

(2.13)

The second relation forms part of a critical algebraic relation needed to derive the moduli space
metric in [1] and so we focus on this one. It becomes

Dα(dc�)β −Dβ(dc�)α = −2i
(
DαDβω

)(1,1)
+ 2i∆α

µ (Dβω
(2,0))µ + 2i∆β

ν (Dαω
(0,2))ν

+ iDα(∆β
ν ων)− i∆β

ν(Dαω
(1,1))ν + iDβ(∆α

µ ωµ)− i∆α
µ(Dβω

(1,1))µ .

The last equation can be simplified by noticing a further relation

Dα(∆β
ν ων)− ∆β

ν(Dαω
(1,1))ν = (ðSαβ

ν)ων = 0 ,

which sets the last line to zero. Putting everything together, we can rearrange (2.13) to obtain(
DαDβω

)(1,1)
= − iα8

4

(
Tr (DαADβA†)− Tr (DαθDβθ

†)
)

− iα8

8

(
Tr (F]

αβ
F )− Tr (R]

αβ
R)
)

+ ∆α
µ (Dβω

(2,0))µ + ∆β
ν (Dαω

(0,2))ν .

This shows that the Bianchi identity for H incorporates the second order algebraic relation for the
variation of the hermitian form that is crucial in deriving the α8 -corrected moduli metric.
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2.5 The covariant derivative of Θ(e
,
ρ)

We now compute DαΘ(e
,
ρ) to zeroth order in α8 . We will find that only when e

−
ρ = 1 is the

connection holomorphic, that is R(0,2) = 0. For the remainder of the paper we set Sab = 0, and work
in harmonic gauge, the conventional choice in supergravity: ∇mδgmn = 0 where ∇m = ∂m + Θm is
computed with respect to the affine spin connection on X that is discussed in Appendix ??. This
gauge fixing decomposes into

∆α
µ ωµ = 0 , ∇µ ∆α

µ = 0 , ∂m
(
ωµνDαωµν

)
= 0 ,

provided X has h(0,2) = 0. Interestingly, without vanishing curvature S = 0 and gauge fixing, the
connection is not holomorphic for any choice of e

,
ρ.

First, we demand that the connection is holomorphic DαΘµ = 0. We find the following
components are not immediately zero:

DαΘ(e
,
ρ)
µ
ν
σ =

(1− e
+
ρ)

2i
gνλ ∇µDαωσλ , DαΘ(e

,
ρ)
µ
ν
σ = −(1− e

+
ρ)

2i
gνλ ∇µDαωλσ .

We see that the covariant derivatives of the variations appear

∇σ ∆αµ
ν = ∂σ ∆αµ

ν + Θσ
ν
λ ∆αµ

λ , ∇µDαωσν = ∂µDαωσν −Θµ
λ
ν Dαωσλ .

For the connection to be holomorphic we need to set e
−
ρ = 1. It can be checked that this relation

is sufficient to ensure that R(0,2) = 0. So we have found a 1-parameter family of holomorphic
connections on X.

Computing, we find the following non-zero components for the physical deformations DαΘµ :

DαΘ(e
,
e
−

1)
µ
ν
σ = ∇σ ∆αµ

ν + i∇ν Dαωσµ ,

DαΘ(e
,
e
−

1)
µ
ν
σ = −gνλ

(
∇λ ∆αµ

ρ + i∇ρDαωλµ
)
gρσ .

(2.14)

Before we continue, let us pause to make some comments. Firstly, we have not computed terms
which have vertical indices, such as DαΘµ

α, as they do not appear in (3.6).
Second, it is straightforward to show that DαΘ satisfies the Atiyah condition:

∇(0,1)DαΘ(0,1) = ∆α
µRµ . (2.15)

Third, for the Hull connection (e
,
ρ)=(1, 0) if we compute the covariant derivative of the fibre

metric, we find it vanishes since we have set S to zero:

∇∇α(ds2
X) = ∇∇α

(
2 gµν e

(µ ⊗ eν)
)

= −2gµν
(
Sαβ

µ dyβ ⊗ eν + Sαβ
ν eµ ⊗ dyβ

)
= 0 .

These covariant derivatives do not mix components of the fibre metric with components of the
base metric under parallel transport along the moduli space.

Fourth, the extended connection � defines a covariant derivative of tensors, and it might
be tempting to interpret this parallel transport as the appropriate deformation theory of tensors.
However, this does not reduce to known expressions derived in [1] for the appropriate deformations
of tensors on X. Note also, if one were to impose that ∇∇ and π commute, then this would imply
�ma and �am vanish. This would mean that Dαgµν and ∆αµ

ν both vanish, which is a condition
we do not want.
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3 The Metric for Heterotic Moduli

We come to computing the parameter space metric. We compute it in two ways: the first is by
computing the metric deriving from a Kähler potential which we propose with some prescience.
The second is to dimensionally reduce α8 -corrected heterotic supergravity. The dependence of the
bundle parameters arises through the mixing of fields implied by supersymmetry as dictated by
(6.1). The metric can be written in the form

ds2 = 2Gξη dyξdyη + 2G0
αβ

dzαdzβ ,

where

G0
αβ

= −

∫
χαχβ∫
Ω Ω

,

Gξη =
1

V

∫
Dξω ? Dηω +

iα8

8V

∫
ω2Tr

(
DξADηA†

)
− iα8

8V

∫
ω2Tr

(
DξϑDηϑ

†
)
.

(3.1)

Here the χα form a basis of closed (2, 1)-forms, and the second term in the last line is the Kobayashi
metric, extended to the entire parameter space. The metric is the natural inner product of Dξω

and DξA together with the inner product of representatives of deformations of complex structure.
As expected, the B-field does not make an explicit appearance, being determined by the other fields
in the heterotic structure through the anomaly and supersymmetry constraints. The construction
of this metric did not assume any underlying special geometry, and its simplicity leads us to
conjecture it holds for a general heterotic structure satisfying the equations of motion and so for
the Strominger system. The result (3.1) builds on [9] who studied the moduli space metric to
O(α8 2) restricted to a locus of the parameter space in which only the hermitian part of the metric
varies δgµν 6= 0 with the remaining fields remain fixed, δA = δB = 0. On this sub-locus, the
leading correction to the moduli space metric is O(α8 2) and not O(α8 ). As can be seen from
(3.1), this result is a manifestation of demanding the gauge field remain fixed — which is in our
language DξB = 0 and DξA = 0. In general, we need to allow all the fields to vary, even when
considering Kähler parameter variations. As shown in (3.1), this means the metric is corrected at
O(α8 ), with the property, for example, that the special geometry metric is corrected through a
mixing the complex structure and hermitian parameter sectors.

We propose a Kähler that describes the α8 -corrected moduli space metric. It is remarkably
similar to the special geometry Kähler potential, in which the Kähler form is replaced by the
α8 -corrected hermitian form:

K = K1 +K2 = − log

(
i
∫

Ω Ω

)
− log

(
4

3

∫
ω3

)
. (3.2)

Although it is remarkably similar to the special geometry Kähler potential, in the derivation of the
moduli space metric and Kähler potential, no assumptions are made about special geometry. The
fact we arrived at such a similar Kähler potential is a surprising conclusion from our calculation.

In this section we compute the metric using the results constructed in the previous two sections.
The answer agrees with known mathematics literature in the situation with the CY is fixed. It
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also agrees with the answer we get from dimensionally reducing α8 -corrected supergravity in the
next section. We conclude this is the Kähler parameter space metric and Kähler potential as
dictated to us by α8 -corrected supergravity.

The first term, K1, gives the complex structure metric:

G0
αβ

= ∂α∂βK1 =
1

4V

∫
∂αgµν∂βg

µν ? 1 = − i
V ‖Ω‖2

∫
χα ? χβ. (3.3)

The second term K2 contains all the α8 -corrections. Differentiating twice

∂ξ∂ηK2 =
1

V

∫
∂ξω ? ∂ηω −

1

2V

∫
ω2∂ξ∂ηω . (3.4)

We need to turn these terms into appropriate holotypical derivatives in order to express the
metric in gauge invariant quantities that reflect the physical moduli fields that arise in the dimen-
sional reduction. The first term uses

∂ξω = Dξω
1,1 + Dξω

0,2 .

For the second, we use ω is a (1, 1)-form and so

ω2∂ξ∂ηω = ω2DξDηω
1,1 =

1

2
ω2{Dξ,Dη}ω1,1.

The second equality follows from [∂ξ, ∂η]ω = 0.
Returning to the Kähler potential,

∂ξ∂ηK2 =
1

V

∫
(Dξω

1,1 + Dξω
0,2) ? (Dηω

1,1 + Dηω
2,0)− 1

4V

∫
ω2{Dξ,Dη}ω1,1

=
1

V

∫ (
Dξω

1,1 ?Dηω
1,1 + Dξω

0,2 ?Dηω
2,0
)

+
i

4V

∫
ω2i{Dξ,Dη}ω1,1 .

In the second term Dξω
0,2 ?Dηω

2,0 is O(α8 2). For the third term we use (??):

i
4V

∫
ω2i{Dξ,Dη}ω =

i
4V

∫
ω2
[α8

2
TrDξADηA† + ∆ µ

ξ Υ1,0
η µ −∆ ν

η Υ0,1
ξ ν

]
,

where Υξ is defined, and also

1

2
ω2∆ ν

η Υ0,1
ξ ν = Dηω

2,0 ? B0,2
ξ − iDηω

2,0 ?Dξω
0,2 = O(α8 2

) .

In this way we see that

i
4V

∫
ω2i{Dξ,Dη}ω =

iα8

8V

∫
ω2TrDξADηA† .

Hence,

∂ξ∂ηK2 =
1

V

∫
Dξω

1,1 ?Dηω
1,1 +

iα8

8V

∫
ω2TrDξADηA†

Including the complex structure special geometry metric (3.3) we get

ds2 = 2GK
ξη dy

ξdyη + 2G0
αβ

dzαdzβ , (3.5)
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where dyξ = {dzα, dtρ, dwi}. So when we choose complex coordinates on M so that holds, a
choice naturally handed to us by string theory as shown in the next section, we find the Kähler
potential exactly gives the metric arising from the dimensional reduction.

The upshot is that the complex structure metric G0
αβ

is unchanged in O(α8 ), while the com-
plexified Kähler metric GK

ξη is corrected, and, as written above, implicitly includes α8 -corrections.
The complex structure metric can still, as is the case of special geometry, be written as a metric
on the cohomology classes. This is not obviously the case for the metric GK

ξη, we intend to return
to this point in future work.

In section 4, we illustrate a utility of X by showing how the curvature R in (6.1) can be used
to compute the covariant derivative DαΘ in terms of the complex structure moduli ∆α

µ and
hermitian moduli Dαω

1,1 to zeroth order in α8 . We then use this to compute the last term in the
moduli space metric g] derived in [1] to be

ds] 2 = 2g]
αβ

dyα ⊗ dyβ ;

g]
αβ

=
1

V

∫
X

{
∆α

µ ?∆β
ν gµν +

1

4
Zα ? Zβ +

α8

4
Tr
(
DαA ?DβA

)
+
α8

2

(
∆αµν∆βρσ + DαωρµDβωσν

)
Rµρνσ

}
,

(3.6)

which generalises an expression in [9] to include all the moduli.
In section 5, we put all of this together to show how to derive the moduli space metric g]

αβ

from its Kähler potential in a concise way, which simplifies much of the analysis of [1].
We have need of derivatives that are covariant under the coordinate transformations, this

requires a refinement of the derivatives defined in [1] for which covariance was required only under
the simpler transformations (y, x) → (ỹ(y), x̃(x)). We are led to construct outer derivatives
that descend from d and covariant derivatives Ð ]

a and Da. For complex manifolds X and M the
operators Ð and Ð ] split further into ð + ð and ð] + ð], which are the analogues of the familiar
split d = ∂ + ∂.

Furthermore, we overload the derivative symbol so that Ð ]
a, say, should also be covariant with

respect to gauge transformations. When we take into account the complex structure of X and M ,
the Ð ]

a decomposes further into Dα and Dβ, which are suitable generalisations of the holotypical
derivatives of [1]. From §2.3 we write D in place of Ð ] even when acting on ‘gauge neutral’ objects
since no ambiguity arises, and this gives cleaner expressions. For example, we understand that
Dαω = Ð ]

αω.
In the previous sections we have described in detail how to extend the geometry of X to the

larger structure of the fibration X. This also allowed us to describe geometrically the variations
of the metric and complex structures on X in terms of Lie derivatives and flows on the moduli
space M . We now study the geometry U, the universal bundle, whose base manifold is X. This is
a holomorphic bundle with connection A, with A the natural extension of A. The field strength F
for A has a tangibility [1, 1] part which exactly describes the variation of A. The Bianchi identity
for F efficiently encapsulates otherwise subtle identities derived in [1].

The universal geometry also includes the three-form H = dcω and its Bianchi identity (6.2).

12



The extension of H to X is defined in a natural way

H = dc� . (3.7)

We demand that H obeys an extended Bianchi identity

dH = −α
8

4

(
Tr (F2)− Tr (R2)

)
.

Remarkably, this equation elegantly captures otherwise complicated algebraic relations derived
with much effort in [1]. These identities are important as they are central to the construction of
the metric on M and showing that it is Kähler. Using the extended quantities on X we re-derive
the metric on M in a concise fashion.

At this point it is useful to pause, and recall what happens in special geometry when the gauge
connection is identified with the spin connection, δA= δΘ. We do not rely on being connected to
this example, but it serves the purpose of illustration for the more general case below. The only
independent variations are contained within δgmn and δBmn. Denote the α8 -expansion of fields as
B = B0 + α8B1 + . . . , ω = ω0 + α8 ω1 + . . . .

A variation of the metric is

∂ξ(ds2) = 2∆ ρ
ξµ gρν dxµ ⊗ dxν + 2(∂ξg)µν dxµ ⊗ dxν .

Since δgµν and δgµν separately solve the Lichnerowicz equation, they can be varied independently of
each other, so we can assign independent parameters to these variations. The mixed component,
δgµν , is a zero-mode of the Lichnerowicz operator if and only if it is a harmonic (1, 1)-form.
Similarly, the B-field satisfies dδB0 = 0 and is gauge-fixed d†δB0 = 0, so δB0 can be expanded in
harmonic (1, 1)-forms. In sum, we associate parameters to field variations as follows:

δgµν = δzα∆α(µν) , δzα ∈ C, for α = 1, . . . h2,1 ,

δω = δvrer, δB = δurer, δur, δvr ∈ R, er ∈ H1,1(X,R) , for r = 1, . . . , h1,1. (3.8)

The conventional choice of gauge fixing, ∇mδgmn = 0, implies ∇µ∆α(µν) = 0. When this is so, each
tensor ∆α(µν) is in one-to-one correspondence with a harmonic representative ∆ ρ

α ∈ H1(X,T ).
To see this vary the Kähler condition ∂ω = 0 with respect to complex structure to give

∂Dαω
0,2 = 0 .

As h0,2 = 0,
Dαω

0,2 = i∆α[µν]dxµdxν = ∂kα

for some (0, 1)-form kα. Co-closure of ∆ ρ
α gives ∂µ∆αµν = ∂µ∆α [µν] = 0 and, as X is compact,

this forces ∆α[µν] = 0. Hence, ∆ ρ
α is in one-to-one correspondence both with the metric variations

δgµν via
gρνδgµν = δzα∆αµ

ρ , (3.9)

and with harmonic (2, 1)-forms χα via

χα =
1

2
Ω ν
ρσ ∆αµνdxρdxσdxµ . (3.10)
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The inverse of this last relation is

∆ µ
α =

1

2 ‖Ω‖2 Ω
µτρ
χα τρ σ dxσ . (3.11)

We have seen these relations before, though now we have specialised to the case α8 = 0, for which
∆α [µν] = 0, and this has allowed us to write (3.9) in the given form. It is easy to see χα and ∆ µ

α

are also ∂-closed and co-closed. This establishes an isomorphism H1(X,T ) ∼= H2,1(X,C).
Promoting the parameters to dynamical fields, denoted by corresponding capital letters, for

example ur → U r(y), Lg is

Lg = − 1

2V

∫
d6x
√
ggµνgρτ

(
∂e(δgντ )∂

e(δgµρ) + ∂e(δgµτ )∂
e(δgνρ)

)
= − 1

2V

∫
d6x
√
g
(
∂eZ

α∂eZβ∆α(µν) ∆
(µν)

β
+ ∂eωµν∂

eωµν
)

= −2G0
αβ
∂eZ

α∂eZβ +G0
rs ∂eV

r∂eV s .

(3.12)

where we identify the special geometry metrics

G0
αβ

= − i
V ‖Ω‖2

∫
χα ? χβ , G0

rs =
1

2V

∫
er ? es .

We have used the Kaluza–Klein ansatz (3.8) in writing ∂eω = ∂eV
rer and ∂e(δgµν) = ∂eZ

α∆α(µν)

together with (3.11). The H-field gives

LH = G0
rs ∂U

r∂U s .

The complex structure moduli space automatically gives a Kähler moduli space metric G0
αβ
. The

Kähler moduli spaceMK is also complex but the choice of complex coordinates in terms of ur, vr is
ambiguous. The canonical choice is to associate a point p ∈MK with a complexified form B+ iω.
As dimCMK = h1,1 there are local coordinates tρ, tσ for ρ, σ = 1, . . . , h1,1 to be identified. The
tangent space TpMC

K is a complex vector space, and the complex structure facilitates a splitting:
TpMC

K = TpM1,0
K ⊕ TpM0,1

K . The er are a basis for the complexification H1,1(X,C) and so the
conventional choice is

δB + iδω = (δuρ + iδvρ)eρ ∈ T 1,0
p MK

∼= H1,1(X,C) .

Similarly, deformations of B − iω are identified as

δB − iδω = (δuσ − iδvσ)eσ ∈ T 0,1
p MK

∼= H1,1(X,C) .

The special geometry metric is then given by identifying the metric of the kinetic terms in the
Lagrangian (3.12):

ds2 = 2G0
αβ

dzαdzβ + 2G0
ρσ dt

ρ
0dt

σ
0 ,

where for harmonic forms er, χα we can write the metrics in a form that depends only on the
cohomology classes:

G0
αβ

= −
∫
χα χβ∫
Ω Ω

, Gρσ =
1

2

(
1

2V

∫
eρ ω

2

)(
1

2V

∫
eσ ω

2

)
− 1

4V

∫
ω eρ eσ .
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Now we proceed to the general case, including the α8 -correction and assuming a general choice
of holomorphic semi-stable vector bundle. The Kaluza–Klein ansatz includes a correction that
allows for a dependence on all parameters:

δω = δvrer + α8 δyMDMω, δH = d
(
δurer + α8 δyMBM

)
.

When substituted into the Ricci-scalar and H-field kinetic term, we identify the metric through
the kinetic terms arising from ds2

g and ds2
H respectively:

ds2
g = G0

rsdv
rdvs + α8

(
1

V

∫
Dξω

1 ? es

)
dyξdvs + α8

(
1

V

∫
er ?Dηω

1

)
dvrdyη + 2G0

αβ
dzαdzβ,

ds2
H = G0

rsdu
rdus + α8

(
1

V

∫
B1
ξ ? es

)
dyξdus + α8

(
1

V

∫
er ? B1

η

)
durdyη

= G0
rsdu

rdus + iα8

(
1

V

∫
Dξω

1 ? es

)
dyξdus − iα8

(
1

V

∫
er ?Dηω

1

)
durdyη

+ α8

(
1

V

∫
er ? γ

1
ξ

)
durdyξ + α8

(
1

V

∫
er ? γ

1
η

)
durdyη ,

where we have substituted spacetime fields kinetic energy terms for metric coordinates onM e.g.
∂eU

r → dur. In the last equality, we have used the supersymmetry relation B1,1
ξ = iDξω

1,1 +γ1,1
ξ +

[d(. . .)]1,1. We have written the special geometry metric G0
rs, and we identify the α8 -correction to

it:

G0
rs =

1

2V

∫
er ? es , G1

ξs =
1

2V

∫
Dξω

1 ? es . (3.13)

The freedom to shift by d-exact terms means we can expand γ1
ξ in harmonic (1, 1) forms, γ1

ξ =

γ1 s
ξ es giving(

α8

2V

∫
er ? γ

1
ξ

)
durdyξ =

(
α8

2V

∫
er ? es

)
γ1 s
ξ durdyξ = α8G0

rsγ
1 s
ξ durdyξ .

Adding ds2
g and ds2

H together

ds2
g + ds2

H = 2G0
αβ

dzαdzβ +G0
rs

(
dvrdvs + durdus + α8 γ1 r

ξ dyξdus + α8 γ1 r
η dyηdus

)
+ 2iα8G1

ξs dy
ξ(dus − idvs)− 2iα8G1

rη (dur + idvr) dyη

= 2G0
αβ

dzαdzβ +G0
rs

(
dur + idvr + α8 γ1 r

η dyη
)(

dus − idvs + α8 γ1 s
ξ dyξ

)
+ 2α8G1

ξsdy
ξ(dvs + idus) + 2α8G1

rη(dv
r − idur) dyη .

The penultimate line indicates the complex coordinates on the parameter spaceM are modified
at first order in α8 . We can view this as a change in special geometry complex structure.

15



4 The contribution of DαΘ to the moduli space metric

We are now in a position to compute the last term of (3.6). The connection in that metric is the
Hull connection (e

,
ρ) = (1, 0), though in fact e drops out of the following calculation and so it

is valid for a 1-parameter family. The integration is evaluated for a fixed point y ∈ M giving a
simplifying rule em → dxm.

We use the result (2.14) to find

Tr
(
DαΘ ?DβΘ

)
= 2

(
∇(1,0)∆α

µ + i∇µDαω
(1,1)

)
?
(
∇(0,1)∆β

ν − i∇ν Dβω
(1,1)

)
gµν ,

where ∇(1,0)∆α
µ = dxν ∇ν ∆α

µ.
Using Dαω

(0,2) = O(α8 ) we find

− α8

4V

∫
X

Tr
(
DαΘ ?DβΘ

)
=

− α8

2V

∫
X

∇(1,0)∆α
µ ?∇(0,1)∆β

ν gµν −
α8

2V

∫
X

∇µDαω ?∇µDβω

+
iα8

2V

∫
X

∇(1,0)∆α
µ ?∇µDβω −

iα8

2V

∫
X

∇ν Dαω ?∇(0,1)∆β
ν +O(α8 2

) .

At this point, we notice a series of useful identities. The variation of the complex structure satisfies

∇σ∇σ ∆α
µ = ∆α

σνRσλν
µdxλ and ∇µ∇(1,0)∆α

µ = 0 .

where we used the vanishing of the pure part of the curvature tensor for Θ: Rνρλ
µ = 0.

For the Kähler form variation we find

∇σ∇σDαω = Rµν
στ Dαωστ dxµdxν and gµν ∇τ∇νDαωτσ dxσ = 0 .

After integrating by parts, using the terms above and metric compatibility of ∇ we find to
first order in α8 :

− α8

4V

∫
X

Tr
(
DαΘ ?DβΘ

)
=

α8

2V

∫
X

(
∆αµν∆βρσ + DαωρµDβωσν

)
Rµρνσ .

This expression agrees in form with that derived in [9].
We derive the moduli space metric from the Kähler potential in a concise manner using ex-

tended forms on X. As in the previous section, we set Sab = 0 and within integrals over X we
have the rule em → dxm, ea → ∂a.

The moduli space metric g]
αβ

has the associated Kähler form

ω] = ig]
αβ

dyαdyβ .

We show using X that

ω] = iDDK , where K = K 1 + K 2 = − log

(
4

3

∫
ω3

)
− log

(
i
∫

Ω Ω

)
.
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That is, we are showing that K is the Kähler potential for the moduli space metric.
We adopt the convention that when a universal form appears within an integral over X, the

only surviving part is that which makes the integrand a top form on X. Some useful statements
illustrating this are∫

X

ω2F =

∫
X

ω2F = 0 ,

1

2

∫
X

ω2TrF2 =

∫
X

ω2Tr
(
F Fαβ − Fα Fβ

)
dyαdyβ =

∫
X

ω2Tr (DαADβA†) dyαdyβ,∫
X

ω2 DDω =

∫
X

ω2∂∂ω =

∫
X

ω2∂∂� .

(4.1)

where we use the relations ω2F = 0, DβA = 0 and ∂(ω2) = ∂(ω2) = 0. We will also use, within
the integrand,

D

(
ω2

2V

)
= − 1

V
?Dω . (4.2)

Recall that dΩ = −k]Ω + � with � = 1
2
χαµνρ dyαdxµdxνdxρ and k] = DK 2 = dyα∂αK 2 and we

use dΩ = DΩ = 0.
Consider first the derivatives of K 1,

DDK 1 = −D
(

1

2V

∫
X

ω2Dω

)
= ↑ 1

V

∫
X

Dω ?Dω − i
2V

∫
X

ω2∂∂�

= ↑ 1

V

∫
X

Dω ?Dω − α8

16V

∫
X

ω2
(
TrF2 − TrR2

)
=

(
1

V

∫
X

Dαω ?Dβω +
iα8

8V

∫
X

ω2Tr
(
DαADβA† −DαθDβθ

†)) dyαdyβ ,

(4.3)

where we have used (4.1) and (4.2).
While for the derivatives of K 2 we have

iDDK 2 = −iD

(∫
X

ΩDΩ∫
X

Ω Ω

)

= ↑ i

(∫
X
DΩ Ω

∫
X

ΩDΩ

(
∫
X

Ω Ω)2
−
∫
X
DΩDΩ∫
X

Ω Ω

)

= −i
∫
X
χα χβ∫
X

Ω Ω
dyαdyβ ,

(4.4)

where we use ∂Ω = ∂Ω + DΩ = 0 and, in the second line, several terms vanish owing to consider-
ations of holomorphic type.

Finally, combining (4.3) and (4.4), we obtain the desired result

iDDK = ω] .
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4.1 The � Symbols for the Levi–Civita connection

These are the � symbols for the Levi–Civita connection. We first invert the relation and decompose
the indices, giving

�mn = −cam �bn + �mn ,

�an = �an ,

�mb = −cam �ab − cam �an cbn + �mb + �mn cbn + d cbm ,

�ab = �ab + �an cbn .

(4.5)

Using the symbols for �LC, we have

�nk = dxm
(

ΓLC
m
n
k +

1

2
cb
n g]bdDdgmk

)
+

+ dya
(
ca
m ΓLC

m
n
k + ca

m cb
n g]bdDdgmk + ∂kca

n +
1

2
gnlDaglk + cb

n g]bd Sad
l glk

)
,

�bk = −1

2
dxm g]bdDdgmk −

1

2
dya
(
ca
m g]bdDdgmk + g]bd Sad

l glk

)
,

�nc = dxm
(

ΓLC
m
n
k cc

k + ∂mcc
k +

1

2
cb
n g]bdDdgmk cc

k +
1

2
gnlDcglm +

1

2
cb
n g]bd Scd

l glm

)
+ dya

(
∂acc

n + (∂kca
n)cc

k + ca
m cb

n cc
kΓLC

m
n
k − cbn Γ]LC

a
b
c

+
1

2
ca
m cb

n g]bdDdgmk cc
k +

1

2
ca
m gnlDcglm +

1

2
cc
k gnlDaglk

+
1

2
Sac

n +
1

2
Scd

l ca
m cb

n g]bd glm +
1

2
Sad

l cb
n cc

k g]bd glk

)
,

�bc = −1

2
dxm

(
cc
k g]bdDd gmk − Sdcl g]bd glm

)
+ dya

(
Γ]LC

a
b
c −

1

2
ca
m cc

k g]bdDdgmk +
1

2
Sdc

l ca
m g]bd glm −

1

2
Sad

l g]bd glk cc
k
)
.

(4.6)

4.2 The Nijenhuis tensor for X

The Nijenhuis tensor for J is

NJ = (JP∂PJQ − JPQdJP )∂Q , (4.7)

where uP = (ya, xm) denotes a point in X and we write JP = JSPduS. The complex structure is
triangular in the coordinate basis:

J = Jm
nem ⊗ en + J ]a

bea ⊗ eb = Jm
n dxm ⊗ ∂n + (ca

mJm
n − J ]abcbn) dya ⊗ ∂n + J ]a

b dya ⊗ ∂b .

Thus,
Jma = 0, Jam = Jn

mca
m − J ]abcbm .

The terms in (4.7) decompose according to tangibility. In the following, we suppress the ⊗ in writ-
ing out the tensor structure of NJ to simplify notation, so for example NJ = 1

2
NJ PQ

RduPduQ∂R.
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1. The first term, proportional to dxmdxn, reduces to that on X

1

2
NJ mn

Qdxmdxn∂Q = NJ . (4.8)

2. The next term has mixed tangibility dyadxm

NJ am
Qdyadxm∂Q = NJ mn

qca
m dyadxn ∂q + (J ]a

bδp
q − δabJpq) eb(Jmp) ∂q +

+
(
J ]a

bJp
qδm

n − J ]baJmnδpq
)

[en, eb]
p dyadxm∂q .

where
eb(Jm

p) = ∂bJm
p − cbn∂nJmp and [en, eb] = −(∂ncb

q) ∂q .

We use the projectors to rewrite the NJ am
Q components

NJ am
Qdyadxm∂Q = NJ mn

qca
m dyadxn ∂q + 2i (PacQp

q −Qa
cPp

q)ec(Jm
p) ∂q +

+ 4
(
Pa

cPm
nQp

q +Qa
cQm

nPp
q
)

[en, ec]
p dyadxm∂q .

(4.9)

3. The final term of (4.7) has tangibility dyadyb

1

2
NJ ab

Qdyadyb∂Q =
1

2
NJ] ab

ddyadyb ed +
1

2
NJ mn

qca
mcb

n dyadyb eq +(
J ]a

c ec(Jp
q)cb

p − Jmq ea(Jpm)cb
p
)
dyadyb∂q +(

δa
cδb

dδp
q + J ]a

cJp
qδb

d − J ]acJ ]bdδpq + J ]b
dJp

qδa
c
)

(∂ccd
p)dyadyb∂q +(

δa
cδb

dJn
mJp

q−δacJ ]bdJnmδpq−J ]acδbdδnmJpq+J ]acJ ]bdδnmδpq
)
cc
n(∂mcd

p) dyadyb ∂q .

In terms of projectors

1

2
NJ ab

Qdyadyb∂Q =
1

2
NJ] ab

ddyadyb ed +
1

2
NJ mn

qca
mcb

n dyadyb eq +

2i
(
Pa

cQp
q −Qa

cPp
q
)
ec(Jm

p)cb
mdyadyb∂q − 2

(
P cP dQp +QcQdPp

)
[ec, ed]

p−

4
(
P cP dQpPn

m +QcQdPpQn
m + P cQdQn

mPp +QcP dPn
mQp

)
cc
n[em, ed]

p . (4.10)

Gathering (4.8), (4.9) and (4.10), and simplifying we find

NJ =
1

2
NJ mn

qemeneq + 2i ec (Jm
p)
(
P ]cemQp −Q]cemPp

)
−

4[ec, en]p
(
P ]cP nQp +Q]cQnPp

)
− 2[ec, ed]

p
(
P ]cP ]dQp +Q]cQ]dPp

)
+

1

2
NJ] ab

ceaebec .

(4.11)

The second and third terms combine in virtue of the relation

[P ]
a, Pm]pdyaem = − i

2
P ]c ec(Jm

p)em + P ]cPm[ec, em]p .
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Note also that
[P ]
c , P

]
d ]
q = P ]

c
aP ]

d
b[ea, eb]

q .

These relations, together with (4.11), give the final expression

NJ =
1

2
NJ mn

q em en eq − 4[P ]
a, Pm]q ea emQq − 4[Q]

a, Qm]q ea em Pq

− 2[P ]
c , P

]
d ]
q ec edQq − 2[Q]

c, Q
]
d]
q ec ed Pq +

1

2
NJ] cd

e ec ed ee .

The first and last term are NJ and NJ] .

4.3 The holomorphic form Ω

We define the holomorphic three form on X to have an extension which is purely vertical

Ω =
1

3!
Ωµνρ e

µeνeρ , (4.12)

where eµνρ is the constant antisymmetric symbol and the function f depends holomorphically on
the coordinates. As ?Ω = −iΩ, it follows Ω that is d-harmonic. Supersymmetry implies that it is
covariantly constant with respect to the Bismut connection ∇BΩ = 0. Decomposing according to
holomorphic type yields two relations

∇B
µΩ =

(
∂µ log ‖Ω‖2 −Hµν

ν
)

Ω = 0 ,

∇B
µΩ = −gνλ(∂µgλν − ∂λgµν) Ω = Hµλ

λ Ω = 0 ,

which are solved by
Hµν

ν = 0 , ∂µ log ‖Ω‖2 = 0 .

The three–form Ω is a section of a line bundle over the moduli spaceM with a C∗–gauge symmetry

Ω→ λ(y) Ω , λ ∈ C∗ . (4.13)

Now consider variations of Ω, which need to be covariant under (4.13). The derivative ð]αΩ is
decomposed into holomorphic type on X:

ð]αΩ = (Ð ]
αΩ)(3,0) + (Ð ]

αΩ)(2,1) ,

where the superscripts refer to holomorphic type with respect to J . Using {Ð ,Ð ]} = 0, applying
Ð ] to ÐΩ = 0 and decomposing according to

ð(Ð ]
αΩ)(2,1) = 0 and ð(Ð ]

αΩ)(3,0) + ð(Ð ]
αΩ)(2,1) = 0 . (4.14)

The first equation defines a ð-closed form χα = ∆α
µΩµ. For the second equation the Hodge

decomposition of (Ð ]
αΩ)(3,0) with respect to the ð-operator gives the sum of a harmonic form

and a ð-exact term. As h3,0 = 1, the harmonic term is Ω multiplied by a parameter dependant
coefficient K 2α

(Ð ]
αΩ)(3,0) = −K 2α Ω + ðζα . (4.15)
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Multiplying this equation by Ω and integrating over X, we see the coefficient K 2α can be written
as a derivative

K 2α = ∂αK 2 ; K 2 = − log

(∫
X

iΩ Ω

)
.

Under small diffeomorphisms, there is a transformation law for δΩ = δyαÐ ]
αΩ

δΩ(3,0) → δΩ(3,0) − ∂(eµ Ωµ) and δΩ(2,1) → δΩ(2,1) − ∂(eµ Ωµ) .

Comparing this equation with (4.15) we see that we can solve eµ Ωµ = δyαζα with explicit solution
given by

εν =
1

2 ‖Ω‖2 Ω
νρσ

(δyαζρσ + (∂ξ(1,0))ρσ) ,

where ξ(1,0) is an arbitrary one form. With this choice δΩ(3,0) is harmonic. We see that ξ(1,0) is
a residual gauge freedom that does not affect δΩ. This choice coincides with δω = δyαÐ ]

αω
(1,1)

being also harmonic. Firstly, because ω is closed it follows that δω(1,1) is ð-closed. Secondly, it is
co-closed for the following reason. We write Ð ]

αΩ(3,0) in two different ways. The first is in (4.15)
with ζα = 0. The second is to use that Ωµνρ = fεµνρ with f a holomorphic function of parameters
to give

Ð ]
αΩ(3,0) =

(
∂α log ‖Ω‖2 + ωµν Ð ]

αωµν

)
Ω . (4.16)

We also used |f |2 =
√
g ‖Ω‖2 and Ð ]

α

√
g = ωµνÐ ]

αωµν . Furthermore, ðδω = 0, so the Ð ]
αω

1,1

form a basis for H2(X,R). Comparing with (4.15) and using that K 2α and ‖Ω‖2 depend only
on parameters, it follows that ωµνÐ ]

αωµν can also only depend on parameters. The Hodge dual
relation is

?Ð ]
αω

(1,1) =
1

2

(
ωµνÐ ]

αωµν
)
ω2 − (Ð ]

αω)ω .

From this, it follows that Ð ]
αω

(1,1) is ð-coclosed and so it is harmonic.
Returning to the second equation in (4.14), we see that it implies χα is ð-closed.
The derivative of Ω that is covariant both with respect the symmetry (4.13) and diffeomor-

phisms is
DαΩ =

(
Ð ]
α + K 2α

)
Ω = χα = ∆α

µΩµ .

5 Integrability of the Supersymmetry Equations

In this section we provide a general analysis of the relation between supersymmetry and equations
of motion in terms of the integrability conditions of the supersymmetry variations. Strictly speak-
ing, gaugino condensates only make sense in the lower dimensional effective actions obtained from
compactification. However, we perform the analysis of integrability in the full ten-dimensional
theory, treating the condensate as a formal object. The aim is to derive the most general set of
constraints, which can then be applied to specific compactifications.

In absence of a condensate, it is possible to build combinations of squares of the supersymmetry
variations that reproduce the equations of motion
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ΓMD0
[ND

0
M ]ε−

1

2
D0
N(P0ε) +

1

2
P0D0

Nε = −1

4
E0
NPΓP ε+

1

8
B0
NPΓP ε+

1

2
ιNδH

0ε ,

/D
0 /D

0
ε− (D0M − 2∂Mφ)D0

Mε = −1

8
D0ε+

1

4
δH0ε , (5.1)

where E0
NP , B0

NP and D0 denote the Einstein, B-field and dilaton equations of motion. δH is the
Bianchi identity. Since the left-hand side of both equations in (5.1) vanishes on supersymmetric
solutions, the equations of motion are also satisfied, provided the Bianchi identity holds.

When the condensate is included, the first equation in (5.1) becomes

ΓMD[NDM ]ε−
1

2
DN(Pε) +

1

2
PDNε = −1

4
ENPΓP ε+

1

8
BNPΓP ε

+
1

2
ιNδHε−

α

32
AN(Σ)ε , (5.2)

where now ENM , BNM , D are the Einstein, B-field and dilaton equations of motion with non-zero
condensate, and the extra term AN(Σ) is given by

AN(Σ)ε = ANPΓP ε+ ANPQRΓPQRε+ ANPQRSTΓPQRST ε

=
[
e2φ∇M(e−2φΣMNP ) +

1

2
ΣNRSH

RS
P +HΣδNP

]
ΓP ε

+
1

2

[
e2φ∇M(e−2φΣMPQ)δNR +

1

3
e−2φ∇N(e2φΣPQR)

+∇RΣNPQ −HPSTΣQ
ST δNR

]
ΓPQRε

− 1

6

[
∇SΣPQRδNT +

1

2
HNPQΣRST

]
ΓPQRST ε . (5.3)

Note that the tensors {ANM , ANPQR, ANPQRST} do not have any symmetry property. The ana-
logue of the second equation in (5.1) contains extra terms in Σ that cancel non-tensorial terms

/D /Dε− (D0M − 2∂Mφ− α

16
/ΣΓM − α

4
ΣM)DMε = −1

8
Dε+

1

4
δHε− α

32
B(Σ)ε , (5.4)

where the extra contribution from Σ is

B(Σ)ε = Bε+BNPΓNP ε+BMNPQΓMNPQε

= 6HyΣε+ 3
[
e2φ∇M(e−2φΣMNP ) +HNQRΣP

QR
]
ΓNP ε

+
1

3

[
e−2φ∇M

(
e2φΣNPQ

)
− 3

2
HMNSΣPQ

S
]
ΓMNPQε . (5.5)

The left-hand sides of (5.2) and (5.4) still vanish because of the supersymmetry variations, but
now the analysis of the right-hand sides is more involved. For zero condensate, after imposing
the Bianchi identity, the only terms left are E0

NM and B0
NM multiplying one gamma matrix, and

they must vanish separately because of their symmetry properties. In presence of condensate, the
extra terms A(Σ) and B(Σ) in (5.2) and (5.4) contain several terms involving different numbers of
gamma matrices, which, in ten dimensions, are not independent and hence cannot be set to zero
separately.
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We describe an alternative approach to study the relation between supersymmetry variations
and equations of motion that generalisese Lichnerowicz theorem. Let us consider first the case
when the condensate is zero. The starting point is the Bismut-Lichnerowicz identity. Provided,
the Bianchi identity is satisfied, the Bismut-Lichnerowicz identity allows to write the bosonic
Lagrangian as

1

4
Lbε+ (α2) = D0

MD
0Mε− /D

0 /D
0
ε+

α

16

(
Tr /F /Fε− Tr /R− /R−ε

)
− 2∇MφD0

Mε , (5.6)

where D0
M and /D

0 are the gravitino and modified dilatino equations, with zero condensate. R−

is the curvature two-form derived from the torsionful connection ∇− (note that the gravitino
variation involves ∇+). Multiplying (5.6) by e−2φε† and integrating it, gives the action

Sb = −4

∫
M10

√
−ge−2φ

[
ε† /D

0 /D
0
ε− ε†D0

MD
0Mε

+ 2∇Mφ ε†D0
Mε−

α

16

(
Tr ε† /F /Fε− Tr ε† /R− /R−ε

) ]
+ (α2) , (5.7)

where we assumed that ε†ε = 1.
We would like to write the action as a BPS-squared expression, since its variations will give the

equations of motion in terms of the supersymmetry variations. If the theory were Euclidean, we
could integrate (5.7) by parts, and end up with such an action. Unfortunately, when the metric
has Lorentzian signature it is not possible, in general, to reconstruct the supersymmetry operators
D0
M and /D

0 after the integration by parts. Since the problematic terms always involve components
of the fields with one leg along the time direction, one can restrict to solutions where none of the
fields has components of this type. This means

H0MN = Σ0MN = F0M = 0 , (5.8)

and, for the metric
δs2

10 = −e2Aδt2 + gmpδx
mδxp , (5.9)

where A = A(xm), g = g(xm) and {xm, xn, ..} denote spatial coordinates. Note also that, in order
to perform the integration by parts, we assume that the fields vanish at infinity where the metric
is flat. Under these assumptions the action can be integrated by parts to give∫

M10

e−2φLb =4

∫
M10

e−2φ[( /D
0
ε)† /D

0
ε− (D0

Mε)
†D0Mε

+
α

16

(
Tr ε† /F /Fε− Tr ε† /R− /R−ε

)
] + (α2) . (5.10)

The variations of (5.10) with respect to the metric, dilaton and B-field give the corresponding
equations of motion written in terms of the supersymmetry conditions. Thus solutions of the
supersymmetry constraints also automatically solve the equations of motion. The variation of the
second line in (5.10) also vanishes. Its variation is proportional to

/R
−
MN ε = R−PQMNΓPQε = R+

MNPQΓPQε+ (α) = (α) ,

which vanishes on supersymmetric solutions to the appropriate order in α.
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For non-trivial condensate the same analysis gives, up to (α2) terms,

Sb = BPS2 +
α

8

∫
M10

√
−ge−2φ

[
( /Dε)† /Σε+ (/Σε)† /Dε

+
1

2

(
(DMε)

† /ΣΓMε+ (/ΣΓMε)†DMε
)
−HyΣ

]
, (5.11a)

where HyΣ = 1
3!
HMNPΣMNP , and BPS2 denotes the part of the action that can be written as

the square of the supersymmetry variations

BPS2 =

∫
M10

√
−ge−2φ

[
( /Dε)† /Dε− (DMε)

†DMε+
α

16

(
Tr ε† /F /Fε− Tr ε† /R− /R−ε

) ]
. (5.11b)

Note that because of the extra terms involving Σ on the right-hand side of (5.11a), the action
can no longer be written as a BPS-squared expression. The equations of motion for gMN , φ and
BMN obtained by varying (5.11a) will contain a term coming from its BPS part, which vanishes
for supersymmetric configurations, and terms in Σ, which will provide additional constraints to
be imposed on the supersymmetric solution. These extra terms have a relatively simple structure
and in particular do not contain the curvatures F and R−. More concretely, the extra terms in
the dilaton and B-field equations of motion are respectively

HMNPΣMNP + e2φ∇M
(
e−2φε†ΓMNPQΣNPQε

)
= 0 + (α) , (5.12a)

e2φ∇M
(
e−2φ ε†{ΓMPQ, /Σ}ε

)
= 0 + (α) . (5.12b)

Both equations are only linear in derivatives. Note the resemblance between (5.12b) and the usual
flux equation of motion. The metric equation of motion evaluated on a supersymmetric solutions
gives the equation

e2φ∇N

[
e−2φ

(
ε†ΓN(P /ΣΓM)ε− 2gMP ε†ΓN /Σε+ 2gN(Mε†ΓP ) /Σε

)]
= ∇(Mφ ε†ΓP ) /Σε

+ 2 gMPHyΣ− HRS
(MΣP )RS − 3HNR

(Mε†ΓP )N /ΣΓRε+ (α) , (5.13)

We also need to vary the vielbeine in the gamma matrices as δΓM = δeA
M ΓA and in the gaugino

bilinear
ΣMNP = χΓMNPχ = χΓABCχeM

AeN
BeP

C . (5.14)

The equations above can can be further simplified, using the fact that

H = δφ = 0 + (α) . (5.15)

This follows from imposing that the fields must vanish at infinity. Indeed, substracting 1/4 of the
trace we find

1

2
∇2φ− (∇φ)2 +

1

4
H2 = 0 + (α) , (5.16a)

or, alternatively,

e2φ∇M
(
e−2φ∇Mφ

)
+

1

2
H2 = 0 + (α) . (5.16b)

Multiplying by e−2φ and integrating over spacetime then gives∫
M10

e−2φH2 = 0 + (α) . (5.17)
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As the integrand is positive, it has to vanish point-wise, which implies (5.15). Integrating (5.16a),
we also find that δφ = 0 + (α). Using this result, the equations (5.12a) -(5.13) become (modulo
(α) terms)

Ψ̃MNPQ∇[MΣNPQ] = 0 , (5.18a)

∇PΣPMN + Ψ̃PQR[M∇PΣQR
N ] −

1

2
Ψ̃MNPQ∇RΣR

PQ = 0 , (5.18b)

Ψ̃MPQ(R∇MΣN)
PQ − 1

6
Ψ̃TPQ

(R ∇N)ΣTPQ = 0 , (5.18c)

where, for simplicity of notation, we have defined Ψ̃MNPQ = ε†ΓMNPQε.
Poincaré invariance in four dimensions forces the three-form flux H and the three-form con-

densate to have only non-trivial components in the internal space. We are still taking a ten-
dimensional expectation value, 〈ΣMNP 〉. We should also remember that the ten-dimensional gaug-
inos are in the adjoint of E8×E8 or SO(32). Denoting the external four-dimensional gauge group
as G, and the internal group as H (G is the stabilizer of H in the ten-dimensional group), we may
decompose the ten-dimensional product representation as 496 ⊗ 496 →

∑
i(R(G)i, R(H)i). Of

course the details very much depend on the choice of G and H, but in general the ten-dimensional
trace over fermion bilinears will break into a sum of many terms:

〈Σ〉mnp = 〈trχ(10)Γmnpχ(10)〉

=
∑
i

〈trR(G)iχ
(4)
+ χ

(4)
− · trR(H)iχ

†
+γmnpχ−〉 −

∑
i

〈trR(G)iχ
(4)
− χ

(4)
+ · trR(H)iχ

†
−γmnpχ+〉

= −2
∑
i

Re〈ΛiΣ
i
mnp〉 . (5.19)

Here we have defined internal three-forms Σi
mnp as

Σi
mnp = trR(H)iχ

†
−γmnp χ+ , (5.20)

and a four-dimensional condensate vector Λi as

Λi = trR(G)iχ
(4)
− χ

(4)
+ . (5.21)

From now on we shall suppress all the traces and the G and H representation indices. To simplify
the notation, in the rest of this section we will set 〈Σ〉 = Σ̂ = −2Re(ΛΣ). The ten-dimensional
supersymmetry equations can be written as a set of conditions on the forms Ω and J defining the
SU(3) structure.

6 The Effective Field Theory of Heterotic Vacua

We are interested in heterotic vacua that realise N=1 supersymmetric field theories in R3,1. At
large radius, these take form R3,1 × X where X is a compact smooth complex three-fold with
vanishing first Chern class. We study the E8×E8 heterotic string, and so there is a holomorphic
vector bundle E with a structure group H ⊂ E8×E8 and a d=4 spacetime gauge symmetry given
by the commutant G = [E8×E8,H ]. The bundle E has a connection A, with field strength F
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satisfying the hermitian Yang-Mills equation. The field strength F is related to a gauge-invariant
three-form H and the curvature of X through anomaly cancellation. The triple (X ,E , H) forms a
heterotic structure, and the moduli space of these structures is described by what we call heterotic
geometry. In this paper, we compute the contribution of fields charged under the spacetime gauge
group G to the heterotic geometry.

The challenge in studying heterotic vacua is the complicated relationship between H, the field
strength F and the geometry of X . Supersymmetry relates the complex structure J and Hermitian
form ω of X to the gauge invariant three-form H:

H = dcω , dcω =
1

2
Jm1

n1Jm2

n2Jm3

n3(∂n1ωn2n3) dx
m1dxm2dxm3 . (6.1)

where xm are real coordinates on X . Green–Schwarz anomaly cancellation gives a modified Bianchi
identity for H

dH = −α
8

4

(
TrF 2 − TrR2

)
, (6.2)

where in the second of these equations R is the curvature two-form computed with respect to
a appropriate connection with torsion proportional to H. This means the tangent bundle TX
has torsion if H is non-zero. Unless one is considering the standard embedding — in which E
is identified with TX the tangent bundle to X — the right hand side of (6.2) is non-zero even
when X is a Calabi-Yau manifold at large radius. This means that H is generically non-vanishing,
though subleading in α8 , and so even for large radius heterotic vacua X is non-Kähler. Torsion is
inescapable.

The effective field theory of the light fields for these vacua are described by a Lagrangian with
N = 1 supersymmetry, whose bosonic sector is of the form

L =
1

2κ2
4

√
−G4

(
R4 −

1

4
Tr |Fg|2 − 2GABD̂eΦAD̂eΦB − V (Φ,Φ) + · · ·

)
. (6.3)

Here κ4 is the four-dimensional Newton constant, R4 the four-dimensional Ricci-scalar, Fg is the
spacetime gauge field strength, the ΦA range over the scalar fields of the field theory and their
kinetic term comes with a metric GA. The fields ΦA may be charged under g, the algebra of
the gauge group G, with an appropriate covariant derivative D̂e. Finally V (Φ,Φ) is the bosonic
potential for the scalars.

When E ∼= TX the moduli space of the heterotic theory reduces to that of a Calabi-Yau
manifold, and is described by special geometry. The unbroken gauge group in spacetime is E6, and
the charged matter content consists of fields charged in the 27 and 27 representations. The Yukawa
couplings were calculated in supergravity. The effective field theory of this compactification was
described in a beautiful paper, in which relations between the Kähler potential and superpotential
were computed using string scattering amplitudes, (2, 2) supersymmetry and Ward identities.
The Kähler and superpotential were shown to be related to each other and in fact, were both
determined in terms of a pair of holomorphic functions. These are known as the special geometry
relations. A key question is how these relations generalise to other choices of bundle E .

We work towards answering this question by computing the effective field theory couplings
correct to first order in α8 . In a previous paper [1] we commenced a study of heterotic geometry
using α8 -corrected supergravity. This is complementary to a series of papers who identified the
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parameter space with certain cohomology groups. In the context of effective field theory (6.3),
one of the results of [1] was to calculate the contribution of the bosonic moduli fields to the metric
GA. In this paper, we compute the contribution of the matter sector to the metric GA, and the
Yukawa couplings, correct to order α8 . We describe an ansatz for the superpotential and Kähler
potential for effective field theory:

K = − log

(
4

3

∫
ω3

)
− log

(
i
∫

Ω Ω

)
+GξηTrCξCη +GρτTrDτDρ,

W = −i
√

2e−iφ
∫

Ω
(
H − dcω

)
.

(6.4)

The superpotential is normalised by comparing with the Yukawa couplings computed in the di-
mensional reduction using the conventions of Wess–Bagger.

The moduli have a metric

ds2 = 2Gαβ dy
α ⊗ dyβ ,

Gαβ =
1

4V

∫
∆α

µ ?∆β
ν gµν +

1

4V

∫
Zα ? Zβ +

+
α8

4V

∫
Tr
(
DαA ? DβA

)
− α8

4V

∫
Tr
(
DαΘ ? DβΘ†

)
,

(6.5)

where Zα = Bα + i∂αω is the α8 -corrected, gauge invariant generalisation of the complexified
Kahler form δB + iδω, the χα form a basis of closed (2, 1)-forms, and the the last line is the
Kobayashi metric, extended to the entire parameter space, including deformations of the spin
connection on TX . The metric expressed this way is an inner product of tensors corresponding
to complex structure ∆α, hermitian moduli Zα, and bundle moduli DαA. The role of the spin
connection Dαθ is presumably determined in terms of the other moduli as they do not correspond
to independent physical fields. The tensors depend on parameters holomorphically through

∆α
ν = 0, Zα = Bα + i∂αω = 0 , DαA0,1 = 0 , Dαθ0,1 = 0 . (6.6)

de la Ossa and Svanes [14] show that there exists a choice of basis for the parameters in which
each of the tensors in the metric are in an appropriate cohomology, hence, the moduli space metric
(7.2) is the natural inner product (Weil–Peterson) on cohomology classes.

The matter fields are Cξ and Dτ and appear in the Kähler potential trivially, as they do
in special geometry. The matter metric is the Weil-Petersson inner product of corresponding
cohomology elements

Gτσ =
α8

4V

∫
X
ψτ ? ψσ , Gξη =

α8

4V

∫
X
φξ ? φη , (6.7)

where φξ, ψρ are (0, 1)-forms valued in a sum over representations of the structure group H.
In some sense it was remarkable that one was able to find a compact closed expression for the

Kähler potential for the moduli metric. This was not a priori obvious, especially given the non-
linear PDEs relating parameters in the anomolous Bianchi identity and supersymmetry relations
(6.1)-(6.2). Indeed, it turned out that the Kähler potential for the moduli in (6.4) is of the same in
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form as that of special geometry, except where one has replaced the Kähler form by the hermitian
form ω. At first sight this is confusing as the only fields appearing in the Kähler potential are
ω and Ω. Nonetheless, the Kähler potential still depends on bundle moduli in precisely the right
way through a non-trivial analysis of the supersymmetry and anomaly conditions. The hermitian
form ω contains, hidden within, information about both the bundle and hermitian moduli.

Expand the fields φ and ψ in a harmonic basis for H1(X ,Er) and H1(X ,Er) respectively:

φ =
∑
ξ

φξ C
ξ ∈ (r,R) , ψ =

∑
τ

ψτ D
τ ∈ (r,R) , (6.8)

where φξ ∈ H1(X ,Er) and ψτ ∈ H1(X ,Er) are harmonic forms

φξ = φξ µ dxµ ∈ r , ψτ = ψτ µ dxµ ∈ r . (6.9)

while Cξ and Dτ are valued in R and R respectively.
For example, consider the standard embedding. Then, E3 = T 1,0

X and φξ ∈ H1(X ,T 1,0
X );

E3 = T 0,1
X with the ψτ ∈ H1(X ,T 0,1

X ). Cξ and Dτ are in the R = 27 and R = 27.
We need to satisfy the reality condition Φ† = −Ψ, which forces φ† = −ψ and so in terms of

the (φξ, ψτ ) basis:

Φ =
∑
ξ

φξ C
ξ −

∑
τ

ψτ D
τ , Ψ =

∑
τ

ψτ D
τ −

∑
φ C . (6.10)

We denote conjugation through the barring of the indices. For example, φ=(φξ)
† is a (1, 0)-form

valued in r of h and C=(Cξ)† is in the R of g.
The spirit of KK reduction is to promote the coefficients to spacetime fields: Y α(X), Cξ(X), Dτ (X),

and integrate over the six-dimensional manifold to get an effective four-dimensional theory. With
the conventions of [1], the D = 10 e8 Yang-Mills field contribution to the D = 4 effective field
theory is:

LF = − α8

4V

∫
X
d6x
√
gTr |δFe8 |2 , |F |2 =

1

2
FMNF

MN . (6.11)

We dimensionally reduce, doing a background field expansion. A small fluctuation of the field
strength is given, and so

Tr |δFe8|2 = Tr (dA(δA) ? dA(δA)) + Tr (dA+BΦ ? dA+BΨ)

+ Tr (dA+BΨ ? dA+BΦ) + Tr (dBδB ? dBδB) ,
(6.12)

The first term involves just the bundle moduli, contributing to the moduli metric considered in
[1]. The middle two terms involve the matter fields and the last term gives rise to the kinetic term
for the D=4 spacetime gauge field. The terms involving the matter fields are:

dA+BΦ = (∂eΦ + ΦBe) dXe + (∂MΦN + AMΦN) dxMdxN

= D̂eΦ dXe + dAΦ ,

dA+BΨ = D̂eΨ dXe + dAΨ ,

(6.13)
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where D̂e is the spacetime g-covariant derivative and dA the h-covariant derivative. Hence, using
Tr |δF |2 = 1

2
Tr δFMNδF

MN = 2Tr δFeµδF eµ , where Tr (δFeµδF
eµ) = Tr (δFeνδF

eν), and
ignoring the moduli fields for the moment, we find the kinetic terms for the matter fields come
from middle two terms in (6.12) and are

Tr |δFe8|2 = − 2Tr
(
D̂eΦµ D̂eΦ†µ

)
− 2Tr

(
D̂eΨµ D̂eΨ†µ

)
. (6.14)

It is convenient to introduce the indices denoting representations of h⊕ g with i,  = 1, · · · , r
for representations r of h; a,= 1, · · · , R for representations R of g. We have used the reality
condition Φ† = −Ψ. The matter fields have a KK anstaz, given by (6.10), which when substituted
into each of the above terms gives

d6xg
1
2Tr

(
D̂eΦµ D̂eΦ†µ

)
=
(
D̂eCξ (X)φ iξ µ(x)

)(
D̂eCηM(X)φµη (x)

)
δiδM (? 1)

=
(
D̂eCηM(X)

) (
D̂eCξ (X)

) (
φ iξ(x) ? φη(x)

)
δiδM ,

d6xg
1
2Tr

(
D̂eΨµ D̂eΨ†µ

)
=
(
D̂eD σM(X)ψ 

σ µ(x)
)(
D̂eDτ N(X)

)
ψµiτ (x)δiδN (? 1)

=
(
D̂eDτM(X)

) (
D̂eDσ(X)

) (
ψ 
σ(x) ? ψ i

τ (x)
)
δiδM ,

(6.15)

where indices for the representation R and r are explicit. The trace projects onto invariants
constructed by the Krönecker delta functions δi and δM . In the following we will suppress the
indices and delta symbols where confusion will not arise.

Substituting (6.14) and (6.15) into LF in (6.11), reintroducing the moduli contribution, calcu-
lated in [1], we find a kinetic term for both the matter fields and the moduli fields:

LF = − 2Gαβ∂eY
α ∂eY β − 2Gξη D̂eCξ D̂eCη − 2Gστ D̂eDτ D̂eDσ , (6.16)

from which we may identify the moduli space metric and matter field metric.

7 The Moduli, Matter Metrics and Yukawa Couplings

The effective field theory has N = 1 supersymmetry, with a gravity multiplet and a gauge sym-
metry g. The N = 1 chiral multiplets consist of

• g-neutral scalar fields Y α and fermions Yα corresponding to moduli;

• g-charged bosons Cξ and fermions Cξ in the R of g;

• g-charged bosons Dρ and fermions Dρ in the R of g;

The final result is expressed as a Lagrangian with normalisation conventions matching

L = −2Gξη∂eY
α ∂eY η − 2Gξη D̂eCξ D̂eCη − 2Gστ D̂eDτ D̂eDσ − iα8

2
Tr g

(′
†g
σe D̂e ζ

′
†g

)
− 2Gαβ i

β σe ∂e Yα − 2Gξτ i Cξ σe D̂e
η − 2Gτσ i σ σe D̂eDτ

−
(
eK /2mαβ (YαYβ)2eK /2mξτ (CξDτ ) + c.c.

)
−
(

4eK /2Yξατ (CξY αDτ + CξYαDτ + CξYαDτ )

+ 2eK /2Yξηπ(ξCηCπ) + 2eK /2Yρστ (
ρDσDτ ) + 2eK /2Yαβγ

(
α Y β Yγ

)
+ c.c.

)
. (7.1)
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The kinetic terms for fields contain metrics. The metric for fermions and bosons are identical,
consistent with supersymmetry. The moduli metric, derived in [1], is:

ds2 = 2Gαβ dy
α ⊗ dyβ ,

Gαβ =
1

4V

∫
∆α

µ ?∆β
ν gµν +

1

4V

∫
Zα ? Zβ +

+
α8

4V

∫
Tr
(
DαA ? DβA

)
− α8

4V

∫
Tr
(
DαΘ ? DβΘ†

)
.

(7.2)

The metric terms for the fermionic superpartners to moduli Yα are fixed by supersymmetry from
the the bosonic result. The matter field metrics are given

Gξη =
iα8

8V

∫
X
ω2 Tr φξ φη , φξ ∈ H1(X ,Er) ,

Gτσ =
iα8

8V

∫
X
ω2 Tr ψσ ψτ , ψσ ∈ H1(X ,Er) .

(7.3)

We have used ω2 = 1
2
?ω to rewrite these metrics in a form analogous to that in (3.6). This makes

explicit that the metrics are of the same form, being the natural inner product analogous to the
Weil–Petersson metric.

The mass terms written vanish mαβ = mξτ = 0 . The Yukawa non-zero couplings are

Yξηπ =
iα8 e−iφ

2
√

2

∫
X

ΩTr
(
φξ{φη, φπ}

)
, Yτσρ =

iα8 e−iφ

2
√

2

∫
X

ΩTr
(
ψτ{ψσ, ψρ}

)
. (7.4)

The similarity of the Yukawa couplings and mass terms suggests a unification through a suitable
master index incorporating the moduli and matter fields. Using the covariant derivatives of
fields as a basis for a Kaluza–Klein reduction, with the harmonic gauge fixing, gives the moduli
space metric. It is Kähler after taking into account the second order relations between fields.
This observation can be generalised to account for the charged matter fields and their fermionic
superpartners in order to give the matter field metric as derived in [24]. This normalises physical
Yukawa couplings.

The effective field theory has N = 1 supersymmetry in R3,1, and so the couplings ought to be
derivable from a superpotential and Kähler potential. The Kähler potential for the moduli metric
couplings was proposed in [1], and checked against a dimensional reduction of the α8 -corrected
supergravity action. It is

K moduli = − log

(
4

3

∫
ω3

)
− log

(
i
∫

Ω Ω

)
. (7.5)

in which ω is the hermitian form of X . The α8 -corrections preserved the form of the special
geometry Kähler potential, and the second term remains classical.

The Kähler potential for the matter field metric is trivial and given by

K matter = GξηC
ξMCηδM +GρτδMD

τMDρ , (7.6)

where a, b = 1, . . . , R label the R representation and the trace is taken with respect to the delta
function.
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The F-term couplings for the D = 4 chiral multiplets are described by a superpotential. In
the language of D = 4 effective field theory, this superpotential takes the general form

W (Y α, Cξ, Dτ ) =
1

3
YξηπTrCξCηCπ +

1

3
YρτσTrDρDτDσ + · · · , (7.7)

where the Tr projects onto the appropriate R-invariant and we are to view these as chiral mul-
tiplets in N = 1 D = 4 superspace in the usual way. The omitted terms are the quartic and
higher order couplings and non-perturbative corrections. It is important that W gives no singlet
couplings, and this means all parameter derivatives of W vanish.

We would like to study a superpotential in a similar vein to the Kähler potential proposal
(7.5). As ten-dimensional fields Ae8 and H depend on both parameters and matter fields. The
fields dcω and Ω are valued on X and depend only on moduli fields. The spirit of the dimensional
reduction is to promote the parameters to D = 4 fields. In this vein define a superpotential

W (Y α, Cξ, Dτ ) = − i
√

2e−iφ
∫

Ω
(
H − dcω

)
, (7.8)

in which the fields are regarded as functionals of the D = 4 chiral multiplets. The couplings in
the effective field theory are specified by differentiating W and evaluating the integral after fixing
the parameters y = y0.

The rules for differentiating fields in the expressions for K and W with respect to parameters
have been described in [1], which is complicated by virtue of h gauge transformations being
parameter and coordinate dependant. These transformations are, however, independent of matter
fields, and so the rule for matter field differentiation is simple

∂ξAe8 =
∂Ae8

∂Cξ
= φξ .

It is important that we have written the ten-dimensional e8 gauge field Ae8 , and not Ah, as this
is the functional of the matter fields – Cξ, Dτ – as illustrated in, for example (??) and (6.10).
The integrand in W is a functional of the ten-dimensional H so that it depends on matter fields.
The rule is to differentiate as noted above, and then evaluate the integral on the fields’ vacuum
expectation values (VEV). Note that it is the VEV of H that satisfies dcω = H, and the matter
fields VEVs vanish Cξ = Dτ = 0.

For example, the tadpole matter and moduli couplings for a vacuum at the point y = y0 are

(∂ξW )|y=y0 ∼
∫

Ω ∂ξH|y=y0 ∼
∫

ΩTrFφξ|y=y0 = 0 ,

(∂αW )|y=y0 ∼
∫ (

(χα − kαΩ)(H − dcω) + Ω
(
∂(B0,2

α + iDαω
0,2)
) )
|y=y0 = 0 .

(7.9)

where we use ∂αH and ∂αdcω, and we evaluate them on some fixed y = y0.
As an ansatz W must satisfy a number of tests: it must be a section of a line bundle over the

moduli space; any derivative with respect to parameters must vanish viz. ∂α∂β∂γ · · ·W = 0; be
a holomorphic function of chiral fields; tadpole and mass terms for the matter fields must vanish;
capture the F-term couplings derived through dimensional reduction in this paper. The expression
(7.8) passes these tests.
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The argument clearly extends to higher order. Consider the kth derivative(
∂α1 · · · ∂αk

W
)
|y=y0 =

∫ (
(∂α1 · · · ∂αk

Ω) (H − dcω)+

+ k∂{α2 · · · ∂αk
Ω ∂α1}(H − dcω) + · · ·

)
|y=y0 = 0 .

This vanishes on any supersymmetric background: W is independent of moduli fields, and so W
does not give rise to any singlet couplings in agreement with the dimensional reduction.

An analogous argument, together with Ω being holomorphic, shows that despite neither H
nor dcω being holomorphic, W is a holomorphic function of fields. For example, the first order
derivative is

∂α
1

Ω0

∫ (
Ω(H − dcω)

)
=

1

Ω0

∫
∂
(

Ω(B0,2
α − iDαω

0,2)
)
|y=y0 = 0.

Using all higher order anti-holomorphic derivatives of Ω(H − dcω) vanish. It is also the case that
(∂n) W = 0 for all n ≥ 1. So, W is a holomorphic function of chiral fields.

The expression for the masses can be written as derivatives of W

mαβ = ∂α∂βW = 0, mξτ = ∂ξ∂τW = 0 , (7.10)

where for the second term we use that dcω,Ω do not depend on Cξ, Dτ while ∂ξ∂τH is given with
DaA→ ∂ξA = φξ. As A depends linearly on the matter fields, all second derivatives vanish.

The Yukawa couplings Y are also all derived from W . Using, we find agreement with the
functional forms in (??), of which the non-vanishing terms are

Yξηπ =
1

2
∂ξ∂η∂πW , Yστρ =

1

2
∂ξ∂α∂τW . (7.11)

Even though the singlet couplings vanish, one can check that their functional form is correctly
derivable from W . The fact of 1/2 is in order to agree with the convention given in the literature. It
is satisfying that the superpotential consistently captures the couplings derived in the dimensional
reduction, both involving moduli and matter fields. Furthermore, it manifestly does not give rise
to any singlet couplings.

Having seen how the infinitesimal deformations work, at least up to second order in deforma-
tions of the superpotential, it is interesting to consider higher order deformations of the theory.
Generically, it is known that not all infinitesimal deformations can be integrated to finite defor-
mations. The barriers to doing so are known as obstructions in the mathematics literature. For a
holomorphic structure D, the condition for the deformations to be unobstructed is that they are
in the kernel of the obstruction map

κ : H(0,1)()→ H(0,2)(Q) ,

often also referred to as the Kuranishi map. The true moduli of the theory are thus the ones in the
kernel of this map, while deformations not in this kernel will be obstructed. These obstructions are
known to correspond to higher order Yukawa couplings in the four-dimensional effective theory.
To show exactly how this works requires us to do higher order deformations of the superpotential,
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and show how these Yukawa couplings correspond to obstructions in the deformation theory of
D. This is quite involved and we leave the full treatment for future work. Instead we only
investigate a couple of features of the obstructions here, in particular for compactifications where
X0 is Calabi-Yau. It should also be noted that obstructions and their correspondence to Yukawa
couplings have been considered at length in the literature before.

In terms of holomorphic structures defined by an extension sequence, it can be shown that
the obstruction maps in the corresponding long exact sequence commute with the other induced
maps in cohomology

...→ H0(E)
H0−→ H(0,1)(T ∗X)→ H(0,1)()→ H(0,1)(E)

↓ κT ∗X ↓ κ ↓ κE (7.12)
H−→ H(0,2)(T ∗X)→ H(0,2)()

ρ−→ H(0,2)(E)→ 0 ,

where the last zero follows from the slope-zero stability of T ∗X. The obstruction map κE can
further be sandwiched between obstruction maps of the bundle and base as

0→H(0,1)(End(TX))⊕H(0,1)(End(V ))→ H(0,1)(E)→ H(0,1)(TX)

↓ κEnd(TX) ↓ κEnd(V ) ↓ κE ↓ κTX (7.13)
+−→H(0,2)(End(TX))⊕H(0,2)(End(V ))

ρE−→ H(0,2)(E)→ H(0,2)(TX)→ ... ,

where we have named the map ρE as it will appear in the following computations.
Let us begin by performing a second order deformation of W at the supersymmetric locus

W = δW = 0. We take δ1 to be a generic deformation while δ2 is massless deformation. According
to the above discussion, we need that

δ2δ1W |0 =

∫
X

δτ1 ∧ δ2Ω +

∫
X

α

2
(Tr (δ1A ∧ δ2(F ∧ Ω))− Tr (δ1Θ ∧ δ2(R ∧ Ω)))

+

∫
X

δ2(H + iδω) ∧ δ1Ω +

∫
X

(H + iδω) ∧ δ2δ1Ω = 0 ,

(7.14)

for all deformations δ1 if the deformation δ2 is to be massless. Here the zero in δ2δ1W |0 denotes
we are imposing the ten-dimensional supersymmetry conditions found in the previous section.

We next consider the second line of (7.14). Writing the first term out, we get∫
X

δ2(H + iδω) ∧ δ1Ω =

∫
X

(α
2

(Tr α2 ∧ F − Tr κ2 ∧R) + δτ2

)
∧ δ1Ω .

The second term of the second line of (7.14) is given by∫
X

(H + iδω) ∧ δ2δ1Ω = 2i

∫
X

∂ω ∧ δ2δ1Ω .

Noting that H + i ω = 2 i ∂ω, it is clear that only the (1, 2)-part of δ2δ1Ω contributes

(δ2δ1Ω)(1,2) = ∆a
1 ∧ χ2abc δz

bc = ∆a
1 ∧∆b

2 Ωabc dxc .
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Using this, we can rewrite

2i

∫
X

∂ω ∧ δ2δ1Ω = 2i

∫
X

∂[aωb]c dzc ∧∆d
1 Ωdef ∧∆

[e
2 ∧ dzf ]ab

= −2i

∫
X

∂[aωb]c dzc ∧∆d
1 Ωdef ∧∆

[a
2 ∧ dzb]ef

= −4i

∫
X

∆a
2 ∧ ∂[aωb]c δz

bc ∧ χ1 ,

where in the second line we have used

0 = 2 ∆[e ∧ dzabf ] = ∆[e ∧ dzf ]ab + ∆[a ∧ dzb]ef .

Putting it all together, and requiring δ1Ω generic, we find that we need

−4∆a
2 ∧ i∂[aωb]c δz

bc +
α

2

(
Tr (α2 ∧ F )− Tr (κ2 ∧R)

)
+ ∂τ

(0,2)
2 + τ

(1,1)
2 = 0 .

The first equation imply that τ (0,2) is -exact, that is

τ
(0,2)
2 = β(0,1),

for some (0, 1)-form β(0,1). The second equation then gives the following condition

− 4∆a
2 ∧ i∂[aωb]c δz

bc +
α

2

(
Tr (α2 ∧ F )− Tr (κ2 ∧R)

)
+ τ

(1,1)
2 − ∂β(0,1) = 0 , (7.15)

which can be rewritten as
− H(x2)aδz

a =
1

2

(
τ

(1,1)
2 − ∂β(0,1)

)
, (7.16)

where H is the map defined by

H = Ĥ + + : Ω(p,q)(E)→ Ω(p,q+1)(T ∗X), (7.17)

and

H(x)b = ∆a ∧ Ĥabc δz
c − α

4

(
Tr (α ∧ Fbcδzc)− Tr (κ ∧Rbcδz

c)
)
,

Ĥabc δz
c = 2i∂[aωb]c δz

c = H
(2,1)
abc δzc .

We have extended the definition of the maps and to forms x = (κ, α,∆) with values in E. In
fact, and are understood as acting on both TX-valued forms as before, and on γ-valued forms
by the trace on the endomorphism bundles. That is, we are extending the definition of these maps
so that

Fb(α) =
α

4
Tr (Fbc dzc ∧ α) , α ∈ Ω(p,q)(End(V )) ,

Rb(κ) = −α
4
Tr (Rbc dzc ∧ κ) , κ ∈ Ω(p,q)(End(TX)) .

Alternatively the pre-factors ±α
4
could be pulled into a re-definition of the trace on γ. Note the

different sign of the action of relative to the action of . Altogether, these maps act as follows

(x) =

 (κ)

a(α)

(∆)

 =

 0
α
4
Tr (Fa ∧ α)

ab dx
b ∧∆a

 , (x) =

 a(κ)

(α)

(∆)

 =

 −α
4
Tr (Ra ∧ α)

0

Rab dx
b ∧∆a

 ,
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where Fa = Fabδz
b and Ra = Rabδz

b. We will see below that the map H is in fact a map between
cohomologies. Hence, we see that the equation for moduli (7.16) for x2 can be equivalently stated
as x2 = ker (H). This of course is in agreement with what was found from the ten-dimensional
supergravity perspective in [13, 14].

The anomaly cancellation condition induces a holomorphic structure D on Q and the moduli
of the Strominger/Hull system is then given by the elements of the cohomology H1

D
(Q). The

extension Q2 of Q1 by End TX is necessary to enforce the connection on the tangent bundle
appearing in the anomaly cancelation condition to be an instanton. In fact, this is needed to
satisfy the equations of motion. We do not give here the derivation of the holomorphic structure
D onQ nor the derivation of the cohomology groups corresponding to the moduli space. The result
however is that the moduli for the heterotic structure correspond to elements of the cohomology
group

H1
D

(Q) = H1(X ,T ∗X )⊕ kerH , kerH ⊆ H1(X , Q2) , (7.18)

where
H1(X , Q2) = H1(X ,End TX )⊕H1(X,EndE)⊕ (kerF ∩ kerR) . (7.19)

The first factor in (7.18) corresponds to complexified α8 -corrected hermitian moduli. The second
factor contains a map H : H1(X , Q2)→ H2(X ,T ∗X ) defined by

Hµ(α, κ,∆) = H
(2,1)
µνρ dxρ ∧∆ν − α8

4

(
Tr (Fµνdxν ∧ α)− Tr (Rµνdxν ∧ κ)

)
,

where α is a (0, 1)-form with values in End E and κ is a (0, 1)-form with values in End TX . There
is a subtlety in that the parameters in (7.19) corresponding to H1(X ,End TX ) are not physical and
can be removed by field redefinitions [15]. The map R in (7.19) is the Atiyah map appropriate for
the deformations of the holomorphic tangent bundle. Finally, we remark that the same results for
the moduli problem of heterotic structures was obtained from first and second order deformations
of a heterotic superpotential.

Armed with these complex coordinates on the space of N = 1 structures, we can expand the
superpotential in them around a supersymmetric point whereW = δW = 0. As the superpotential
in N = 1 supergravity must be a holomorphic function of the complex scalar fields, we have that
the variation of the superpotential is exactly equal to its holomorphic variation. Thus we expand

W + ∆W = ∆W =

∫
X

(H + i dω + d(∆B + i∆ω)
)
∧(Ω + ∆Ω)

= 2

∫
X

(
µd ∧ ∂xd + 1

2
µd ∧ µe ∧Hde

+ µd ∧ µe ∧ ∂dxe − 1
2
µd ∧ ∂db̃

)
∧ Ω

(7.20)

where we have suppressed the anti-holomorphic form indices. Strictly though, we have solved a
different problem to the original moduli problem, as we introduced extra degrees of freedom to
the theory. The true moduli space will then be a subspace of the moduli space found in this way,
on which the additional gauge field is fixed to be the Hull connection. How best to describe these
additional constraints remains an open problem.
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8 Conclusion

We have calculated the effective field theory of heterotic vacua of the form R3,1 × X at large
radius, correct to order α8 . The field theory is specified by a Kähler potential and superpotential.
Supersymmetry forbids W from being corrected perturbatively in α8 , but is in general corrected
non-perturbatively in α8 . For E obtained by deforming TX , some of these non-perturbative
corrections have been computed as functions of moduli using linear sigma models. One can now
use the results obtained here and those in [1] to determine the normalised quantum corrected
Yukawa couplings, in examples that may be of phenomenological interest. Although the Kähler
potential is corrected perturbatively in α8 , it was conjectured in [1] that the form of the Kähler
potential does not change to all orders in perturbation theory, and that the α8 -corrections are
contained within the hermitian form ω. This conjecture is consistent with the work in [14, 15]
and it would be very interesting to prove this conjecture, at least to second order in α8 . It should
however be noted that this need not have an effect on the physical matter spectrum. Indeed,
the authors of in the current research suggest to use the hidden E8 -bundle to stabilize complex
structure moduli in more phenomenology oriented models. In this case one only lifts bundle
moduli corresponding to deformations of the hidden bundle, and hence the physical spectrum
important for phenomenology is unaffected. Finally, we collect some useful facts about geometries
where the large volume limit is a compact Calabi-Yau. In particular, recall that a sufficient
condition for a complex manifold (X, J) to satisfy the ∂-lemma is the existence of a Kähler form
compatible with J . Since the complex structure does not change under α-corrections, and since
there must exist a Kähler form ω0 corresponding to the zeroth order Calabi-Yau geometry X0, it
follows that the corrected geometry X satisfies the ∂-lemma. Moreover, as the Dolbeault operator
remains unchanged under α-corrections, we can conclude that the Hodge-diamond of X does not
change either. Indeed, as the Dolbeault cohomologies of a Calabi-Yau manifold are topological,
and as we have seen X admits a Kähler metric, any change to this at higher orders in α implies
topological changes of X which contradicts the assumptions of the α-expansion. Note that a
similar statement need not hold for bundle valued cohomologies, as the connections on the given
bundles can potentially receive corrections, and the bundles need no longer be holomorphic in
general. Of course, an enormous amount of work remains before such torsional compactifications
are fully understood and potentially able to lead to fully realistic low energy phenomenology.
An obvious omission is our present lack of knowledge of the Kähler potential, although this is
the subject of current work. It may be hoped that, given the holomorphic structures discussed,
the Kähler potential will take a fairly simple and elegant form. Indeed, holomorphic structures
usually come equipped with some form of Weil-Peterson metric on their moduli space, and one
can speculate that the Kähler metric one obtains upon dimensional reduction corresponds to
such a metric. However, for this present time this remains an open question. The story with
Yukawa couplings is also far from complete. In particular, the connection between higher order
deformations of the superpotential and obstructions has not yet been made explicit and it would be
interesting to see how the details of this emerge. Knowledge of the Yukawa couplings is also very
important for phenomenological purposes as well. It would also be very interesting to study explicit
examples of compactifications with torsion. Compactifications where a large volume Calabi-Yau
locus exists are fairly easy to construct once the zeroth order Kähler geometry is known, and it
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would be interesting to investigate further what effects the generated torsion has for lifting further
moduli. Studying examples where no zeroth order limit exist is more challenging. Examples of
this kind found in the literature have been shown to negate some of the assumptions we make.
It is hence less clear counts the true moduli for these types of compactifications, but it can be
taken as a conjecture. In the longer term, it may even be hoped that there is the possibility of
constructing examples with all moduli either removed from the low energy theory, or otherwise
stabilised with phenomenologically acceptable masses. Investigations of other aspects of the low
energy phenomenology, the number of Standard Model generations, exotic matter present, may
also be possible and interesting.
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