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Abstract

In the present article we aim to broaden the consideration of background geometry of mani-

folds/bundles arising in heterotic compactifications with an aim towards extending the validity

and understanding of heterotic/F-theory duality. In particular, we will focus on elliptically fibered

Calabi-Yau geometries arising in heterotic theories in the context of the so-called Fourier Mukai

transforms of vector bundles on elliptically fibered manifolds. The duality between the Heterotic

and F-theory is a powerful tool in gaining more insights into F-theory description of low-energy

chiral multiplets. We propose a generalization of heterotic/F-theory duality and in order to com-

plete the translation, the dictionary of the heterotic/F-theory duality has to be refined in some

aspects. The precise map of spectral surface and complex structure moduli is obtained, and with

the map, we find that divisors specifying the line bundles correspond precisely to codimension

singularities in F-theory.



1 Introduction

Heterotic/F-theory duality has proven to be a robust and useful tool in the determination of

F-theory effective physics as well a remarkable window into the structure of the string landscape.

The seminal work on F-theory appealed to heterotic theories and ever since, many new develop-

ments and tools have been built on, or inspired by, the duality. Despite the important role that

this duality has played however, it has remained at some level limited by the geometric assump-

tions that have been frequently placed on the background geometries in both the heterotic and

F-theory compactifications. We generalize the available computational tools to explicitly con-

struct the Fourier-Mukai transforms of vector bundles on elliptically fibered geometries. That is,

given an explicit vector bundle constructed on an elliptic threefold for example built using the

monad construction or as an extension bundle, we provide an algorithm to produce the spec-

tral data which is key ingredient in determining an explicit F-theory dual of a chosen heterotic

background. It is the goal of this work to investigate Fourier-Mukai transforms of vector bundles

over elliptically fibered manifolds not in Weierstrass form as a necessary first step in extending

heterotic/F-theory duality beyond the form considered. It has been argued that from the point of

view of F-theory, Weierstrass models are the natural geometric point in which to consider/define

the theory. In order to make sense of the axio-dilaton from a type IIB perspective, we require

the existence of a section to the elliptic fibration, and for all reducible components of fibers

not intersecting this zero section to be blown-down to zero size. This choice provides a unique

value of the axio-dilaton for every point in the base geometry. Once it is further demanded that

the torus fibration admits a section, it is guaranteed that the Weierstrass models are available

and obtainable form the originally chosen geometry via birational morphisms. In the context

of heterotic/F-theory duality, a range of possible geometries are possible in the elliptic and K3-

fibered manifolds appearing in (1) and (2) (with many possible Hodge numbers, Picard groups,

etc appearing). However, thanks to the work of Nakayama, the existence of an elliptic fibration

guarantees the existence of a particular minimal form for the dual CY geometries – the so-called

Weierstrass form in which all reducible components of the fiber not intersecting the zero-section

have been blown down. As a result of the above decomposition, it is clear that the topology (i.e.

Chern classes), cohomology (i.e. H∗(X3, V )) and stability structure (i.e. stable regions within

Kähler moduli space) of a stable, holomorphic bundle V on an elliptically fibered manifold can

depend on these “extra” divisors (and elements of h1,1(X3)) which are not present in Weierstrass

form. In addition, if Xn contains either a higher rank Mordell-Weil group or fibral divisors,

the associated Weierstrass model is singular, leading to natural questions as to how to interpret

the data of gauge fields/vector bundles over such spaces. As a result, in the processing of at-

tempting to map the heterotic CY manifold into Weierstrass form, important topological and

quasi-topological information – and its ensuing physical consequences – could be lost. To this

end, the work of Friedman, Morgan and Witten introduced the tools of Fourier-Mukai Trans-

forms into heterotic theories. In this context, the data of a rank N , holomorphic, slope-stable

vector bundle π : V → X is presented by its so-called “spectral data”, loosely described as a

pair (S,LS) consisting of an N -sheeted cover, S, of the base Bn−1 (the “spectral cover”) and a
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rank-1 sheaf LS over it. Very loosely, this encapsulates the restriction of the bundle to each fiber

(given by the N points on the elliptic curve over each point in the base) and the data of a line

bundle, LS encapsulating the “twisting” of this decomposition over the manifold. To begin, it

should be recalled that compactifications of the E8×E8 heterotic theory on an elliptically fibered

Calabi-Yau n-fold,

πh : Xn
E−→ Bn−1 , (1)

will lead to the same effective physics as F-theory compactifications on a K3-fibered Calabi-Yau

n+ 1-fold,

πf : Yn+1
K3−→ Bn−1 . (2)

Here the base manifold Bn−1 appearing in (1) and (2) is the same Kähler manifold (thus in-

ducing a duality fiber by fiber over the base from the 8-dimensional correspondence. Within

the heterotic theory, the geometry of the slope stable, holomorphic vector bundle, π : V → Xn,

must also be taken into account. In particular, to be understood in the context of the fiber-wise

duality (induced from 8-dimensional correspondence), the data of the vector bundle must also

be presented “fiber by fiber” in Xn over the base Bn−1. More precisely a Fourier-Mukai trans-

form is a relative integral functor acting on the bounded derived category of coherent sheaves

Φ : Db(X)→ Db(X̂) (where X̂ is the Altman-Kleian compactification of the relative Jacobian of

X). This functorial/category-theoretic viewpoint will prove a powerful tool as we examine and

define the concepts above more carefully in the Sections to come and consider their generaliza-

tions. The basic idea for establishing a duality between two theories in lower dimensions is to

use the adiabatic principle. Therefore one has first to establish a duality between two theories,

then one variies slowly the parameters of these two theories over a common base space, and one

expects that the duality holds on the lower dimensional space. The heterotic string compactified

on a n − 1-dimensional elliptically fibered Calabi-Yau Z → B together with a vector bundle V

on Z is conjectured to be dual to F-theory compactified on a n-dimensional Calabi-Yau X → B,

fibered over the same base B with elliptic K3 fibers. A duality between the two theories involves

the comparision of the moduli spaces on both sides. In the following we will be interested in

n = 2, 3, 4. Now, on the level of parameter counting one gets 16 complex parameters coming

from the Wilson lines, and additional 2 complex parameters from the complex structure modulus

U and the Kähler modulus T of T 2. These 18 parameters parametrize the moduli superspace

Mhet = SO(18, 2; Z)\SO(18, 2)/SO(18)× SO(2) (3)

further, one has to take into account the heterotic coupling constant, which is parametrized by

a positive real number λ2, so we have 18 complex + 1 real parameters. It was argued on the

level of parameter counting that the heterotic superstring on T 2 in the presence of Wilson lines

is dual to F-theory compactified on K3 given by

y2 = x3 + g2(z)x+ g3(z) (4)

where the equation describes a hypersurface in a P2 bundle over P1. In particular one has

(9 + 13− 3− 1) = 18 parameters, where 9 + 13 coming from specifying g2 and g3, then mod out
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by SL(2,C) action on P1 means just subtracting 3 and an additional 1 for overall rescalings.

Furthermore, the remaining real parameter (the heterotic coupling) can be identified with the

size of the P1.

MF = SO(18, 2; Z)\SO(18, 2)/SO(18)× SO(2) (5)

We get moduli fields from hyper and tensor multiplets. Therefore one expects the moduli

superspace to be in the form

M = MH ×MT (6)

where MH is a quaternionic Kähler manifold and MT is a Riemannian manifold, their dimensions

are given. Since the supergravity is chiral, there are constaints on the allowed spectrum, due

to gauge and gravitational anomaly cancellation conditions. The number of vector multiplets is

given by the dimension of the adjoint representation of the gauge group, since the vector multi-

plets belong to the adjoint representation. To determine the number of charged hypermultiplets,

we consider an H-bundle V with fibre in an irreducible representation Ri of the structure group.

We compare the number of moduli in heterotic and F-theory which lead to N = 1 neutral chiral

multiplets. Note that this is possible as long as we assume that no four-flux is turned on which

otherwise would imply that we have to take into account the twistings appearing in the spectral

cover construction of V . The twistings lead to a multi-component structure of the bundle moduli

superspace. If the F-theory geometry also admits a K3-fibration then the choice of Weierstrass

form described above also imposes the expected form of the heterotic ellitpically fibered geometry

in the stable degeneration limit. As a result, in much of the literature to date, it has simply been

assumed that the essential procedure of heterotic/F-theory duality must be to place both CY

geometries, Xn and Yn+1 into Weierstrass form from the start.

We review the basic tools and key results of Fourier-Mukai transforms and spectral cover

bundles in the case of Weierstrass models. We then generalize these results to the case of ellipti-

cally fibered manifolds with fibral divisors and geometries with additional sections to the elliptic

fibration. We provide explicit examples of Fourier-Mukai transforms by beginning with a bundle

defined via some explicit construction (e.g. a monad or extension bundle) and then computing

its spectral data directly. We apply our new results to the problem of chirality changing small

instanton transitions. We illustrate the distinctions and obstructions that can arise between

smooth and singular spectral covers. Finally we summarize this work and briefly discuss future

directions. This article contain a set of well-known but useful mathematical results on the topics

of derived categories and Fourier-Mukai functors. Although the material contained there is well-

established in the mathematics literature, it is less commonly used by physicists and we provide

a small overview in the hope that readers unfamiliar with these tools might find a brief and self-

contained summary of these results useful. There are some motivations to develop theoretical

tools to extract physics out of G2-holonomy compactification of 11-dimensional supergravity or

Calabi–Yau four-fold compactification of F-theory. The identification of quarks and leptons, or

of chiral matter multiplets in general, has been such a challenging problem in F-theory, because

an intrinsic formulation of F-theory has not been fully developed yet. The elementary degrees

of freedom in F-theory can be described by (p, q) strings or M2-branes of 11-dimensional super-

gravity. It may be possible, to identify chiral matter multiplets on 3+1 dimensions with some of
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their fluctuation modes. In practice, however, it is extremely difficult to disentangle complicated

geometry of triple intersection of (p, q) 7-branes, or to maintain distinction between left-handed

and right-handed fermions in Calabi–Yau 4-fold compactification of 11-dimensional supergravity

down to 2+1 dimensions. Instead, the duality between the Heterotic string and F-theory will

be the most powerful tool in studying F-theory. This article is along the line of this approach,

the Heterotic string theory and the Heterotic–F-theory duality are used to study F-theory. The

Heterotic string theory compactified on an elliptically fibered Calabi–Yau 3-fold πZ : Z → B2 is

dual to F-theory compactified on an elliptically fibered Calabi–Yau 4-fold πX : X → B3 whose

base 3-fold B3 is a P1 fibration over B2. The various matter multiplets in low-energy effective

theory are identified with H1(Z; ρ(V )) in Heterotic string description, where ρ(V ) is a vector

bundle V in representation ρ. Cohomology groups on a fibered space can be calculated first

on the fiber geometry, and later on the base geometry; except for certain cases (which will be

covered in section 4),

H1(Z; ρ(V )) ' H0(B2;R1πZ∗ρ(V )), (7)

and the direct images R1πZ∗ρ(V ) have their support only on curves in B2. In the Heterotic/F-

theory duality, these support curves correspond to 7-brane intersections, and the sheaves on the

curves should be those on the 7-brane intersection curves. Chiral matter multiplets are identified

with global holomorphic sections of such sheaves (except for certain cases). Thus, by using the

Heterotic–F duality, we can obtain the sheaves whose sections are identified with quarks and

leptons. Direct images R1πZ∗ρ(V ) are, therefore, the information we would like to obtain from

the Heterotic superstring theory. Direct images of bundles in the fundamental representation

ρ(V ) = V were obtained in 1990’s [16,17]. Those of bundles in the anti-symmetric representation

ρ(V ) = ∧2V have not been clearly described as sheaves so far in the last decade, apart from some

developments in [18, 19] in the context of Heterotic theory compactification. Calculation of the

direct images of ∧2V , therefore, is one of the central themes in this article. This is by no means

a minor problem. Both 5̄ and H̄(5̄) multiplets arise from ∧2V of an SU(5) bundle V , and H(5)

from ∧2V ×, where V × is the dual bundle of V . Without understanding the geometry associated

with R1πZ∗∧2V and R1πZ∗∧2V ×, there is no way to understand the Yukawa couplings of quarks

and leptons in F-theory. We introduce a new notion, covering matter curve, roughly speaking in

order to deal with singularities that appear along matter curves. The direct image R1πZ∗ ∧2 V

is represented as a pushforward of a locally free rank-1 sheaf F̃∧2V on the covering matter curve

for all the cases we have study, i.e. for rank V = 3, 4, 5, 6. We should also note here that a minor

assumption is made on structure of R1πZ∗ ∧2 V around a particular type of singularity for the

rank V = 4 case. Divisors determining the locally free rank-1 sheaves are determined in terms of

data defining spectral surfaces. Further, consistent F-theory compactification requires a number

of space-time filling threebranes, which should turn, under duality, into heterotic fivebranes,

which wrap- ping the elliptic fiber. Another problem which begs further analysis is to work

out a refined heterotic/F-theory matter dictionary, which requires an improved understanding of

intersecting seven-branes.
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2 The Review of Vector Bundles over Weierstrass Elliptic

Fibrations and Fourier-Mukai Transforms

In this section we provide a brief review of some of the necessary existing tools and standard

results of Fourier-Mukai transforms arising in elliptically fibered Calabi-Yau geometry. Since the

literature on this topic is vast, we make no attempt at a comprehensive review, but instead aim

for a curated survey of some of the tools that will prove most useful. Moreover, we hope that

this review is of use in making the present paper somewhat self-contained. For more information

about the applications of Fourier-Mukai functors in studying the moduli space of stable sheaves

over elliptically fibered manifolds, the interested reader is referred to the research literature.

2.1 Irreducible smooth elliptic curve

To set notation and introduce the necessary tools let us begin by considering the case of n = 1

in (1), a one (complex) dimensional Calabi-Yau manifold – that is X is a smooth elliptic curve,

E. In the case of a smooth elliptic curve, there is a classical result due to Atiyah (which can

generalized to abelian varieties) which states that any (semi)stable coherent sheaf, E , of rank N

and degree zero over E is S-equivalent to a direct sum of general degree zero line bundles,

E ∼
⊕
i

L⊕Nii , ΣiNi = N, deg(Li) = 0. (8)

In the context then of the moduli space of semi-stable sheaves on an elliptic curve, one can

introduce an integral functor

ΦPE→E : Db(E) −→ Db(E) (9)

(note that here Ê the Jacobian of E is simply isomorphic to E and thus we do not make the

distinction). This functor admits a canonical kernel, P , the so-called Poincare sheaf,

P := I∆ ⊗ π∗1OE(p0)⊗ π∗2OE(p0) (10)

where π1, π2 are the projection of E × E to the first and second factor respectively, p0 is the

divisor corresponding to the zero element of the abelian group on the elliptic curves, and ∆ is

the diagonal divisor in E × E (and also δ is the diagonal morphism). It is not hard to prove

that P satisfies the conditions due to Orlov and Bondal that guarantee that ΦPE→E is indeed a

Fourier-Mukai transform (i.e. it is an equivalence of derived categories).

To illustrate how this specific Fourier-Mukai functor acts on coherent sheaves of degree zero,

it is useful to highlight its specific behavior in several explicit cases. To begin, consider the

simplest possible case of E = OE(p− p0), i.e. a generic degree zero line bundle over E. Here,

ΦPE(OE(p− p0)) = Rπ2∗(π
∗
1OE(p− p0)⊗ P)

To compute this explicitly, consider the following short exact sequence induced by the mor-

phism δ : E −→ E × E,
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0 −→ P −→ π∗1OE(p0)⊗ π∗2OE(p0) −→ δ∗OE(2p0) −→ 0. (11)

Twistin the sequence above with OE(p− p0), and then applying the (left exact) functor Rπ∗ to

that yields the following long exact sequence,

0 Φ0(OE(p− p0)) (R0π2∗π
∗
1OE(p))⊗OE(p0) OE(p0)⊗OE(p)

Φ1(OE(p− p0)) (R1π2∗π
∗
1OE(p))⊗OE(p0) 0.

(12)

To determine the the FM transform, it is necessary to understand the sheaves appearing in

the middle column, and to that end, it is possible to apply the base change formula for flat

morphisms,

E × E E

E p

π1

π2

P

P

Rπ2∗π
∗
1 ' P ∗RP∗, (13)

where P is just a projection to a point. Therefore,

Rπ2∗π
∗
1OE(p) = P ∗RΓ(E,OE(p)) = OE. (14)

Consequently, it follows that OE(p− p0) must be a WIT1, and it is supported on p,

ΦP(OE(p− p0)) = Op[−1]. (15)

In summary, the Fourier-Mukai transform of any direct sum degree zero line bundles on an elliptic

curve, is a direct sum of torsion sheaves supported on the corresponding points of the Jacobian.

As another simple example, consider the non-trivial extension of two trivial line bundles,

0 −→ OE −→ E2 −→ OE −→ 0. (16)

Applying Φ on this short exact sequence yields

0 Φ0(OE) Φ0(E2) Φ0(OE)

Φ1(OE) Φ1(E2) Φ1(OE) 0.

(17)

From the previous discussion we have reviewed that ΦP(OE) = Op0 [−1], so the first row must

be zero (i.e. Φ0(E2) = 0), and

0 −→ Op0 −→ Φ1(E2) −→ Op0 −→ 0, (18)

but this cannot be a non-trivial extension of the torsion sheaves, and one concludes,

ΦP(E2) = (Op0 ⊕Op0)[−1]. (19)

Note that E2 is S-equivalent to O⊕2
E but not equal, however, Fourier-Mukai of both of them is

the same.
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2.2 Weierstrass elliptic fibration

With the results above in hand for a single elliptic curve, they can now be extended fiber-by-fiber

for a smooth elliptic fibration. We begin with the simplest case, that of a smooth Weierstrass

elliptic fibration π : X −→ B. This fibration admits a holomorphic section σ : B → X and every

fiber Xb = π−1(b) is integral, and generically smooth for b ∈ B. Note that from here onward

we will mainly work with smooth Calabi-Yau threefolds and since there exists an isomorphism,

X̂ ' X, we will ignore the distinction between X and its relative Jacobian.

In general, on a fibered space, it is possible to define a relative integral functor Φ in almost

the same way it was defined for a trivial fibration i.e. E×B. So for any E• ∈ Db(X) there exists

the following:

X ×B X

X B X

π1 ρ π2

Φ(E•) := Rπ2∗(π
∗
1E• ⊗L K•), (20)

with X ×B X is the fiber product and the kernel is chosen as K• ∈ Db(X ×B X). In the case at

hand, the kernel is required to be the “relative” Poincare sheaf,

P := I∆ ⊗ π∗1OX(σ)⊗ π∗2OX(σ)⊗ ρ∗K∗B, (21)

where I∆ is the ideal sheaf of the relative diagonal divisor,

0 −→ I∆ −→ OX×BX −→ δ∗OX −→ 0,

δ : X ↪→ X ×B X, (22)

and KB is the canonical bundle of the base B which is chosen to make the restriction

P|π∗1σ1 ' OX (23)

and similarly for σ2. From this relative integral functor, it is possible to define “absolute” integral

functor with kernel j∗P , where j : X ×B X ↪→ X ×X is a closed immersion. Note that

Φ(E•) ' Φj∗P
X→X(E•) (24)

for any E•. It can be proved that this kernel is indeed strongly simple, so the corresponding

integral functor is fully faithful. Moreover, since X is a smooth Calabi-Yau manifold, it follows

that this integral functor is indeed an equivalence, i.e. a Fourier-Mukai functor. It should also

be noted that there exist simple formulas for base change compatibility, and it can be readily

verified that the restriction of this Fourier Mukai functor over a generic smooth elliptic fiber is

the same as the absolute integral functor that was reviewed briefly.
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3 Spectral Cover Construction and Direct Images

Heterotic string theory compactified on an elliptic Calabi–Yau 3-fold is dual to F-theory com-

pactified on K3-fibered elliptic Calabi–Yau 4-fold. Once massless chiral multiplets are described

in Heterotic string theory, the description can be passed on to F-theory, using the duality. In

this section, we will review a powerful way to describe them that is known since late 1990’s,

mainly for the purpose of setting up notations used in this article. Heterotic string theory has an

F-theory dual description, if it is compactified on an elliptically fibered manifold. We consider

an elliptic fibered Calabi–Yau 3-fold Z

πZ : Z → B2 (25)

over a base 2-fold, so that N = 1 supersymmetry is left in low-energy effective theory below the

Kaluza–Klein scale. An elliptic fibration Z over B2 is given by a Weierstrass equation,

y2 = x3 + f0x+ g0. (26)

Here, f0 and g0 are sections of line bundles L⊗4
H and L⊗6

H on B2, respectively, and LH ' O(−KB2)

for Z to be a Calabi–Yau 3-fold. The coordinates (x, y) transform as sections of L⊗2
H and L⊗3

H ,

respectively. The zero section σ : B2 ↪→ Z maps B2 to the locus of infinity points, (x, y) =

(∞,∞).

3.1 Spectral Cover Construction

Compactification of the Heterotic E8×E ′8 string theory involves a pair of vector bundles (V0, V∞)

on a Calabi–Yau 3-fold Z. Spectral cover construction [12,20,21] describes vector bundles on an

elliptic fibered Calabi-Yau 3-fold Z. Let us consider a rank-N vector bundle V on Z. Spectral

surface CV ∈ |Nσ + π∗Zη| is a smooth hypersurface of Z that is a degree N cover over B2, where

η is a divisor on B2. When a line bundle NV on CV is given, a rank-N vector bundle V is given

by the Fourier–Mukai transform

V = p2∗(p
∗
1(NV )⊗ PB2), (27)

where p1,2 are maps associated with a fiber product

CV ×B2 Z
p1

yy

p2

$$
CV

πC
%%

Z

πZ
zz

B2

(28)

q := πC ◦ p1 = πZ ◦ p2, and PB2 is the Poincaré line bundle OCV ×B2
Z(∆ − σ1 − σ2 + q∗KB2)

with σ1 = σ × Z, σ2 = Z × σ and ∆ is a diagonal divisor of Z × Z restricted on CV ×B2 Z. The

data (CV ,NV ), i.e. the spectral surface and a line bundle on it, determines a vector bundle V .
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The characteristic classes of vector bundles constructed that way are expressed in terms of

spectral data (CV ,NV ). The first Chern class of the vector bundle V is given by [12]

c1(V ) = π∗ZπC∗

(
c1(NV )− 1

2
r

)
(29)

where r := ωC/B2 := KCV −π∗CKB2 is the ramification divisor on CV of πC : CV → B2, and c1(V )

is a pullback of a 2-form on the base 2-fold B2. With the notation

γ := c1(NV )− 1

2
r, (30)

we have

c1(V ) = π∗ZπC∗γ. (31)

We will sometimes use c1(V ) in the sense of πC∗γ. The second Chern character is

ch2(V ) = −σ · η + π∗Zω, (32)

where ω is some 4-form on B2 [12].

We do not restrict our attention to cases with vanishing first Chern class c1(V ). By considering

vector bundles V whose structure group is U(N), rather than SU(N), we will be able to perform

a consistency check in calculating R1πZ∗(∧2V ) by examining c1(V ) dependence. We maintain our

discussion to be valid for U(N) bundles also because there are some phenomenological motivations

to think of Heterotic string compactification with a bundle whose structure group is within

U(N1)× U(N2) ⊂ SU(5) [1].

We now present a few technical remarks about the nature of vector bundles given by spectral

cover construction. Such bundles cannot be completely generic U(N) bundles. For example, the

first Chern class c1(V ) = c1(det V ) is always given by a pullback of a 2-form on B2 to Z (see

(31)). In other words, the first Chern class of det V is trivial in the fiber direction. This is not a

serious limitation when we are analysing Heterotic compactification in an attempt to understand

F-theory better. In Heterotic string compactification, vector bundles have to be stable, and the

stability condition (Donaldson–Uhlenbeck–Yau equation) is∫
Z

c1(V ) ∧ J ∧ J = 0 (33)

at tree level, where J is the Kähler form of Z. When the T 2-fiber is small, description in the

Heterotic theory becomes less reliable, but a dual F-theory description becomes better. This is

the situation we are interested in. In such a limit, the size of T 2-fiber becomes much smaller

than that of the base, and the dominant contribution of (33) is from two J ’s in the two directions

along B2, and c1(V ) in the fiber direction. Thus, the sole dominant contribution has to vanish,

and hence stable vector bundles should not have non-vanishing c1(V ) along the fiber direction.

Spectral cover construction, therefore, is fine for our purpose in this article, although it cannot

describe a bundle with a non-vanishing first Chern class along the T 2-fiber direction.
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For U(N) bundles given by spectral cover construction, det V are actually trivial along the

elliptic fiber direction, not just degree zero. The spectral surface CV ↪→ Z is (on a local patch of

B2) defined by the zero locus of an equation

s = a0 + a2x+ a3y + a4x
2 + a5xy + · · ·+ aN

(
xN/2 or x(N−3)/2y

)
= 0, (34)

where ar are sections of O(η)⊗L⊗(−r)
H ' O(rKB2 + η) on B2. The last term is xN/2 or x(N−3)/2y

depending on whether N is even or odd. On a given fiber Eb := π−1
Z (b), s determines an elliptic

function, with N zero points {pi}i=1,··· ,N (for U(N) bundles) and a rank-N pole at e0, zero section

σ on Eb. Since the group-law sum of the zero points of an elliptic function is the same as that of

the poles,

�ipi = e0, (35)

where � stands for the summation according to the group law of an elliptic curve.

3.2 Direct Images and Matter Curves

If an SU(N) vector bundle V is turned on within one of E8 gauge group of the Heterotic E8×E ′8
string theory, symmetry group is reduced to H ⊂ E8 that commutes with the SU(N) in effective

theory below the Kaluza–Klein scale. The chiral multiplets in low-energy effective theory are

identified with H1(Z; ρ(V )). The correspondence between the representations ρ(V ) of V and

those of the unbroken symmetry group H is summarized.

For a Calabi–Yau 3-fold Z that is an elliptic fibration over a 2-fold B2, cohomology groups

H1(Z; ρ(V )) can be calculated by Leray spectral sequence. One calculates the cohomology in

the fiber direction first, RiπZ∗ρ(V ) (i = 0, 1), and then the cohomology in the base directions. If

R0πZ∗ρ(V ) vanishes everywhere on B2, which is often the case, then

H1(Z; ρ(V )) ' H0(B2;R1πZ∗ρ(V )). (36)

If one is interested only in the net chirality, i.e. the difference between the number of chiral

multiplets and anti-chiral multiplets in a given representation,

χ(ρ(V )) := h1(Z; ρ(V ))− h1(Z; ρ(V )×),

= h1(Z; ρ(V ))− h2(Z; ρ(V )), (37)

= −χ(ρ(V )×),

then one has

χ(ρ(V )) = −χ(Z; ρ(V )),

= −χ(B2;R0πZ∗ρ(V )) + χ(B2;R1πZ∗ρ(V )), (38)

→ χ(B2;R1πZ∗ρ(V )) (if R0πZ∗ρ(V ) = 0). (39)

Suppose that the vector bundle V is given by spectral cover construction from (CV ,NV ). Let

us consider a Fourier–Mukai transform of ρ(V ):

R1p1∗
[
p∗2(ρ(V ))⊗ P−1

B ⊗O(−q∗KB2)
]
, (40)

11



which is a sheaf on Z, and p1 and p2 here are maps in

Z ×B2 Z
p1

zz

p2

$$
Z

πZ $$

Z

πZzz
B2

(41)

and q = πZ ◦ p1 = πZ ◦ p2. This sheaf is supported only on a codimension-1 subvariety Cρ(V ).

Unless Cρ(V ) contains the zero section σ as an irreducible component, ρ(V ) does not contain a

trivial bundle when it is restricted on a fiber Eb of a generic point b ∈ B2. Thus, R1πZ∗ρ(V )

vanishes on a generic point on B2; it survives only along a curve

c̄ρ(V ) = Cρ(V ) · σ. (42)

in B2. Curves c̄ρ(V ) for various representations ρ(V ) are called matter curves, because cohomology

groups are localized.

The localization of cohomology groups (or matter multiplets that appear in low-energy ef-

fective theory) on matter curves is not just an artifact of mathematical calculation. It also has

physics meaning. For small elliptic fiber, where F-theory description becomes better, zero modes

of Dirac equation in a given representation ρ(V ) have Gaussian profile around a locus where

Wilson lines in the elliptic fiber directions vanish, just like the case explained for the T 3-fibration

in [9]. Localized massless matter multiplets in Heterotic theory description correspond to those

on 7-brane intersection curves in Type IIB / F-theory description.

Suppose that the sheaf (40) on Z is given by a pushforward of a sheaf Nρ(V ) on Cρ(V ):

R1p1∗
[
p∗2(ρ(V ))⊗ P−1

B ⊗O(−q∗KB2)
]

= iCρ(V )∗ (Nρ(V )), (43)

where iCρ(V )
: Cρ(V ) ↪→ Z. Then, the direct images R1πZ∗ρ(V ) are given by pushforwards of

sheaves on matter curves [16–18]:

R1πZ∗(ρ(V )) = iρ(V )∗ Fρ(V ), (44)

Fρ(V ) = j∗ρ(V )Nρ(V ) ⊗O(i∗ρ(V )KB2); (45)

here, iρ(V ) : c̄ρ(V ) = σ ·Cρ(V ) ↪→ σ ' B2, and jρ(V ) : c̄ρ(V ) = σ ·Cρ(V ) ↪→ Cρ(V ). Chiral multiplets in

low-energy effective theory are characterized as global holomorphic sections of the sheaves Fρ(V )

on the matter curves:

H1(Z; ρ(V )) ' H0(B2;R1πZ∗ρ(V )) ' H0(c̄ρ(V );Fρ(V )). (46)

The net chirality (38) is now expressed by Euler characteristic on the matter curve:

χ(ρ(V )) = χ(B2;R1πZ∗ρ(V )) = χ(c̄ρ(V );Fρ(V )). (47)

12



3.3 Matter from Bundles in the Fundamental Representation

In the above discussion we have assumed that the sheaf (40) on Z is given by a pushforward of a

sheaf on Cρ(V ). This is actually a highly non-trivial statement. Even if a sheaf E on an algebraic

variety X is supported on a closed subvariety iY : Y ↪→ X, it is not true in general that E is a

pushforward of a sheaf F on Y ; E = iY ∗F . It is true that E = iY ∗F for some F on Y as a sheaf

of Abelian group, but not necessarily as a sheaf of OX-module. Thus, the discussion after (43)

is not necessarily applied immediately for bundles in any representation.

For bundles V in the fundamental representation, however, their Fourier–Mukai transforms

are pushforward of the original line bundles NV . Thus, the discussion all the way down to (47)

is applicable. The matter curves c̄V = CV · σ belong to a topological class

c̄V ∈ |NKB2 + η| (48)

because CV ∈ |Nσ + π∗Zη|, and σ · σ = −σ · c1(LH) = σ ·KB2 [12].

R1πZ∗V is given by a pushforward of a sheaf on c̄V

FV = j∗VN ⊗ i∗VO(KB2) = O
(
i∗VKB2 +

1

2
j∗V r + j∗V γ

)
(49)

as a sheaf of OB2-module. Since the canonical divisor KCV is also the divisor CV |c̄V in a Calabi–

Yau 3-fold,

i∗VKB2 +
1

2
j∗V r = i∗VKB2 +

1

2
j∗V (KCV − π∗CKB2) =

1

2
(i∗VKB2 + CV |c̄V )

=
1

2

(
i∗VKB2 +Nc̄V |B2

)
=

1

2
Kc̄V , (50)

where adjunction formula was used for iV : c̄V ↪→ B2 [16]. Thus, the sheaf can be rewritten as

FV = O
(

1

2
Kc̄V + j∗V γ

)
, (51)

FV × = O
(

1

2
Kc̄V − j∗V γ

)
; (52)

here we determined FV × by replacing γ by −γ [17]. It is easy to see that these sheaves satisfy

FV × = O(Kc̄V )⊗F−1
V . (53)

Massless chiral multiplets from the bundles V and V × are now given by independent global

holomorphic sections of FV and FV × , respectively. If one is interested only in the difference

between the numbers of those chiral multiplets, the net chirality is obtained by Riemann–Roch

theorem [16,17]:

χ(V ) = χ(c̄V ;FV ), (54)

= [1− g(c̄V )] + deg

(
KB2 +

1

2
j∗V r

)
+

∫
c̄V

j∗V γ, (55)

= [1− g(c̄V )] +
1

2
degKc̄V +

∫
c̄V

j∗V γ, (56)

=

∫
c̄V

j∗V γ = c̄V · γ. (57)
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It is reasonable that the final result is proportional to γ, because we know that χ(V ) = −χ(V ×),

and V ↔ V × corresponds to γ ↔ −γ and PB ↔ P−1
B [17].

4 Bundles Trivial in the Fiber Direction

In this section we briefly discuss the cohomology groups H i(Z; π∗ZE), where Z is an elliptic

fibration πZ : Z → B2, and we consider a bundle given by a pullback of a bundle E on B2.

Bundles given by π∗Z are trivial in the fiber direction, and hence R0πZ∗(π
∗
ZE) on B2 does not

vanish, and R1πZ∗(π
∗
ZE) is not supported on a curve in B2, either. Thus, the cohomology groups

of the bundles π∗ZE are not described in the same way as those of such bundles as V , ∧2V and

∧3V . We need to express H i(Z; π∗ZE) (i = 1, 2) in terms of cohomology groups of RpπZ∗(π
∗
ZE)

(p = 0, 1), so that those expressions are interpreted in F-theory.

This issue has been discussed in the footnote 13 of [14]. Here, we add a minor comment to

the description given there.

First, note that

R0πZ∗ (π∗ZE) ' E, (58)

R1πZ∗ (π∗ZE) ' E ⊗ L−1
H ' E ⊗O(KB2), (59)

where the Calabi–Yau condition of πZ : Z → B2 is used in the last equality. Thus,

H0(Z; π∗ZE) ' H0(B2;E), (60)[
H0(Z; π∗ZE

×)
]× ' H3(Z; π∗ZE) ' H2(B2;E ⊗O(KB2)) ' [H0(B2;E×)]×. (61)

Since these cohomology groups correspond to massless gauginos at low energy, one can assume

that those groups are trivial when one is concerned with matter multiplets. Using the spectral

sequence, one can see that the two other cohomology groups Hr(Z; π∗ZE) (r = 1, 2) satisfy

0→ H1(B2;E)→ H1(Z; π∗ZE)→ H0(B2;E ⊗O(KB2))→ H2(B2;E), (62)

H0(B2;E ⊗O(KB2))→ H2(B2;E)→ H2(Z; π∗ZE)→ H1(B2;E ⊗O(KB2))→ 0. (63)

In the spectral sequence calculation of cohomology groups, Ep,q
2 = Hp(B2;RqπZ∗π

∗
ZE), and d2 :

Ep,q
2 → Ep+2,q−1

2 for (p, q) = (0, 1) determines the map

d2 : H0(B2;E ⊗O(KB2))→ H2(B2;E) '
[
H0(B2;E× ⊗O(KB2))

]×
(64)

used in (62, 63).

It thus follows that

h1(Z; π∗ZE) = h1(B2;E) + ker d2, (65)

h2(Z; π∗ZE) = h1(B2;E ⊗O(KB2)) + coker d2, (66)

= h1(B2;E×) + coker d2, (67)
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where d2 is the one in (64). If d2 is trivial (including cases where either h0(B2;E ⊗O(KB2)) = 0

or h0(B2;E× ⊗O(KB2)) = 0), the results in [14] follow:

h1(Z; π∗ZE) = h1(B2;E) + h0(B2;E ⊗O(KB2)), (68)

h1(Z; π∗ZE
×) = h2(Z; π∗ZE) = h1(B2;E ⊗O(KB2)) + h2(B2;E), (69)

= h1(B2;E×) + h0(B2;E× ⊗O(KB2)). (70)

For a general d2, (65, 67) are the right expressions for the number of massless matter multiplets

from π∗ZE. This means that some degrees of freedom in H0(B2;E ⊗O(KB2)) and H0(B2;E× ⊗
O(KB2)) are paired up and do not remain in the low-energy spectrum. One might phrase this

phenomenon as those degrees of freedom having “masses.” It should be noted that all the degrees

of freedom in H1(B2;E) and H1(B2;E×) do not have such “masses.” We do not study the detail

of the map d2 based on explicit examples. Such “masses” may be understood as a kind of

obstruction in geometry. We leave these interesting questions as open problems for the future.

The structure group of a bundle E can be chosen so that the unbroken symmetry H is reduced

to whatever one likes, say SU(5)GUT or SU(3)× SU(2). The irreducible decomposition of adj.H

under the structure group of E and the true unbroken symmetry may contain a pair of vector-like

representations, (ρ(E), repr.)–(ρ(E)×, repr.×). For such a pair, the net chirality is calculated by

χ(ρ(E)) := h1(Z; π∗Zρ(E))− h1(Z; π∗Zρ(E)×), (71)

= −χ(Z; π∗Zρ(E)), (72)

= −χ(B2; ρ(E)) + χ(B2; ρ(E)⊗O(KB2)), (73)

= −
∫
B2

c1(TB2) ∧ c1(ρ(E)). (74)

Rank of the map d2 in (64) does not matter here.

The chirality formula (74) can also be obtained from the discussion reviewed in the previous

section [1]. The bundle π∗Zρ(E) is regarded as a Fourier–Mukai transform of (Cρ(E),Nρ(E)) =

(σ, ρ(E)). Thus, the matter curve is formally given by Cρ(E) · σ which belongs to a class of KB2 .

Since the ramification divisor of πC : C → B2 is trivial, one finds (i) from the argument in (50)

that KB2 is half the canonical divisor of the “matter curve” c̄ρ(E) ∼ KB2 in B2, and (ii) that

Nρ(E) ⊗O(r/2)−1 = ρ(E). Therefore,

χ(ρ(E)) =

∫
KB2

c1(E) = −
∫
B2

c1(TB2) ∧ c1(ρ(E)), (75)

reproducing (74).

5 Analysis of R1πZ∗ ∧2 V

Not all the chiral multiplets in low-energy effective theory are identified with cohomology groups

of bundle V (or V ×) in the fundamental (anti-fundamental) representation. In order to obtain

description of all kinds of matter multiplets in F-theory, we also need to determine the sheaves
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R1πZ∗ρ(V ) for bundles associated with ρ(V ) = ∧2V and ∧3V . As we have emphasized in

Introduction, the Higgs multiplets and 5̄ = (D̄, L) in the SU(5)GUT-5+5̄ representations originate

from the bundle ∧2V , and the Higgs multiplet in the SO(10)-10 = vec. representation from ∧2V .

Thus, it is important to determine R1πZ∗∧2V in order to understand Yukawa couplings of quarks

and leptons in F-theory language. For the bundles V (or V ×), the generic element of a topological

class of spectral surface |Nσ + π∗Zη| is smooth, and the transverse coordinate of CV in Z can be

chosen at any points on CV . This property can be used to show that the Fourier–Mukai transform

of V is given by a pushforward of a sheaf on CV as a sheaf of OZ module. Furthermore, the rank

of fiber of the Fourier–Mukai transform never jumps on CV and the sheaf is the locally-free rank-

1 sheaf NV itself. For the bundles ∧2V (or ∧2V ×), on the other hand, C∧2V is not necessarily

smooth, even if CV is. Here, we denote by C∧2V the support of Fourier–Mukai transform (40)

of ρ(V ) = ∧2V . Suppose that CV |Eb for a point b ∈ B2 consists of N points {pi}i=1,···N . Then,

C∧2V |Eb is given by {pi � pj}1≤i<j≤N . At a generic point b ∈ B2, the N(N − 1)/2 points pi � pj

(i < j) in elliptic fiber Eb are all different, and C∧2V is a smooth degree N(N − 1)/2 cover.

For these points, the arguments can be used to show that there a locally free rank-1 sheaf N∧2V

exists on C∧2V (locally around smooth points in C∧2V ), and the Fourier–Mukai transform of ∧2V

is represented as the pushforward of N∧2V as a sheaf of OZ-module. But, on a codimension-1

locus of C∧2V , C∧2V may become singular [10], and a little more attention must be paid. We

will describe a rough sketch of how to determine R1πZ∗ ∧2 V in this section, beginning with how

to deal with such singularities. Details of R1πZ∗ ∧2 V are deferred to the next section. Since

some crucial aspects of R1πZ∗ ∧2 V depend very much on the rank of V , we will provide detailed

description of R1πZ∗ ∧2 V for the rank of V between 2 and 6 in the next section. Once we see

how to deal with R1πZ∗ ∧2 V , it is rather straightforward to find how to deal with R1πZ∗ ∧3 V .

5.1 Resolving Double-Curve Singularity of C∧2V

C∧2V is described locally as N(N − 1)/2 surfaces that pi � pj (i < j) scan. C∧2V has a double-

curve singularity if pi � pj (i < j) and pk � pl (k < l, {i, j} ∩ {k, l} = φ) become equal. It is not

obvious how to choose a coordinate in Z that is normal to C∧2V along the double-curve locus,

and the argument is not readily applicable.

In a local neighborhood of the double curve, C∧2V consists of two irreducible components,

C(ij) and C(kl), and their intersection is the double-curve singularity. C(ij) and C(kl) are surfaces

scanned in Z by pi � pj and pk � pl. ρ(V ) = ∧2V can be regarded locally as direct sum of

O(C(ij) − σ), O(C(kl) − σ) and others. Its Fourier–Mukai transform in (40) is given by a sum of

the above two summands. The Fourier–Mukai transform of the two summands O(C(ij)− σ) and

O(C(kl) − σ) is expressed locally as

R1p1∗
[
O(C(ij) − σ)⊗ P−1

B ⊗O(−q∗KB2)
]

= iC(ij)∗OC(ij)
, (76)

R1p1∗
[
O(C(kl) − σ)⊗ P−1

B ⊗O(−q∗KB2)
]

= iC(kl)∗OC(kl)
. (77)
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Here, iC∧2V
: C∧2V ↪→ Z (which is different from previously defined i∧2V : c̄∧2V ↪→ σ), and

νCij : C(ij) ↪→ C∧2V , iC(ij)
= iC∧2V

◦ νCij , (78)

νCkl : C(kl) ↪→ C∧2V , iC(kl)
= iC∧2V

◦ νCkl . (79)

Therefore, the Fourier–Mukai transform of ∧2V is

R1p1∗
[
p∗2(∧2V )⊗ P−1

B ⊗O(−q∗KB2)
]
' iC∧2V ∗

(
νCij∗OC(ij)

⊕ νCkl∗OC(kl)

)
(80)

locally along a double-curve singularity. Thus, it is given by a pushforward of a sheaf N∧2V on

C∧2V as a sheaf of OZ-module. The sheaf N∧2V is the object inside the parenthesis on the right

hand side.

The sheaf N∧2V is not locally free along the double-curve singularity. The rank of fiber jumps

up there. But we already know that the sheaf N∧2V is given by a pushforward of locally-free

rank-1 sheaf via

νC∧2V
: C̃∧2V = C(ij)

∐
C(kl) → C(ij) ∪ C(kl) = C∧2V . (81)

The map νC∧2V
is determined by νCij

∐
νCkl . Note that C̃∧2V := C(ij)

∐
C(kl) is the resolution

of double-curve singularity in C∧2V . Therefore, the discussion so far means that there exists a

locally free rank-1 sheaf Ñ∧2V on the resolved C̃∧2V such that

N∧2V = νC∧2V ∗Ñ∧2V . (82)

We have seen that the sheaf N∧2V exists on C∧2V and (43) is satisfied as a sheaf of OZ module.

Thus, the discussion around equations (43–47) is applied for the bundles ρ(V ) = ∧2V and ∧2V ×

as well. In particular, the sheaf on the matter curve c̄∧2V is given by

F∧2V = j∗∧2VN∧2V ⊗ i∗∧2VO(KB2). (83)

We introduce the notion of covering matter curve, which turns out to be very important in

characterizing matter multiplets in F-theory. The covering matter curve ˜̄c∧2V is defined as the

set-theoretic inverse image of the matter curve c̄∧2V in C̃∧2V . That is, ˜̄c∧2V := ν−1
C∧2V

(c̄∧2V ). Since

the matter curve c̄∧2V is also regarded as a divisor σ|C∧2V
in C∧2V , the covering matter curve is

also regarded as a divisor ν∗C∧2V
(σ) on C̃∧2V . Using a locally rank-1 sheaf Ñ∧2V on C̃∧2V , a locally

free rank-1 sheaf F̃∧2V can be defined on the covering matter curve:

F̃∧2V = ̃∗∧2V Ñ∧2V ⊗ ı̃∗∧2VO(KB2), (84)

where ̃∧2V : ˜̄c∧2V ↪→ C̃∧2V , νc̄∧2V
:= νC∧2V

|˜̄c∧2V
, and ı̃∧2V := i∧2V ◦ νc̄∧2V

: ˜̄c∧2V ↪→ σ ' B2. The

sheaf F∧2V on the matter curve c̄∧2V is given by

F∧2V = νc̄∧2V ∗F̃∧2V . (85)

Although we have dealt with double-curve singularities on C∧2V , there can still be other

types of singularities on C∧2V . For example, there may be codimension-2 singularities on C∧2V .

Thus, the argument in section 5.1 is not regarded as a complete proof of the existence of N∧2V
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or the existence of Ñ∧2V and its locally-free rank-1 nature. For practical purposes, however,

we only need to know R1πZ∗ ∧2 V along the matter curves. Codimension-1 singularities such

as double curve on C∧2V may be encountered somewhere along the matter curve c̄∧2V [10], but

codimension-2 singularities of C∧2V are seldom exactly on the matter curve. Thus, an analysis

of codimension-2 singularities of C∧2V is not required for the generic case. We will see, however,

that codimension-2 singularities inevitably show up on the matter curve c̄∧2V when rank V = 4, 6.

We will deal with such exceptional cases separately.

5.2 Determining Ñ∧2V in Terms of NV

Even after we find that a sheaf N∧2V exists and (43) is satisfied as a sheaf of OZ module, we

still face a theoretical challenge. How is N∧2V (or Ñ∧2V ) expressed in terms of the original

spectral data (CV ,NV )? Pioneering work was done in [18,19]. Our presentation in the following

is basically along their idea,but we introduce a little modification for a couple of reasons. First,

we will obtain sheaves Ñ∧2V and F̃∧2V on the covering matter curve ˜̄c∧2V , instead of F∧2V on

the matter curve c̄∧2V . By doing so, much clearer description of the direct image R1πZ∗ ∧2 V is

obtained. The other reason for modification is that we are not assuming that NV |D is invariant

under τ that flips the sign of the coordinate y. D is a curve on CV ; we will explain it later.

Since (43) for ρ(V ) = ∧2V is the definition of N∧2V , it follows that

N∧2V = i∗C∧2V
R1p1∗

[
p∗2(∧2V )⊗ P−1

B2
⊗O(−q∗KB2)

]
. (86)

What we really need is its restriction on c̄∧2V , and hence

F∧2V = N∧2V |c̄∧2V
⊗ i∗∧2VO(KB2),

= (iC∧2V
◦ j∧2V )∗R1p1∗

[
p∗2(∧2V )⊗ P−1

B2
⊗O(−q∗KB2)

]
⊗ i∗∧2VO(KB2),

= (iC∧2V
◦ j∧2V )∗R1p1∗

[
p∗2(∧2V )

]
,

= R1p1Y ∗
[
∧2V |Y

]
; (87)

here, Y := c̄∧2V ×B2 Z = π−1
Z (c̄∧2V ). In the third equality, we used the property that PB2

is trivial when it is restricted to a zero section [12], and in the last equality the base change

theorem associated with the commutative diagram

Y := c̄∧2V ×B2 Z

p1Y

��

� � // Z ×B2 Z

p1

��
c̄∧2V

� �

j∧2V

// C∧2V
� �

iC∧2V

// Z

. (88)

This is the standard procedure used in [16–18].

The rank-N bundle V |Y is given by a Fourier–Mukai transform of NV |CV ·Y :

(CV · Y )×c̄∧2V
Y

p1

vv

p2

&&
CV · Y

πC |CV ·Y ((

Y

πYww
c̄∧2V

, V |Y = p2∗ (PB2 ⊗ p∗1(NV |CV ·Y )) . (89)
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The spectral curve CV · Y is a degree-N cover over c̄∧2V .

Let CV |Eb be a collection of N points {pi}i=1,··· ,N . For a point b ∈ c̄∧2V ⊂ C∧2V , some pairs

of the N points, e.g., pk and pl, satisfy pk � pl = e0. Such points in CV · Y form a curve D, and

others form a curve D′.

CV · Y = D +D′. (90)

By the definition of D, the following diagram commutes [19],

D

πD
!!

π̃D // ˜̄c∧2V

νc̄∧2V

��
c̄∧2V

(91)

and π̃D is a degree-2 cover, and πD is a restriction of πC on D. If b ∈ c̄∧2V ↪→ σ is on the

double-curve singularity of C∧2V , then there are four points pi,j,k,l, satisfying pi � pj = e0 and

pk � pl = e0. In the covering matter curve, the inverse image of b, that is, ν−1
c̄∧2V

(b), consists of

two points. Two points pi,j ∈ D are mapped by π̃D to one of the two points in ν−1
c̄∧2V

(b), and

pk,l ∈ D to the other. Although all the four points are mapped to b ∈ c̄∧2V by πD, π̃D remains

strictly a degree-2 cover everywhere on ˜̄c∧2V .

The Fourier–Mukai transform of NV |D on a degree-2 cover spectral curve π̃D : D → ˜̄c∧2V

gives a rank-2 bundle W2:

D ×˜̄c∧2V
Ỹ

p1

zz

p2

$$
D

π̃D $$

Ỹ

p1Ỹzz
˜̄c∧2V

, W2 = p2∗

(
PB|D×˜̄c∧2V

Y ⊗ p∗1(NV |D)
)
, (92)

where Ỹ := ˜̄c∧2V ×c̄∧2V
Y . The pushforward of this rank-2 bundle W2 through projection νY :

Ỹ = ˜̄c∧2V ×c̄∧2V
Y → Y defines a subsheaf of V |Y .

For a point b ∈ c̄∧2V ⊂ C∧2V that is not on the double-curve locus, H1(Eb;∧2V |Eb) comes from

H1(Eb;∧2(νY ∗W2)|Eb) = H1(Eb;∧2W2|Eb). For a point b ∈ c̄∧2V on the double-curve singularity

of C∧2V , however, there are two independent contributions corresponding to H1(Eb;∧2W2|Eb̃) for

two points b̃ ∈ ν−1
c̄∧2V

(b). We introduced the covering matter curve ˜̄c∧2V in order to resolve these

two contributions. The locally free rank-1 sheaf Ñ∧2V |˜̄c∧2V
(and F̃∧2V , consequently) is obtained

by assigning them to the corresponding two points b̃ on ˜̄c∧2V . Therefore,

F̃∧2V = Ñ∧2V |˜̄c∧2V
⊗ ı̃∗∧2VO(KB2),

= R1p1Ỹ ∗
[
∧2W2

]
. (93)

The line bundle ∧2W2 is trivial in the fiber direction of p1Ỹ . Thus, it is regarded as a Fourier–

Mukai transform of (C∧2W2
,N∧2W2

) = (σ, Ñ∧2V |˜̄c∧2V
). It then follows that

∧2W2 = p∗
1Ỹ

(N∧2W2
). (94)
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Thus,

F̃∧2V = N∧2W2
⊗ L−1

H = N∧2W2
⊗ ı̃∗∧2VO(KB2). (95)

Now it is useful to remember that the first Chern class of the line bundle ∧2W2 is

c1(∧2W2) = c1(W2) = p∗
1Ỹ
π̃D∗

(
c1(NV |D)− 1

2
R

)
, (96)

= p∗
1Ỹ
π̃D∗

(
γ|D +

1

2
(r|D −R)

)
, (97)

just like in (29). Here, R := KD − π̃∗DK˜̄c∧2V
is the ramification divisor on D associated with the

projection π̃D : D → ˜̄c∧2V . Thus, by dropping p∗
1Ỹ

from (94) and (97),

F̃∧2V = N∧2W2
⊗ ı̃∗∧2VO(KB2) = O

(
ı̃∗∧2VKB2 + π̃D∗

(
γ|D +

1

2
(r|D −R)

))
. (98)

Since ∧2V = V × ⊗ det V , and det V = π∗ZO(πC∗γ), it is straightforward to obtain the sheaf

F∧2V on the matter curve c̄∧2V = c̄V . Applying ⊗O(±πC∗γ) to FV × and FV ,

F∧2V = O
(
i∗KB2 +

1

2
j∗r − j∗γ + i∗πC∗γ

)
, (99)

F∧2V × = O
(
i∗KB2 +

1

2
j∗r + j∗γ − i∗πC∗γ

)
, (100)

where i : c̄∧2V = c̄V ↪→ B2, and j : c̄∧2V = c̄V ↪→ CV . It is thus unnecessary to use the idea

presented in section 5 in determining the F∧2V for rank-3 bundles V . In the rest of section ??,

however, we use the idea to reproduce this result, so that we get accustomed to using the idea

in practice.

In the fiber Eb of an arbitrary point b ∈ c̄V = c̄∧2V ⊂ B2, CV |Eb consists of three points, one

in the zero section pi = e0 = σ · Eb and two others satisfying pj � pk = e0. Thus, the irreducible

decomposition (90) becomes

CV · Y = D + c̄V . (101)

The curve D is already a degree-2 cover on c̄V = c̄∧2V , and we do not need to introduce a covering

curve ˜̄c∧2V for rank-3 bundles V .

Among various components of divisors specifying the rank-1 sheaf F∧2V in (98), πD∗γ and

πD∗(r|D−R)/2 can be treated separately. Because of the irreducible decomposition we have seen

above,

πD∗γ = i∗πC∗γ − j∗γ, (102)

and hence the γ-dependent part of (99) is reproduced.

The remaining task is to examine πD∗(r|D−R)/2. Because the spectral surface CV is ramified

over σ whenever D ⊂ CV is on c̄∧2V , we begin with classifying the intersection points of the two

divisors r and D in CV . For rank-3 bundles V , there are two types of r–D intersection points on

CV . We show the behavior of the spectral surface CV around a D–r intersection point of type.
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Once the sheaf (and in particular, line bundle) for ∧2V is obtained, its net chirality follows

immediately. Using the Riemann–Roch theorem on the matter curve c̄∧2V = c̄V ,

χ(∧2V ) = 1− g(c̄V ) + deg F∧2V , (103)

= 1− g(c̄V ) + deg FV × + deg i∗πC∗γ (104)

= −χ(V ) + (πC∗γ) · (3KB + η). (105)

This calculation confirms, using only the sheaves on the matter curves, that a consistency relation

between χ(V ) and χ(∧2V ) is satisfied.

Let us now study the structure of R1πZ∗ ∧2 V in a local neighborhood of a zero point of R(4).

We assume that R1πZ∗ ∧2 V is written as i∧2V ∗F for some sheaf F on c̄∧2V . Then,

F ∼= i∗∧2V ∗R
1πZ∗ ∧2 V (106)

∼= R1πY ∗(∧2V |Y ), (107)

where we used the base change formula in the second isomorphism.

Let b ∈ c̄∧2V be a zero locus of R(4). Locally (in the analytic topology) around b, the curve

D is decomposed into a disjoint union of D+ and D−. We consider the following diagram,

D̃† ×˜̄c∧2V
Ỹ

p1

zz

p2

''

νD̃† // D ×c̄∧2V
Y

p2

##
D̃†

πD̃ %%

Ỹ

πỸww

νY // Y

πY
zz

˜̄c∧2V νc̄∧2V

// c̄∧2V .

(108)

Here Ỹ = ˜̄c∧2V ×c̄∧2V
Y (as we have already introduced in section 5), and D̃† = ˜̄c∧2V ×c̄∧2V

D.

We have the decompositions,

D̃† = D̃+

∐
D̃−, D̃± = D̃

(1)
± ∪ D̃

(2)
± ,

where D̃± = ˜̄c∧2V ×c̄∧2V
D± and D̃

(i)
± for i = 1, 2 are irreducible components of D̃±. Note that each

D̃
(i)
± is a section of πỸ , and D̃

(1)
± , D̃

(2)
± intersect at one point transversally, say p̃± ∈ D̃(1)

± ∩ D̃
(2)
± .

Moreover we may assume D̃
(1)
+ � D̃

(2)
− and D̃

(1)
− � D̃

(2)
+ are zero sections of πỸ .

Since νc̄∧2V
is a Galois cover with Galois group G = Z/2Z, we have

R1πY∗(∧2V |Y ) ∼=
(
νc̄∧2V ∗ν

∗
c̄∧2V

R1πY∗(∧2V |Y )
)G

.

By the base change formula, we have

ν∗c̄∧2V
R1πY∗(∧2V |Y ) ∼= R1πỸ ∗(∧

2ν∗Y (V |Y )), (109)

and

ν∗Y V |Y ∼= p2∗(p
∗
1NV |D̃† ⊗ P˜̄c∧2V

) (110)

∼= p2∗(p
∗
1NV |D̃+

⊗ P˜̄c∧2V
)⊕ p2∗(p

∗
1NV |D̃− ⊗ P˜̄c∧2V

), (111)
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Here P˜̄c∧2V
, NV |D̃∗ for ∗ = †,± are pullbacks of PB, NV |D̃∗ via νD̃† and the second projection

D̃∗ → D respectively. Let us set W± = p2∗(p
∗
1NV |D̃± ⊗ P˜̄c∧2V

). We have

ν∗c̄∧2V
R1πY∗(∧2V |Y ) ∼= R1πỸ ∗(W+ ⊗W−). (112)

It is useful in calculating R1πỸ ∗(W+ ⊗W−) to note that

0→ OD̃± → OD̃(1)
±
⊕O

D̃
(2)
±
→ Op̃± → 0 (113)

are exact. Applying ⊗NV |D̃† and Fourier-Mukai transforms, we obtain the exact sequences,

0→ W± → W
(1)
± ⊕W

(2)
± → W

(0)
± → 0. (114)

Here W
(∗)
± for ∗ = 0, 1, 2 are Fourier–Mukai transforms,

W
(∗)
± = p2∗(p

∗
1NV |D̃(∗)

±
⊗ P˜̄c∧2V

), (115)

where D̃
(0)
± = p̃±. Note that W

(∗)
± for ∗ = 1, 2 is a line bundle on Y and W

(0)
± is a line bundle on

the fiber Ỹb = π−1

Ỹ
ν−1
c̄∧2V

(b).

Applying ⊗W (1)
− to the above sequence yields the exact sequence,

0→ W+ ⊗W (1)
− → (W

(1)
+ ⊗W (1)

− )⊕ (W
(2)
+ ⊗W (1)

− )→ W
(0)
+ ⊗W (1)

− → 0. (116)

W
(0)
+ ⊗W

(1)
− is a trivial line bundle on Ỹb, and W

(2)
+ ⊗W

(1)
− is also a line bundle that is trivial in

the elliptic fiber direction. Thus, by applying RiπỸ ∗, we have the long exact sequence,

0 // R0πỸ ∗(W+ ⊗W (1)
− ) // O˜̄c∧2V

(
b̃+ π̃D∗γ

)
// // Ob̃

// R1πỸ ∗(W+ ⊗W (1)
− ) // Ob̃ ⊕O˜̄c∧2V

(
b̃+ π̃D∗γ + ı̃∗∧2VKB2

)
// Ob̃ // 0,

(117)

where b̃ := ν−1
c̄∧2V

(b), ı̃∧2V := i∧2V ◦ νc̄∧2V
, and we used

R0πỸ ∗(W
(2)
+ ⊗W (1)

− ) ∼= π̃D+∗(NV |D+)⊗ π̃D−∗(NV |D−) ∼= O˜̄c∧2V
(b̃+ π̃D∗γ), (118)

R1πỸ ∗(W
(2)
+ ⊗W (1)

− ) ∼= O˜̄c∧2V
(b̃+ π̃D∗γ)⊗ L−1

H
∼= O˜̄c∧2V

(b̃+ π̃D∗γ + ı̃∗∧2VKB2); (119)

the ramification divisor r on CV intersects with D± at p±, and π̃D± = π̃D|D± : D± → ˜̄c∧2V maps

p± to b̃ ∈ ˜̄c∧2V . This is why we have a divisor b̃ in (118). We thus conclude that

R0πỸ ∗(W+ ⊗W (1)
− ) ∼= O˜̄c∧2V

(π̃D∗γ), (120)

R1πỸ ∗(W+ ⊗W (1)
− ) ∼= O˜̄c∧2V

(b̃+ π̃D∗γ + ı̃∗∧2VKB2). (121)

By the same argument, we also have the same results for RiπỸ ∗(W+ ⊗W (2)
− ) (i = 0, 1).

Finally we have the exact sequence,

0→ W+ ⊗W− → (W+ ⊗W (1)
− )⊕ (W+ ⊗W (2)

− )→ W+ ⊗W 0
− → 0. (122)
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Note that W+ ⊗W 0
− is a rank two degree-zero sheaf on an elliptic curve Ỹb given in [26]. Thus,

we have the associated long exact sequence,

O˜̄c∧2V
(π̃D∗γ)⊕O˜̄c∧2V

(π̃D∗γ) // // Ob̃ // R1πỸ ∗(W+ ⊗W−)

// ⊕2O˜̄c∧2V
(b̃+ π̃D∗γ + ı̃∗∧2VKB2) // Ob̃ // 0.

(123)

Therefore, we obtain

R1πỸ ∗(W+ ⊗W−) ∼= Ker
(
O(b̃+ π̃D∗γ + ı̃∗∧2VKB2)⊕O(b̃+ π̃D∗γ + ı̃∗∧2VKB2)→ Ob̃

)
,

=
{

(f, g)|f, g ∈ O(b̃+ π̃D∗γ + ı̃∗∧2VKB2), f |b̃ = g|b̃
}

(124)

Under the above isomorphism, we can easily see that the action of G on νc̄∧2V ∗R
1πỸ ∗(W+⊗W−)

is given by (f(ũ), g(ũ)) 7→ (g(−ũ), f(−ũ)), where ũ is the local coordinate of ˜̄c∧2V around b̃.

Hence we have

F∧2V
∼=
(
νc̄∧2V ∗R

1πỸ ∗(W+ ⊗W−)
)G

(125)

∼= νc̄∧2V ∗O˜̄c∧2V
(b̃+ π̃D∗γ + ı̃∗∧2VKB2). (126)

Therefore, after making the assumption discussed, we find that F∧2V on c̄∧2V is given by a

pushforward of a locally free rank-1 sheaf

F̃∧2V = O
(
ı̃∗∧2VKB2 + b̃(c) + π̃D∗γ

)
(127)

on ˜̄c∧2V via νc̄∧2V
everywhere on c̄∧2V . Here, b̃(c) denotes a divisor ν−1

c̄∧2V
b(c), collecting all the

points that we have denoted as b̃ up to now.

Matter chiral multiplets from the ∧2V bundle are now identified with

H1(Z;∧2V ) ' H0(˜̄c∧2V ; F̃∧2V ) ' H0(c̄∧2V ;F∧2V ). (128)

F∧2V = νc̄∧2V ∗F̃∧2V is a locally-free rank-2 sheaf (rank-2 vector bundle) on c̄∧2V .

The genus of the covering matter curve is given by

g(˜̄c∧2V ) = 1 + 2(g(c̄∧2V )− 1) +
1

2
deg b(c), (129)

since νc̄∧2V
: ˜̄c∧2V → c̄∧2V is a degree-2 cover with (1/2)deg b(c) branch cuts. Thus, it is also

expressed as

g(˜̄c∧2V ) = 1 + (3KB2 + η) · (4KB2 + η) +
1

2
(3KB2 + η) · (4KB2 + 2η), (130)

and it follows that

deg K˜̄c∧2V
= 2× (3KB2 + η) · (6KB2 + 2η). (131)
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On the other hand, one can also calculate the following independently:

deg
(
ı̃∗∧2VKB2 + b̃(c)

)
= 2(3KB2 + η) ·KB2 + (3KB2 + η) · (4KB2 + 2η),

= (3KB2 + η) · (6KB2 + 2η) =
1

2
deg K˜̄c∧2V

. (132)

Because of this non-trivial relation between the genus of the covering curve and the degree of the

divisor above, we obtain through Riemann–Roch theorem that

χ(∧2V ) = χ(˜̄c∧2V ; F̃∧2V ) = (1− g(˜̄c∧2V )) + deg
(
ı̃∗∧2VKB2 + b̃(c)

)
+

∫
˜̄c∧2V

π̃D∗γ

=

∫
˜̄c∧2V

π̃D∗γ =

∫
c̄∧2V

πD∗γ = (3KB2 + η) · πC∗γ. (133)

This chirality formula in terms of (covering) matter curve and γ was rather anticipated from the

beginning. We know that χ(∧2V ) = −χ(∧2V ×), and the difference between V and V × comes

from changing the sign of γ. For an SU(4) bundle V , ∧2V ' ∧2V × and the net chirality should

vanish. We can confirm this in the formula above, because πC∗γ = 0 for an SU(4) bundle V . For

a U(4) bundle V , its chirality formula (133) agrees that is obtained without calculating direct

images. All these consistency checks give us confidence that the locally free rank-1 sheaf (127)

provides the right description for the matter multiplets from ∧2V .

R
(5)
mdfd|c̄∧2V

has +2 fake contribution from every type (d) point of c̄∧2V . We are benifited from

(2.71) of [53], in making an improvement in version 4 here. Since the authors of [53] assigned

a scaling dimension r to ar (r = 5, 4, 3, 0), the first three terms have all scaling dimension 9,

whereas the last two term have higher dimensions. This is why the last two terms are missing in

(2.71) of [53], whereas they are retained here.

To conclude, the locally free rank-1 sheaf F̃∧2V on ˜̄c∧2V is given by

F̃∧2V = O
(
ı̃∗∧2VKB2 +

1

2
b̃(c) + π̃D∗γ

)
, (134)

where ı̃∧2V = i∧2V ◦ νc̄∧2V
: ˜̄c∧2V → σ. We show a couple of examples of geometric data of the

matter curves for different choice of the divisor η.

The covering matter curve is determined through

2g(˜̄c∧2V )− 2 = deg K˜̄c∧2V
,

= deg Kc̄∧2V
− 2×#(d), (135)

= c̄∧2V · (11KB2 + 3η)− 2(5KB2 + η) · (3KB2 + η), (136)

= 80K2
B2

+ 47KB2 · η + 7η2. (137)

We used the fact in the second equality that the Euler number (genus) of a curve increases by +2

(resp. −1) whenever a double point is blown up [27, 28]. On the other hand, one can calculate

the following:

deg

(
ı̃∗∧2VKB2 +

1

2
b̃(c)

)
= c̄∧2V ·KB2 +

1

2
D · (σ + 2KB2 + η), (138)

= 40K2
B2

+
47

2
KB2 · η +

7

2
η2 =

1

2
deg K˜̄c∧2V

. (139)
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Thus, by applying Riemann–Roch theorem, the net chirality is given by

χ(∧2V ) = χ(˜̄c∧2V ; F̃∧2V ) = [1− g(˜̄c∧2V )] + deg

(
ı̃∗∧2VKB2 +

1

2
b̃(c)

)
+

∫
˜̄c∧2V

π̃D∗γ,

=

∫
˜̄c∧2V

π̃D∗γ = D · γ. (140)

In a local neighborhood of a triple point, C∧2V ⊂ Z consists of three irreducible components,

one for C(ij), one for C(kl) and the other for C(mn). Intersection of any two of the three irreducible

components are double-curve singularity of C∧2V , and the triple points are where three double-

curve singularities collide. As this type of codimension-2 singularity inevitably appears on the

zero section in the case of rank-6 bundles, we need to modify the argument that we presented in

the article.

Only a straightforward generalization is required, however. We choose

C̃∧2V = C(ij)

∐
C(kl)

∐
C(mn) (141)

locally around any triple points. νC∧2V
is defined around this codimension-2 singularity by

νCij
∐

νCkl
∐

νCmn : C(ij)

∐
C(kl)

∐
C(mn) → C(ij) ∪ C(kl) ∪ C(mn) = C∧2V . (142)

By repeating almost the same argument as in section 5.1, one can see that i) N∧2V = νC∧2V ∗Ñ∧2V

exists, ii) (43) is satisfied as a sheaf of OZ module, and iii) Ñ∧2V on C̃∧2V is a locally free rank-1

sheaf. Thus, (98) can be used for this case as well. The covering matter curve ˜̄c∧2V is defined as

˜̄c∧2V := ν−1
C∧2V

(c̄∧2V ) as before, and each triple point is resolved into three points in ˜̄c∧2V , one in

C(ij), one in C(kl) and the other in C(mn).

The classification of the D–r intersection goes exactly the same as in the case of a rank-5

bundle V . There are type (a), (b) and (c) D–r intersection points, and only the type (c) points

contribute to π̃D∗(r|D −R)/2 in (98).

F̃∧2V = O˜̄c∧2V

(
ı̃∗∧2VKB2 +

1

2
b̃(c) + π̃D∗γ|D

)
, (143)

the same as in (134). deg b̃(c) is given by (??), now with N = 6.

The covering matter curve ˜̄c∧2V has

2g(˜̄c∧2V )− 2 = deg K˜̄c∧2V
,

= deg Kc̄∧2V
− 6×#(e), (144)

= (15KB2 + 4η) · (16KB2 + 4η)− 6(5KB2 + η) · (3KB2 + η), (145)

= 150K2
B2

+ 76KB2 · η + 10η2. (146)

In the second equality, we have used the fact that the genus of a curve reduces by 3 when a triple

point is blown up; see [27, 28]. On the other hand,

deg

(
ı̃∗∧2VKB2 +

1

2
b̃(c)

)
= (15KB2 + 4η) ·KB2 +

1

2
D · (2σ + 2KB2 + η), (147)

= 75K2
B2

+ 38KB2 · η + 5η2 =
1

2
K˜̄c∧2V

. (148)
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Thus, using the Riemann–Roch theorem, the net chirality from the bundle ∧2V is given by

χ(∧2V ) = χ(˜̄c∧2V ; F̃∧2V ) =

∫
˜̄c∧2V

π̃D∗γ = D · γ. (149)

After studying the direct images R1πZ∗ ∧2 V one by one for V of various ranks, we find the

the net chirality from these bundles is given by the same expression, χ(∧2V ) = D · γ. It will be

clear that the rank-4 (133), rank-5 (140) and rank-6 (149) cases have this form of expression. In

the rank-3 case, χ(∧2V ) =
∫
c̄∧2V
−j∗γ + πC∗γ = D · γ, too. Thus, it is tempting to guess that

χ(∧2V ) = D · γ (150)

for any U(N) bundles given by spectral cover construction.

First, note that γ can be decomposed into

γ = γ0 + π∗Zω, γ0 = λ(Nσ − η +NKB2) (151)

for some λ and a 2-form ω on B2. Since πC∗γ0 = 0 and πC∗π
∗
Zω = Nω, only theγ0 part is allowed

for SU(N) bundles [12]. For SU(N) bundles,

χ(V ) = c̄V · γ0 = −λη · (NKB2 + η) (152)

from (57), and

χ(∧2V ) = D · γ0

= [σ · (N(N − 1)KB2 + 2(N − 2)η) + η · (3KB2 + η)] · λ(Nσ − η −NKB2),

= λ (−η · (N(N − 1)KB2 + 2(N − 2)η) +Nη · (3KB2 + η)) , (153)

= −λη · (NKB2 + η)× (N − 4) (154)

from (150). Thus, the expression (150) yields a result consistent with the relation χ(∧2V ) =

(N − 4)χ(V ) in (??) for the case with c1(V ) = 0. It is also easy to show (through a similar

calculation) that

D · π∗Zω = (N − 4)× c̄V · ω + (3KB2 + η) · (Nω). (155)

Therefore, the chirality formula (150) for U(N) bundles always yields a result consistent with

the representation.

An idea was presented how to study R1πZ∗∧2V . The same idea can be applied to R1πZ∗∧3V

only with quite a natural generalization. The treatment allows us to obtain a locally free rank-1

sheaf F̃∧3V on a covering matter curve ˜̄c∧3V , if the two conditions are satisfied: i) the Fourier–

Mukai transform of ∧3V on Z is represented as a pushforward (as in (43)) as a sheaf ofOZ-module,

and ii) N∧3V on C∧3V is given by a pushforward of a locally free rank-1 sheaf Ñ∧3V on C̃∧3V , a

resolution of C∧3V . In the situation we have, the matter curve c̄∧3V itself is a double curve in C∧3V ,

but this double-curve singularity is resolved by blowing up Z with a center along the double-curve

singularity, where ∧2V bundle for a rank-4 bundle V was discussed. We now have a covering

curve ˜̄c∧2V , which is a degree-2 cover of c̄∧2V . Furthermore, since [A : B : C] = [P : Q : R] can
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be realized only on a codimension-2 locus in curve c̄∧3V , the degree-2 cover does not ramify for

a generic choice of moduli parameters a0,2,3,4,5,6. The covering matter curve is a disjoint union of

two copies of c̄∧3V :

˜̄c∧3V = ˜̄c∧3V+

∐
˜̄c∧3V−. (156)

We have no reason to expect that singularities appear on these curves. Therefore, no extra

complication arises other than the original double-curve singularity, and we have shown how to

deal with double-curve singularity; thus, the idea in the article is now applicable to the analysis

of R1πZ∗ ∧3 V for a rank-6 bundle V .

Instead of a curve D in Y = π−1
Z (c̄∧2V ), a curve T in Y = π−1

Z (c̄∧3V ) is introduced. A triplet

of points {p, p′, p′′} in CV |Eb (b ∈ c̄∧3V ) satisfying p� p′ � p′′ = e0 sweeps a curve in Y , and that

is the definition of T . πT = πZ |T : T → c̄∧3V is not necessarily a degree-3 cover, but a projection

to the covering curve π̃T̃ : T̃ → ˜̄c∧3V is a degree-3 cover. T̃ is a resolution of T as we will explain

it later. For the case of a rank-6 bundle V , the three solutions of (Ay + Bx + C) = 0 [resp. of

(Py + Qx + R) = 0] form T+ part [resp. T− part] of T = T+ ∪ T−, and T̃ = T+

∐
T−. T± is

mapped to ˜̄c∧3V± separately.

A locally free rank-1 sheaf F̃∧3V on ˜̄c∧3V is given by

F̃∧3V = O
(
ı̃∗∧3VKB2 + π̃T̃∗

(
1

2
(r|T̃ −R(T )) + γ|T

))
, (157)

a straightforward generalization of the discussion that has led to (98). A divisor R(T ) is a

ramification divisor of π̃T̃ : T̃ → ˜̄c∧3V , and hence R(T ) := KT̃ − π̃∗T̃K˜̄c∧3V
.

For the rank-6 case, the covering matter curve is a disjoint union of two curves, ˜̄c∧3V±, and

each curve has a locally free rank-1 sheaf

F̃∧3V± = O
(
ı̃∗∧3V±KB2 + π̃T±∗

(
1

2
(r|T± −R(T±)) + γ|T±

))
, (158)

where π̃T± := π̃T̃ |T± maps T± to ˜̄c∧3V±, R(T±) their ramification divisors, and r|T± a restriction on

T± of a pullback of r|T to T̃ . ı̃∗∧3V± denotes pullback via either one of ı̃∧3V± := (i∧3V ◦νc̄∧3V
)|˜̄c∧2V

.

Therefore, we are now ready to write down the line bundles on the covering matter curves

F̃∧3V± = O
(
ı̃∗∧2V±KB2 +

1

2
b̃

(f)
± + π̃T±∗γ|T±

)
. (159)

F∧3V on the matter curve c̄∧3V is given by a pushforward of the two line bundles F̃∧3V±, and

hence becomes a direct product of two line bundles. Massless chiral multiplets are identified with

H1(Z;∧3V ) ∼= H0(˜̄c∧3V+; F̃∧3V+)⊕H0(˜̄c∧3V−; F̃∧3V−). (160)

It is now straightforward to see that

deg

(
i∗KB2 +

1

2
b̃

(f)
±

)
= (10KB2 + 3η) · 1

2
(2KB2 + (9KB2 + 3η)) =

1

2
deg K˜̄c∧3V±

. (161)
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Therefore,

χ(∧3V ) = χ(˜̄c∧3V+; F̃∧3V+) + χ(˜̄c∧3V−; F̃∧3V−),

=

∫
˜̄c∧3V+

π̃T+∗γ +

∫
˜̄c∧3V−

π̃T−∗γ = T+ · γ + T− · γ =

∫
c̄∧3V

πT∗γ. (162)

For physics application that we mentioned, ∧3V bundle of a rank-6 bundle is purely of SU(6)

bundle V ; even when a structure group of V is chosen to be U(6) ⊂ SO(12), the bundle ∧3V is

neutral under the U(1) symmetry in the structure group. Thus, πC∗γ = 0 should be use for the

calculation of chirality here, and hence χ(∧3V ) = 0. This should be the case, since coming out of

the bundle ∧3V are chiral multiplets in the doublet representation of an unbroken SU(2) gauge

group, and there is no well-defined chirality associate with this representation (or gauge group).

This serves as a consistency check, giving a confidence in the description of the bundles we have

provided.

6 Four-Form Fluxes

In the Heterotic string theory description, matter multiplets are characterized in terms of spectral

surfaces and line bundles on them. All these pieces of information are associated with the fiber

elliptic curve, which is now found in the z′f = 0 (zf =∞) locus of the dP9 fibration. On the other

hand, in the F-theory description, non-Abelian gauge field of the unbroken symmetry group are

localized within the locus of enhanced singularity, which is found in zf = 0 locus. Chiral matter

multiplets are also supposed to be at the zf = 0 locus. The spectral surface CV in the Heterotic

description only determines N points for an SU(N) bundle in a given elliptic fiber (which is at

zf =∞), but each point corresponds to a line lp belonging to I8. The N lines specified by cover

all the region of the base P1, including zf = Z/Z ′ = ∞ and zf = 0. Thus, in a description

using dP8 fibration (and dP9 fibration), the information of spectral surface is not particularly

localized at either end of the elliptic fibration over P1. In fact, the data a0,2,··· ,5 specifying the

spectral surface controls the entire geometry of the del Pezzo fibration. More important in

generating chiral matter spectrum in low-energy physics is the line bundle NV on CV , or to be

more precise, γ determining c1(NV ) through (30). Reference [15] introduced four-form flux G
(4)
H

in a description using dP8 fibration, so that it plays the role of γ in the Heterotic theory. CV

is regarded locally as N copies of a local patch of B2, and each copy corresponds to a point pp

for one of p ∈ {6[, 6, 7, 8, 8]} (in case of an SU(5) bundle) sweeping over B2. γ on CV is locally

described by two forms on the each one of those copies. Suppose that a four-form flux G
(4)
H is

given in a dP8-fibration πU : U → B2. Then, γ on the copy of pp, γp, is given by

γp =

∫
lp
i∗lpG

(4)
H . (163)

Because of this correspondence between γ and G
(4)
H , only topological aspects of G

(4)
H in dP8 matter.

When considering SU(N) vector bundle, γ on CV has a constraint. The vanishing of the first

Chern class c1(V ) = 0 means that

πC∗γ = 0. (164)
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This implies that the integration of G
(4)
H over the five lines specified should vanish. Because of

the topological relation satisfied by the five lines, the condition above is equivalent to∫
5x

G
(4)
H = 0, and hence

∫
x8

G
(4)
H = 0. (165)

Here, we assume that only SU(5)GUT preserving fluxes are introduced in the dP8 fibration. Be-

cause of these constraints, G
(4)
H can be expressed as

G
(4)
H ≡

∑
P=8̃,6,7,−θ

CP ⊗ π∗ZωP , (166)

where ωP ’s are 2-forms on B2, and CP ’s are 2-cycles—Poincaré dual of 2-forms—in S = dP8.

Fluxes proportional to x8 should not be introduced.

We should be clear what we mean by (166). Four-form G
(4)
H is classified by H4(U ;Z), where

πU : U → B2 is a dP8-fibration. Using Leray spectral sequence, one finds that H4(U ;Z) has a

filtration structure:

H4(U ;Z) = F0 ⊃ F2 ⊃ F4 ⊃ {0}, (167)

with

F4
∼= H4(B2;R0πU∗Z), F2/F4

∼= H2(B2;R2πU∗Z), F0/F2
∼= H0(B2;R4πU∗Z). (168)

G
(4)
H in (166) is understood as an element of F2/F4 modulo F4 = H4(B2;Z), and CP as local

generators of R2πU∗Z. Although the Poincare dual 2-forms of CP ’s are well-defined in H2(U ;Z)

only modulo H2(B2;Z), this ambiguity does not appear in (166) because G
(4)
H is given in (166)

only modulo H4(B2;Z). Since x8 is a cycle in the fiber direction, differential forms on B2 is

trivial when pulled back to x8, and hence (165) cannot determine the F4 part. Because of the

same reason, however, (163) does not depend on the F4 part either. Therefore, in describing

vector bundles in Heterotic theory, it is sufficient to have a four-form G
(4)
H in F2/F4, and leave

the ambiguity in F4 unfixed.

By using this explicit expression of G
(4)
H and the intersection form

Cab;p=6[,6,7,8,8] · CP=8̃,6,7,−θ =


−1
1 −1

1 −1
1 −1

1

 , (169)

one can see explicitly that [15]

πC∗(γ · γ) =
∑
p

γp ∧ γp =
∑
P,Q

CA4 PQω
P ∧ ωQ = −πU∗G(4)

H ∧G
(4)
H . (170)

Although G
(4)
H in (166) has the ambiguity F4 = H4(B2;Z), G

(4)
H ∧ G

(4)
H does not depend on the

ambiguity. The same is true for other SU(N) bundles with N < 5; ωP=8̃ is set to zero for SU(4)

bundles, and ωP=6 = 0 is further imposed for SU(3) bundles.
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In the F-theory compactification, there is totally an independent condition for 4-form flux

G
(4)
F on a Calabi–Yau 4-fold compactification: the (2,2) part of the four-form flux has to be

primitive in order to preserve N = 1 supersymmetry. Reference [15] observed that the condition

(164) and the primitiveness condition

J ∧G(4)
F = 0 (171)

are quite “similar,” and certainly they are. On the other hand, H2(dP9;Z) is larger than

H2(dP8;Z) by rank one. Thus, with only one constraint on H2(dP8;Z) and one for H2(dP9;Z),

there should be no one-to-one correspondence between Heterotic and F-theory vacua. This gap

has to be filled in order to complete the dictionary of the Heterotic–F theory duality.

The primitiveness condition (171) involves a two-form J on W and a four-form G
(4)
F on W ,

where πW : W → B2 is a dP9 fibration. H4(W ;Q), in which G
(4)
F takes its value, has a filtration

structure just like in (167):

H4(W ;Q) = F0 ⊃ F2 ⊃ F4, (172)

with

F4
∼= H4(B2;Q), F2/F4

∼= H2(B2;R2πW∗Q), F0/F2
∼= H0(B2;R4πW∗Q); (173)

notations F0,2,4 are recycled here, as we expect little confusion. Z in (167) is replaced by Q here,

because the four-form flux in F-theory is not necessarily quantized as integral value [33]. It is

known that the four-form flux in F0 has its two legs in the T 2-fiber directions of the dP9, and

results in non SO(3,1) Lorentz symmetric vacuum [51]. Thus, we only consider G
(4)
F that belongs

to F2 in the following. G
(4)
F being an element of F2 is not a sufficient condition for the SO(3, 1)

Lorentz symmetry; we will elaborate on it later.

Similarly, the Kähler form J takes its value in H2(W ;R), and this cohomology group also

has a filtration structure:

H2(W ;R) = E0 ⊃ E2, E2
∼= H2(B2;R), E0/E2

∼= H0(B2;R2πW∗R). (174)

Thus, the Kähler form J is written as

J = π∗WJB2 + t2J0; (175)

projection of J into E0/E2 specifies a 2-form on dP9, and J0 is a representative of the class

specified by the 2-form on dP9. t2 ≥ 0 is a parameter.

In the Heterotic–F theory duality, moduli space is shared by the two theories, but one of the

two theories provides a better description of some part of the moduli space, and the other of

some other parts. The description in the Heterotic theory (without stringy excitations taken into

account in calculations) becomes unreliable either when the Heterotic theory dilaton expectation

value is large, or when the volume of the T 2 fiber becomes comparable to α′. In the first case,

the base P1 manifold of S ′ = dP9 has a large volume. Thus, whenever F-theory provides a better

description, the volume of the base P1 of dP9 is larger than that of the T 2 fiber. Therefore, in the

F-theory limit, we can take it that the Kähler form on dP9 specified by J or J0 has a dominant
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contribution only from the the P1 base of dP9, not from the T 2 fiber. Thus, J0 (or J) regarded

as a 2-form on dP9 is a Poincaré dual of x9.

The filtration structure of J and G
(4)
F makes the analysis of the primitiveness condition (171)

easier. The condition (171) takes its value in H6(W ;R), and this group also has a filtration

structure

H6(W ;R) = G2 ⊃ G4 ⊃ {0}, (176)

with

G4
∼= H4(B2;R2πW∗R), G2/G4

∼= H2(B2;R4πW∗R). (177)

We begin with the primitiveness condition in G2/G4, and we will come back later to the condition

in the G4 part. The G2/G4 part of the primitiveness condition receives contributions only from

the wedge product of the E0/E2 part and the F2/F4 part, and we find that

t2x9 ·G(4)
F ≡ 0 (178)

mod G4.

The primitiveness condition (178) allows two types of local expressions for the four-form flux:

G
(4)
F ;γ ≡

8∑
I=1

CI ⊗ ωI , (179)

G
(4)
F ;9 ≡ x9 ⊗ ωI=9, (180)

here, we abuse the notation, and denote π∗(CI) of H2(dP9;Z) as CI , because the intersection

form of π∗(CI)’s are the same as those of CI ’s in H2(dP8;Z). The four-form flux G
(4)
H (166) in

the Heterotic theory description can be mapped into the first type of G
(4)
F :

G
(4)
F ;γ ≡ π∗G

(4)
H ; (181)

everything is in modulo F4 = H4(B2;Q) here. We understand that the four-form flux Gγ in [10]

belongs to this class modulo F4 = H4(B2;Q).

A little more attention has to paid in interpreting the other contribution (180). F-theory

dual of a Heterotic compactification involves a Calabi–Yau 4-fold that is a K3-fibration on a

base 2-fold. Although the K3 fiber becomes two dP9 surfaces in the stable degeneration limit,

K3 fiber, rather than two dP9’s, is better in understanding this aspect. As explained clearly

in [51], out of 22 two-cycles of a K3 fiber, 2 × 8 = 16 two-cycles correspond to the CI ’s in two

dP9’s. Four-form fluxes associated with these two-cycles, like (179), satisfy the primitiveness

condtion in the G2/G4 part. Fluxes associated with the zero section of the elliptic fibered K3

(like σ of dP9) and with the T 2-fiber class (like x9 of dP9), on the other hand, do not either

satisfy the primitiveness condition or preserve the SO(3, 1) Lorentz symmetry. Thus, such fluxes

should not be introduced. Two other (1,1) two-cycles remain, and the four-form fluxes associated

with these two two-cycles as well as the (2,0) and (0,2) two-cycles of K3 fiber correspond to the

three-form fluxes of the Type IIB string theory [51]. Therefore, when the three-form fluxes are
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set to zero,

πC∗ (γ ∧ γ) = −πU∗
(
G

(4)
H ∧G

(4)
H

)
,

= −πW∗
(
G

(4)
F ;γ ∧G

(4)
F ;γ

)
= −πW∗

(
G

(4)
F ∧G

(4)
F

)
. (182)

Once again, the F4 = H4(B2;Z) ambiguity in G
(4)
F does not matter to the relation (182).

The correspondence between the number ofM5-branes in the Heterotic theory and the number

of 3-branes in F-theory is one of the most important clues of the Heterotic–F theory duality. The

number of M5-branes wrapped on the elliptic fiber is given by [12]

n5 =

∫
B2

(c2(TZ)− c2(V1)|γ1=0 − c2(V2)|γ2=0) +
1

2
γ2

1 +
1

2
γ2

2 , (183)

where Vi and γi (i = 1, 2) are vector bundle and discrete twisting data in (30), respectively, in

the visible (i = 1) and hidden (i = 2) sector. The number of 3-branes in F-theory is given by [31]

n3 =
χ(X)

24
−
∑
i=1,2

1

2
G

(4)
Fi ∧G

(4)
Fi , (184)

where F (3)∧H(3) contribution from the three form fluxes of the Type IIB string theory are set to

zero. The equality between the first terms in n5 and n3 was proved in [12, 25, 32]. The equality

(182) was basically shown in [15]. When the F (3) ∧ H(3) contribution is turned on, the n3 in

F-theory will be different from the original n5 in a Heterotic compactification (that is no longer

a dual). What we did so far in section 6 is basically to collect references (mainly [15, 51]) and

tell a combined story.

The extra degree of freedom in the four-form flux G
(4)
F (the 3-form flux F (3) and H(3) in the

Type IIB language) brings about another issue. In the Heterotic theory description, γ on CV has

an alternative expression

γp =

∫
Cp
G

(4)
H , (185)

where Cp := lp− x8 = Cab;p mod CA=1,2,3,4, because the difference from (163), x8 ·G(4)
H , vanishes.

In F-theory, however, the two natural guesses

γp =

∫
π∗(lp)

G
(4)
F , (186)

γp =

∫
π∗(Cp)

G
(4)
F (187)

are not necessarily the same. The meaning of (186) is not even well-defined, because π∗(lp)’s

are well-defined two-cycles in dP9, but their meaning has not been specified in K3. Depending

on how the π∗(lp)’s are defined in K3, (186) may or may not depend on the three-form fluxes

F (3) (and H(3)). π∗(Cp) on the other hand, are naturally identified with one of two sets of two-

cycles of K3 whose intersection form is (−1)× Cartan matrix of E8. Since those two-cycles have

vanishing intersection numbers with the two-cycles to which the three-form fluxes are associated

with (see [51]), (187) does not depend on the choice of the extra discrete degrees of freedom in
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F-theory, and is the same as (163, 185). Thus, we adopt (187) in translating γ in Heterotic theory

into F-theory language. Note that γp’s defined by (187) (and those by (186)) do not depend on

the F4 part of G
(4)
F .

6.1 Chirality in ρ(V ) = ∧2V

We are now ready to study the sheaf F∧2V on the matter curve c̄∧2V , or F̃∧2V on the covering

curves ˜̄c∧2V . As we have learnt, divisors of the line bundles F̃∧2V always contain π̃D∗γ. Let us

study what this contribution means in the F-theory language.

π̃D : D → ˜̄c∧2V is a degree-2 cover, allocating two points {pi, pj} to a point in ˜̄c∧2V so

that pi � pj = e0. Let us denote the lines in I8 for those two points (in the fundamental

representation of SU(5)bdl) as lp and lq (p, q ∈ {6[, 6, 7, 8, 8]}); here, we consider those lines

modulo CA (A = 1, 2, 3, 4) for the unbroken SU(5)GUT symmetry. Now

π̃D∗γ =

∫
lp
G

(4)
H +

∫
lq
G

(4)
H =

∫
Cp+Cq

G
(4)
H =

∫
Cpq

G
(4)
H . (188)

Here, a topological relation Cp+Cq ≡ Cpq (mod CA (A = 1, 2, 3, 4)) between the 2-cycles in (??)

and (??) was used in the last equality.

There is a uniqueness problem in translating the Heterotic theory result of π̃D∗γ into F-theory

language, as we encountered in translating j∗γ into (186) or (187). We adopt

π̃D∗γ =

∫
π∗(Cpq)

G
(4)
F , (189)

in the same spirit as we chose (187) for j∗γ. This is the field strength of a gauge field obtained by

integrating the 3-form field C(3) over the two-cycle C pq
a; —a gauge field an M2-brane wrapped on

the collapsed two-cycle C pq
a; is coupled to. As long as we adopt this rule of translation, the flux

quanta associated with the non-E8 part of the two-cycles in K3-fiber do not have an influence

on the net chirality, or even on γ that describes a line bundle in F-theory.

It is interesting to note that the notion of the covering curve ˜̄c∧2V we introduced in sections 5

and ?? is not only for mathematical convenience. An M2-brane wrapped on a cycle π∗(Cpq)

propagates on the covering matter curve ˜̄c∧2V , not on the matter curve c̄∧2V , because the each

point of the covering mater curve is in one to one correspondence with the collapsed two-cycle.

The chirality formula in this (pair of) irreducible representation(s) follows immediately:

χ(∧2V ) =

∫
˜̄c∧2V

π̃D∗γ =

∫
Cpq×˜̄c∧2V

G
(4)
F . (190)

This is quite a natural result, once again. But all the hard work that has led to this conclusion tells

us that we do not need to add an extra contributions associated with codimension-3 singularities

of F-theory; it was the part hardly accessible with limited intuition in F-theory, yet our study

using the Heterotic–F theory duality shows that (190) is indeed fine.

This expression is an F-theory generalization of the Type IIB chirality formula in a corre-

sponding system. Here, we imagine a Type IIB set up where five D7-branes are wrapped on a
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holomorphic four-cycle Σ5 of a Calabi–Yau 3-fold, and another D7-brane on another four-cycle

Σ1. Topological U(1) gauge field configuration F5 and F1 is assumed on the both four-cycles, Σ5

and Σ1, respectively. Then, the net chirality in the SU(5)GUT-5̄ representation is given by [39]:

#(5̄,1+)−#(5,1−) =

∫
Σ5·Σ1

i∗
(
F1

2π

)
− i∗

(
F5

2π

)
. (191)

This expression, written only in terms of local geometry around the D7–D7 intersection curve, is

equivalent to the one in [42] given by pairing of D-brane charge vectors in K-theory [40, 43, 44].

The F-theory formula (190) is the most natural generalization of the local formula of the Type

IIB string theory (191).

6.2 Chirality in ρ(V ) = ∧3V

It is now straightforward to provide an F-theory interpretation for the π̃T±∗γ|T± contribution to

the sheaves F̃∧3V± in (159). In the Heterotic theory description,

π̃T±∗γ =

∫
lp+lq+lr

G
(4)
H =

∫
Cp+Cq+Cr

G
(4)
H =

∫
Cpqr

G
(4)
H , (192)

where Cpqr’s are now two-cycles that correspond to the roots in the (∧3V,1,2) of the group

SU(6)× SU(3)× SU(2) ⊂ E8. In F-theory, this is replaced by
∫
π∗(Cpqr)

G
(4)
F .

In the SU(6)-bundle compactification of the Heterotic string theory, there are two types of

massless chiral multiplets in the (1,2) representation of the unbroken symmetry group SU(3)×
SU(2). One group of multiplets is H0(c̄∧3V ; ν∗F̃∧3V+), and the other H0(c̄∧3V ; ν∗F̃∧3V−)

' [H1(c̄∧3V ; F̃∧3V+)]×. Thus, a net chirality can be defined in the SU(2)-doublet sector as the

difference between the degrees of freedom of the two groups. It is

χ(∧3V )+ := χ(c̄∧3V ; ν∗F̃∧3V+) = T+ · γ = −χ(c̄∧3V ; ν∗F̃∧3V−). (193)

In F-theory, this chirality is given by

χ(∧3V )+ =

∫
Cpqr×c̄∧3V

G
(4)
F . (194)

Here we want to study the effect of the (−1)-curves in the rational zero section in the spectrum

of the effective theory. We will fix notation as,

F• := Rp∗q
∗E ,

L• := ΦPX′→X′(F•). (195)

The goal then is to compute the zero-mode spectrum (i.e. bundle-valued cohomology groups) of

E in X. Suppose the support of L• takes the most general form, this task reduces to computation

of R1π∗E by using Leray spectral sequence. To find this, first notice that inverse functor of

Rq∗Lp
∗ is given by

E = Rp∗(Lq
∗F• ⊗OX̃(e)). (196)
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Therefore we get,

Rπ∗E = Rπ′∗(F• ⊗Rq∗OX̃(e))

= Rπ′∗(F•), (197)

where we used Rq∗OX̃(e) = OX′ . Next, one can use the same techniques as before to compute

the Rπ′∗F• in terms of the “spectral data” in X ′,

Rπ∗E = Rπ′∗F• = Rπ′∗(L• ⊗Oσ′). (198)

Naively the above result is the same as in the standard cases. But notice that L• is the Fourier-

Mukai transform of a (may be non-WIT or singular) object F• in Db(X ′), and it may receive

new contributions from the original (−1)-curve in X. In the example computed before, the

component [C ′2] doesn’t intersect with the zero section, so the only contribution to the spectrum

of the effective theory is through the line bundle over the component S.

7 Examples of Explicit Fourier-Mukai Transforms

The power of a Fourier-Mukai transform (and its inverse) is that in principle we can move freely

between descriptions of stable vector bundles on elliptically fibered manifolds and the spectral

data that we have been studying. In this section we now utilize this potential to explicitly

compute FM transforms of stable bundles defined by the monad construction or by extension.

Several explicit realizations of this type have been accomplished before in the literature and we

will provide some generalizations. In particular, we will develop general tools that are applicable

away from Weierstrass 3-folds. In these examples, we shall also observe that although we have

derived general formulas for bundles defined via smooth spectral covers, this proves to be too

limited to describe the explicit bundles we consider in the majority of cases. We will return to

this point – namely that there remain important gaps in our description of general points in

the moduli space of bundles. Beginning with the simplest possible elliptic CY 3-fold geometry

– i.e. Weierstrass form, we will illustrate the ideas that can be generalized to compute the

Fourier-Mukai transform of sheaves which are defined by extension sequences or monads.

7.1 Bundles Defined by Extension on Weierstrass CY Threefolds

To illustrate the techniques of taking explicit FM transforms, we begin with the simplest possible

extension bundle – a rank two vector bundle defined by extension of two line bundles:

0 −→ L1 −→ V2 −→ L∨1 −→ 0. (199)

We require V2 to be stable, and c1(V2) = 0. Note that a necessary (though not sufficient)

constraint on the line bundles appearing in this sequence is that L1 must not be effective (i.e.

have global sections). For such a stable bundle the restriction of V2 over Et = π−1(t) for a generic

t ∈ B is one of the following cases,
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V2|Et = OEt ⊕OEt ,
V2|Et = E2 ⊗F , deg(F) = 0, (200)

V2|Et = OEt(−p− p0)⊕OEt(p− p0).

In the first case, the support of the Fourier-Mukai sheaf (i.e. spectral cover), will be a non-

reduced scheme (supported over the the section σ). In the second case E2 is the unique non

trivial extension of trivial line bundles, and F = OEt(p− p0) for some p (here p0 is the point on

Et chosen by the section), but for Weierstrass fibration, p = p0 for generic fibers, and V2|Et = E2.

So again the spectral cover will be non-reduced and supported over the zero section. In the final

case, the spectral cover can be non-singular. So it is clear that in the majority of cases, we do

not expect the FM transform of V2 to be in the same component of moduli space as a smooth

spectral cover of the form described in Section 2. We will illustrate this effect with two choices

of L1 below.

Applying the Fourier-Mukai functor to (199) produces a long exact sequence involving the

FM transform of the line bundles defining V2. Thus, we can compute Φ(V2) if we can compute

Φ(L1). To begin, the definition of the Poincare sheaf, (2.2) and (2.2), allows us to write the

following short exact sequence:

0 −→ π∗1L1 ⊗ P −→ π∗1(L1 ⊗OX(σ))⊗ π∗2(OX(σ)⊗ π∗K∗B)

−→ δ∗(L1 ⊗OX(2σ)⊗ π∗K∗B) −→ 0. (201)

Now, by applying, Rπ2∗ to the above sequence, we can compute Φ(L1),

0 −→ Φ0(L1) −→ R0π2∗π
∗
1(L1 ⊗OX(σ))⊗ (OX(σ)⊗ π∗K∗B) −→ (L1 ⊗OX(2σ)⊗ π∗K∗B)→

−→ Φ1(L1) −→ R1π2∗π
∗
1(L1 ⊗OX(σ))⊗ (OX(σ)⊗ π∗K∗B) −→ 0. (202)

With these general observations in hand, we will first consider the case where L1 = OX(Db)

with Db a divisor pulled back from the base, B2. To use (202), in this case, Rπ2∗π
∗
1(L1⊗OX(σ))

must be computed. To accomplish this, we can use the base change formula (see Appendix 9),

which relates the following push-forwards,

X ×B X X

X B

π1

π2 π

π

Rπ2∗π
∗
1 ' π∗Rπ∗ (203)

therefore Rπ2∗π
∗
1(L1 ⊗ OX(σ)) = (π∗Rπ∗OX(σ)) ⊗ OX(Db). On the other hand, by Koszul

sequence for the section (σ) we have,

0 −→ OX −→ OX(σ) −→ Oσ(KB) −→ 0. (204)
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It is well-known for Weierstrass CY elliptic fibration π : X −→ B, R0π∗OX = OB, R1π∗OX =

KB. So the above sequence implies Rπ∗OX(σ) = OB and hence Rπ2∗π
∗
1(L1 ⊗ OX(σ)) = OX .

Plugging this into (202), we see that this sequence is just Koszul sequence again which is twisted

OX(σ)⊗ π∗K∗B,

Φ(L1) = Oσ(Db)[−1]. (205)

We can apply this result then to obtain the FM transform of V2 for this chosen line bundle

to find

0 −→ Oσ(Db) −→ Φ1(V2) −→ Oσ(−Db) −→ 0 . (206)

In this case by the arguments given above, Φ1(V2) is supported over the section and its rank (when

restricted over the support) is two (the rank is one when restricted to the modified support). As

a result, from the arguments above, we do not expect the topology of this bundle to match the

formulas given and indeed they do not though we will not yet make this comparison explicitly.

Let us not contrast this with another non-generic choice of line bundle,

L1 = OX(−σ +Db). (207)

In this case

Φ(OX(σ +Db)) = OX(−σ +KB +Db), (208)

Φ(OX(−σ +Db)) = OX(σ +Db)[−1]. (209)

For the choice of line bundle in (207), the extension bundle V2 is defined by a non-trivial

element of the following space of extensions:

Ext1(L∨1 ,L1) = H1(X,L2
1) = H0(B,OB(2Db + c1(B))⊕OB(2Db − c1(B))), (210)

(note that the last equality follows from a Leray spectral sequence on the elliptic threefold (see

(255)), and Rπ∗OX(−2σ) = Kb ⊕K−1
b . As a brief aside, we remark here that the form of this

space of extensions gives us some information about the form of the possible FM dual spectral

cover.

It is clear from the expression above that if 2Db + c1(B) is not effective, then there exists no

non-trivial extension, and the vector bundle is simply a direct sum L1 ⊕ L∨1 (and therefore not

strictly stable). If 2Db + c1(B) = 0 there is only one non-zero extension. On the other hand,

if the degree of Db is large enough to make 2Db − c1(B) effective then for any generic choice of

extension there are (2db + c1(B)) · (2Db − c1(B)) isolated curves which the spectral cover must

wrap.

Returning to our primary goal of computing the FM transform of V2, it can be observed that

there is enough information in (208) and (209) to compute Φ(V2) explicitly.

0 −→ Φ0(V2) −→ OX(−σ +KB −Db)
F−→ OX(σ +Db) −→ Φ1(V2) −→ 0. (211)

By fully faithfulness of Fourier-Mukai functor, one can show F ∈ Ext0(OX(−σ+KB−Db),OX(σ+

Db)) ' Ext1(L∨1 ,L1). Therefore it is necessary 2Db − c1(B) be effective to have a non zero F ,
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and Φ0(V2) = 0 (and hence stability of V2). Assuming that this is satisfied, we can find the

Fourier-Mukai transform of V2 as

Φ(V2) = O2σ+2Db−KB(σ +Db). (212)

At last we are in a position to compute the topological data, and directly compare the bundle

constructed here with what would be expected from the formulas derived.

7.2 FM Transforms of Monad Bundles over Weierstrass 3-folds

In the following section we will provide an explicit construction of the spectral data a bundle

defined via a monad. This construction is somewhat lengthy, but is useful to present in detail to

demonstrate that FM transforms can be explicitly constructed for bundles that appear frequently

in the heterotic literature.

Over a Weierstrass CY 3-fold of the form studied consider a bundle defined as a so-called

“monad” (i.e. as the kernel of a morphism between two sums of line bundles over X3):

0 −→ V −→ ⊕li=1OX(niσ +Di)
F−→ ⊕kj=1OX(mjσ +Dj) −→ 0, (213)

where Rank(V ) = N = l−k, and the divisors Di are pulled back from the base, B2. To compute

the Fourier-Mukai transform V we will see that it is necessary to begin with the transform of

line bundles of the form OX(niσ + Di), as well as the morphism Φ(F ). With that information,

we can compute Φ(V ). We should point out that for the geometry in question, none of the ni’s

nor mj’s are allowed to be negative. This is necessary for stability of the bundle. Upon applying

the FM functor to (213), we get a sequence of the following form,

0 Φ0(V ) ⊕′li=1Φ0(OX(niσ +Di)) ⊕′kj=1Φ0(OX(mjσ +Dj))

Φ1(V ) ⊕′′li=1Φ1(OX(niσ +Di)) ⊕′′kj=1Φ1(OX(mjσ +Dj)) 0.

Φ(F0)

(214)

In the diagram above we employ the sign ⊕′ to refer to the direct sum over the line bundles with
positive definite relative degree, and use ⊕′′ to mean the direct sum over the line bundles with
with relative degree zero (i.e. pull back of line bundles in the base). So to compute the Fourier-
Mukai transform of V we need to compute the Fourier-Mukai transform of the line bundles in
(213). To do this, one can simply use the defining sequence of the diagonal divisor. Combining
this with the sequence above, give the following diagram,

0 0

. . . ⊕′l
i=1Φ0(OX(niσ +Di)) ⊕′k

j=1Φ0(OX(mjσ +Dj)) . . .

0 K1 A⊗OX(σ + c1(B)) N ⊗OX(σ + c1(B)) Q1 0

0 K2 ⊕′l
i=1OX((ni + 1)σ +Di)⊗OX(σ + c1(B)) ⊕′k

j=1OX((mj + 1)σ +Dj)⊗OX(σ + c1(B)) Q2 0

0 0

Φ(F0)

ev

F0

ev

F0
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Each column in the diagram is defines the Fourier-Mukai transform of the (direct sum of) line

bundles by means of the resolution of the Poincare sheaf. Therefore in the second row A and N
are the sheaves generated by the “fiberwise” global sections of the sheaves ⊕′OX((nj + 1)σ+Dj)

and ⊕′OX((mj + 1)σ + Dj), respectively. The evaluation maps simply takes the global section,

and evaluates the sheaf at each point. Finally, the map F0 is simply the map induced by the

monad map F itself (from (213)) on the line bundles with positive definite relative degree (which

also acts on the “fiberwise” global sections too).

The most important parts of this diagram are the induced maps between the kernels and

co-kernels, K1, Q1 and K2, Q2, respectively. The kernel and co-kernel of these maps give a rather

explicit presentation of the spectral data, so we will give them specific names,

0 −→ L̄ −→ K1 −→ K2 −→ L −→ 0, (215)

0 −→M −→ Q1 −→ Q2 −→ 0, (216)

(note that the final map in the second line above must be surjective, otherwise it will be in

contradiction with the commutativity of the middle two columns in the diagram.

Now, by careful diagram chasing, one can prove that the Fourier-Mukai transform of V can

be given by the following (more consise) diagram,

0

L

0 J Φ1(V ) ⊕′′li=1Φ1(OX(niσ +Di)) ⊕′′kj=1Φ1(OX(mjσ +Dj)) 0

M

0

This construction is similar in spirit to the spectral data derived for monads and we will return

to this.

To make this abstract formalism more concrete, it is helpful to consider an explicit example.

Let us take X3 to be a Weierstrass elliptically fibered threefold over P2, realized as a hypersurface

in a toric variety, given by the charge data. Here the holomorphic zero section is determined by

the divisor z = 0. As an explicit monad bundle over this manifold, consider the following short

exact sequence:

0 −→ V −→ OX(2, 3)⊕OX(1, 6)⊕OX(0, 1)⊕3 F−→ OX(3, 12) −→ 0. (217)

We first need to find the Fourier-Mukai of the line bundles. This can be done using the tools
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outlined in before and we simply summarize the results here:

Φ(OX(D)) = Oσ(KB +D)[−1], (218)

0 −→ Φ0(OX(2σ −KB)) −→ OX(σ − 2KB)⊕OX(σ)⊕OX(σ +KB)
ev−→ OX(4σ − 2KB) −→ 0,

(219)

0←− Φ0(OX(σ − 2KB)) −→ OX(σ − 3KB)⊕OX(σ −KB) −→ OX(3σ − 3KB) −→ 0,

(220)

0 −→ Φ0(OX(3σ − 4KB)) −→ OX(σ − 5KB)⊕ · · · ⊕ OX(σ −KB)
ev−→ OX(5σ − 5KB) −→ 0,

(221)

where the middle bundles in the each of the short exact sequences above are the “fiberwise”

global section of the line bundles in (213) denoted as A and N (twisted with O(σ + c1(B))).

With this we have determined the columns of (215). We come now to our central claim in this

section: If restriction of L on Σ is a trivial line bundle, then it is always possible to deform the

“singular” spectral data to a “smooth” spectral data, such that it satisfies the generic formulae

expected Otherwise it is impossible (generically). In particular if the restriction is a non-trivial

degree zero line bundle, the deformation is obstructed.

First note that if L is defined as

0 −→ L1 −→ L −→ L2 −→ 0, (222)

the restriction of L on S1 and S2 are

L1 ⊗KS2|S1 ,

L2, (223)

respectively. Therefore the line bundle induced over Σ lives in

HomΣ(L2,L1 ⊗KS2|S1) ' Ext1X(iS2∗L2, iS1∗L1), (224)

corresponding to extensions. Conversely, if we define L as,

0 −→ L2 −→ L −→ L1 −→ 0, (225)

the restriction of L on S1 and S2 are

L2 ⊗KS1|S2 ,

L1, (226)

respectively. Therefore the line bundle induced over Σ lives in

HomΣ(L1,L2 ⊗KS1|S2) ' Ext1X(iS1∗L1, iS2∗L2), (227)
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corresponding to the opposite extensions. If we rewrite the left hand side of (224) as,

H0(Σ,F),

F := L1 ⊗ L∗2 ⊗KS2|S1 , (228)

then 227 can be written as,

H0(Σ,F∗ ⊗KΣ). (229)

Therefore we see if F ' OΣ ,then both extensions are possible, and we can deform the spectral

data to generic “smooth” one described in FMW.

8 Basics about Derived Category

Since the Fourier-Mukai functor, which we use a lot in this paper, is a special integral transform,

we devote this appendix on reviewing some key points about them. First of all note that any

functor between two categories F : A → B induces a map between the space of morphisms,

HomA(A,B)→ HomB(F (A), F (B)), (230)

where A, B are arbitrary objects of the category A (i.e. the map is ”functorial”). In case

the categories are additive the set of morphisms form an abelian group, and in the cases we are

concerned in this paper they are actually C−vector spaces. Abelian categories are particular

additive categories that for any functor one can define kernel and cokernel. The specific category

we need in this paper is Coh(X), i.e. the category of coherent sheaves over a variety X, and the

categories derived from that.

A functor F : A → B is called full if the map ((230)) is surjective and it is called faithful if it is

injective. So a fully faithful functor induces an isomorphism in ((230)).

A functor G : B → A is a right adjoint of F : A → B, written as F a G if

HomB(F (A), B) ∼ HomA(A,G(B)), (231)

where A ∈ A and B ∈ B are any arbitrary object. In particular one can see

HomB(F (A), F (B)) ∼ HomA(A,GoF (B)),

A functor F : A → B is called equivalence if there are functors G,H : B → A such that they

satisfy the functor isomorphisms GoF ∼ idA and FoH ∼ idB.

It is now easy to see [?] that if a functor is fully faithful and have both left and right adjoint

then it is an equivalence.

Suppose A is an abelian category. Then one defines the category of complex C(A), which it’s

objects are complexes of objects in

mathcalA,
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A• := . . . −→ Ai−1 di−1

−→ Ai
di−→ Ai+1 −→ . . . (232)

such that di ◦ di−1 = 0. The morphisms in C(A) between two objects h : A• → B• are defined

by a collection of morphisms {hi} in A as,

. . . Ai−1 Ai . . .

. . . Bi−1 Bi . . .

hi−1

di−1
A

hi

di−1
B

(233)

which must be commutative. There are several remarks that must be mentioned,

i) One can define the shift functor ,T : C(A)→ C(A), naturally in this category as,

A•[1] := T (A•),

(A•[1])i = Ai+1, diA•[1] = −di+1
A• . (234)

ii) As usual one can define cohomology for complexes,

Hi(A•) =
Ker(di)

Im(di−1)
. (235)

Two complexes A•, B• are said to be Quasi Isomorphic if all of their cohomologies are isomorphic.

Roughly speaking, derived category is “derived” from the homotopy category by localizing with

the ”ideal of quasi isomorphisms”. In other words Ob(D(A)) := Ob(C(A)), and morphisms in

D(A) between two objects A•, B• are like,

C•

A• B•

qis f (236)

In general f is a general morphism in homotopy category. As a result if f is also a quasi

isomorphism, then the corresponding morphism in the derived category is isomorphism. So in

A, if cohomology of two complex is isomorphic, then the complexes themselves are isomorphic.

From now on we restrict ourselves to bounded derived categories, Db(A), which it’s objects are

isomorphic to complexes with bounded cohomology complexes.

If a functor F : K(A) → K(B) between homotopy categories is compatible with quasi isomor-

phisms, i.e. it sends quasi isomorphisms to quasi isomorphisms (pr equivalently it sends acyclic

complexes to acyclic complexes), then it naturally induces a functor on derived categories. But

generally it may not happen, so one need to ‘derive’ a functor from F such that it is compatible

with ‘localization’ of morphisms with quasi isomorphisms. This functor is called derived functor

RF . Here we briefly describe the derived functors that we are going to use them in this paper.
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From now on, we restrict ourselves with categories of coherent sheaves Coh(X) and quasi

coherent sheaves Qcoh(X) over a variety X. In particular it is possible to show

Db
Coh(X)(Qcoh(X)) ∼ Db(Coh(X)), (237)

where the left hand side corresponds to derived category of complexes of quasi coherent sheaves

which their cohomologies are coherent sheaves. One define the bounded derived category of X

as Db(X) := Db(Coh(X)).

Here the goal is to find the derived functor of f∗ : Coh(X) −→ Coh(Y ) induced from a projective

(or at least proper) morphism of varieties f : X −→ Y .

If we have proper morphism of varieties f : X −→ Y , then the (right) direct image Rf∗ :

Db(X) −→ Db(Y ) is defoned in the following way,

1) For any complex of coherent sheaves A• with bounded cohomology, we have an injective

resolution A• −→ I(A•).

2) Define

Rf∗(A
•) := f∗(I(A•)),

Rif∗(A
•) := Hi(f∗(I(A•))). (238)

Lets start by the following definition,

A complex in I• ∈ C(Mod(X)) is called injective complex if the right exact functor

Hom•C(Mod(X))(. . . , I•) : C(Mod(X)) −→ Ab maps any acyclic complex to another acyclic com-

plex (or equivalently map any quasi isomorphism to another quasi isomorphism).

Now it can be proved a bounded bellow complex of injective sheaves is actually an injective

complex. So as before for a complex A• one can define a resolution by injective objects B• → I•,
and define

RHom•C(Mod(X))(A
•, . . . ) : Db(X) −→ Db(Ab), (239)

RHomi
C(Mod(X))(A

•, B•) := Hi(HomC(Mod(X))(A
•, I•)). (240)

Without getting into more details, we state that relative to the first “variable” (i.e. A•), the

functor defined above is consistent with the quasi isomorphisms. So if we consider RHom as a

functor on the first variable, it naturally induces a well defied functor in the derived category.

Therefore,

RHom : D0(X)×Db(X) −→ D(Ab), (241)

where D0(X) is the opposite category of D(X). ExtiD(X)(A
•, B•) := RiHom(A•, B•).

So far we only considered the global Hom functor, but in the case of sheaves one can define

a local version [27]Hom,

RHomOX : D0(X)×Db(X) −→ Db(X), (242)
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and similar to the global version one has local “ext” sheaves,

ExtiOX (A•, B•) := RiHomOX (A•, B•). (243)

Lets start by reviewing some standard facts,

i) For any sheaf A, the functor A⊗ . . . is right exact, and A is flat if A⊗ . . . is exact.

ii) For any coherent sheaf A, there is a flat resolution of finite length

. . . −→ F1 −→ F0 −→ A −→ 0, (244)

where Fi’s are flat sheaves.

iii) One can define the tensor product of two complexes A• ⊗B• as a double complex.

iv) A flat complex is defined as complex P•, which the functor P• ⊗ . . . , maps acyclic com-

plexes to acyclic complexes (or equivalently quasi isomorphism to quasi isomorphism).

v) A bounded above (in particular bounded) complex of flat sheaves is a flat complex. For a

bounded complex of coherent sheaves, B•, then (using point (ii) ) one can find a quasi isomor-

phism P• −→ B•. If P• is both flat and acyclic, then B•⊗P• is again acyclic for any complex B•.

As before one can define the derived tensor product as,

RFA• := A• ⊗L · · · : Db(X) −→ Db(X), (245)

RF i
A•(B

•) = Hi(A• ⊗ P•). (246)

Note that the process of defining derived tensor product is symmetric, and one could define it

using the first variable. Also if there is a quasi isomorphism A•
qis−→ B•, then we have a functor

isomorphism FA• ∼ FB• . So naturally the derived tensor product descends to a well defined

functor in derived category relative to the first variable,

· · · ⊗L · · · : Db(X)×Db(X) −→ Db(X). (247)

T ori(A•, B•) := H−i(A• ⊗L B•). (248)

Finally we are at the position to review the definition the left derived functor for the pullback

of a morphism f : (X,OX) −→ (Y,OY ). As before, we recall some basic facts and then compare

with the general definition.

i) Recall that the pull back of a sheaf under f is defined as,

f ∗(F) := OX ⊗f−1OY f
−1F . (249)

ii) There is a projective resolution for every coherent sheaf,

. . . −→ P1 −→ P0 −→ F −→ 0, (250)
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This induces a quasi isomorphism for any bounded complex of coherent sheaves (at least

bounded above) one gets a quasi isomorphism P• qis−→ F•.

So by combining these facts and what we learned for derived tensor product we can write,

Lf ∗(F•) := OX ⊗Lf−1OY f
−1F•,

Lif
∗(F•) := H−i(f ∗(P•)). (251)

Here we collect the identities that are going to be useful in the calculations throughout this

paper.

Lets start with following general theorem, Suppose F : A −→ B and G : B −→ C be functors

between abelian categories such that G(KF ) ⊂ KG (look at the definition of derived functors).

Then one gets the following identity,

R(G ◦ F ) = RG ◦RF. (252)

This theorem looks pretty simple, but it allows us to combine derived functors. Basically it says

there is a spectral sequence,

Ep,q
2 := RpG(Rq(F )) =⇒ Ep+q

∞ := Rp+qG ◦ F. (253)

Here we review some of the applications. First lets consider the direct image of a bounded

complex,

Rif∗(Hj(F•))⇒ Ri+jf∗F•. (254)

Obviously one can write a similar spectral sequence formula to compute the derived functor of

complexes. Another example is the global section functor over a variety X, Γ : Coh(X) −→ Ab.
The direct images of this functor are just the cohomology of sheaves [27], i.e. RiΓ(F) = H i(X,F).

Now let combine this with the direct image functor induced by a proper morphism f : X −→ Y ,

ΓY : Coh(Y ) :−→ point, ΓX = ΓY ◦ f∗ : Coh(X) −→ point,

RΓX(F) = RΓY ◦Rf∗(F),

Ep,q
2 = Hp(Y,Rqf∗F)⇒ Ep+q

∞ = Hp+q(X,F). (255)

Last line is nothing but Leray spectral sequence. As the final example consider the relation

between local extension Ext, and the global extension Ext,

RΓ ◦RHomOX (F•,G•) = RHomDb(X)(F•,G•). (256)

In particular if we apply this to concentrated complexes at zero position (i.e. a single coherent

sheaf), we get the following famous result,

H i(X, ExtjOX (F ,G))⇒ Exti+jX (F ,G) (257)
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[Base change formula] Consider the following commutative diagram of proper morphisms,

X X ′

Y Y ′

f

g

f ′

g′

Then, in general, there is a morphism of functors ,

Lf ′∗Rg′∗ −→ Rf∗Lg
∗. (258)

In particular if f (g) is flat, then f ′ (g′) is flat, and the above morphism is actually isomorphism

of functor. One of the main properties of Fourier Mukai functor is its compatibility with the

base change, and therefore the theorem above will be very useful.

[Dualizing Complex] Consider a proper morphism fX −→ Y , it’s dualizing complex is defined

as,

HomDb(Y )(Rf∗F•,G•) = HomDb(X)(F•, f !G•). (259)

In particular it satisfies the identities,

f !G• = Lf ∗G ⊗L f !OY , (260)

X Y

Z
h

f

g s.t. h = g ◦ f =⇒ h! = f ! ◦ g!. (261)

So by the first identity one only needs to know the dualizing complex of morphism relative to

the structure sheaf. A morphism is called Gorenstein if the dualizing complex is a concentrated

complex, i.e. f !OY = Ω[k] for some k ∈ Z. There two specific cases that will be useful for us in

this paper,

Flat Fibration In this case f !OY = ωX/Y [n], where n is the relative dimension (i.e. the dimen-

sion of the fibers), and ωX/Y = ωX ⊗ f ∗ωY .

Complete intersection This is an inclusion morphism f : X ↪→ Y where X is a complete

intersection of varieties in Y . In this case f !OY = det(N )[−d], where N is the normal

bundle, and d is the codimension of X is Y .

The definition above is called Grothendieck-Verdier duality, and it is a general form of Serre

duality. There is also a local version of this duality,

RHomOY (Rf∗F•,G•) = Rf∗RHomOX (F•, Lf ∗G• ⊗L f !OY ). (262)

One can define derived dual of a complex F• ∈ Db(X) as,

F•∨ := RHomOX (F•,OX). (263)

RHom(F•,G•) ' RHom(OX ,F•∨ ⊗L G•) ' F•∨ ⊗L G• (264)
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Rf∗ a Lf ∗,

RHomDb(Y )(F•, Rf∗G•) ' RHomDb(X)(Lf
∗F•,G•), (265)

RHomOY (F•, Rf∗G•) ' Rf∗RHomOX (Lf ∗F•,G•). (266)

[The Projection Formula is]

Rf∗(Lf
∗F• ⊗L G•) = F• ⊗L Rf∗G•. (267)

The commutative diagram bellow for a projective morphism f ,

f−1(p) X

p Y

fp

if

f

i

(268)

we get the following results when F ∈ Coh(X). They will be very useful in many cases, and also

give a rather clear intuitive picture about the direct images,

Li∗Rf∗F −→ Rfp∗(Li
∗
fF),

φj : (Li∗Rf∗F)j = Tori
−1OY
−j (Rf∗F ,Op) = Rjf∗F ⊗Op −→ Hj(f−1

p (p), i∗fF). (269)

It is proved in [27] III.12.10 that φj is isomorphism if and only of it is surjective, and Rjf∗F is

locally free if and only if φj−1 is surjective.

9 Integral Functors

In this section we briefly review the main features of integral functors, specially the Fourier Mukai

functors which are the important special cases. Let Db(X) and Db(Y ) be the derived category

of varieties X and Y . Consider the following morphisms,

X × Y

X Y

πX πY (270)

Then the integral functor ΦP
•

X→Y is defined in the following way,

ΦP
•

X→Y : Db(X) −→ Db(Y ),

ΦP
•

X→Y (. . . ) := RπY ∗(π
∗
X(. . . )⊗L P•), (271)

where πX and πY are projections to the corresponding factors, and P• is the kernel of the

transform. Note that πX is a flat morphism, so Lπ∗X = π∗X . In particular if the integral transform
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of a sheaf E (consider it as complex which is only non-zero at the zero entry, i.e. concentrated

on the zero position) is concentrated the ith position, it is called a WITi sheaf.

Note that any integral functor is a composition of three exact functors in derived categories,

derived inverse image, derived tensor product and derived direct image. So ΦP
•

X→Y is also an exact

functor. In particular, to any short exact sequence there is an associated long exact sequence

induced by that integral functor.

We are particularly interested in “relative” integral transforms. Suppose ΦKX→Y : Db(X) −→
Db(Y ) be an integral transform, for any variety T , the corresponding relative integral functor

(relative to T ) Φ
K•T
X×T→Y×T is defined as

X × Y × T

X × T X × Y Y × T

πX×T πY×T
πX×Y

Φ
K•T
T (. . . ) := RπY×T∗(π

∗
X×T (. . . )⊗L K•T ),

K•T := π∗X×YK•. (272)

Now consider a morphism of varieties f : S −→ T , and the induced relative morphisms:

fX : S ×X −→ T ×X and fY : S × Y −→ T × Y , then one can prove the following functorial

isomorphism,

Lf ∗Y ΦT (E•) ' ΦS(Lf ∗XE•), (273)

with E• ∈ Db(X × T ). In particular if jt : t −→ T be the inclusion of a point t, then the identity

above gives,

Lj∗t ΦT (E•) = Φt(Lj
∗
t E•), (274)

This has important consequences: first of all if E is a sheaf, one can prove (by checking the

spectral sequences of the combined functors),

Φnm
t (j∗t E) ' j∗t Φ

nm
T (E), (275)

where nm is the maximal integer that either Φnm
t or Φnm

T is non zero. Moreover, if both E and

Φi
T (E) are flat over T , then Et is WITi relative to Φt if and only if E is WITi relative to ΦT .

This is an important point, and when we want to describe the Fourier-Mukai transform of vector

bundles which are unstable over some non generic elliptic fibers, or when we need to deal with

general coherent sheaves, it is going to help us.

Finally we mention that there are similar result for non trivial fibration, which we discuss

briefly later. For now, let’s move on to review Fourier-Mukai functors briefly.

A Fourier Mukai functor is an integral functor which is also an exact equivalence.
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Probably the first important point about Fourier-Mukai functors is that any equivalence can

be written as Fourier-Mukai,

[Orlov’s representability theorem] Let X and Y be two smooth projective varieties, and let

F : Db(X) −→ Db(Y )

be a fully faithful exact functor. If F admits right and left adjoint functors, then there exists an

object P• ∈ Db(X ×Y ) unique up to isomorphism such that F is isomorphic to a Fourier Mukai

functor ΦPX→Y .

There is a partial inverse to this theorem, due to Bondal and Orlov, which states when an

integral functor is indeed fully faithful, i.e. it puts constraints over the kernel of the transform,

Let X and Y be smooth projective varieties. Consider ΦP
•

X→Y : Db(X) −→ Db(Y ) with P• in

Db(X × Y ). Then ΦP
•

X→Y is a fully faithful functor if and only if P• is a strongly simple object

over X, i.e.

Homi
Db(Y )(Lj

∗
x1
P•, Lj∗x2

P•) = 0 unless x1 = x2 and 0 ≤ i ≤ dimX; (276)

Hom0
Db(Y )(Lj

∗
xP•, Lj∗xP•) = C. (277)

In addition, if Lj∗xP• is a special object of Db(Y ), i.e. Lj∗xP• ⊗KY ' Lj∗xP•, then ΦP
•

X→Y is an

equivalence. In particular if both X and Y are both smooth Calabi-Yau varieties, and the kernel

is a strongly simple object, then the corresponding integral functor is a Fourier-Mukai functor.

It is worth to mention another very important property of Fourier-Mukai functors, and that is

these kind of integral functors are sensitive to smoothness and “ Calabi-Yau ness”, and dimension.

In other words, if tow varieties X and Y are Fourier-Mukai partners (their derived category are

equivalent), then X is smooth if and only if Y is smooth (this proved by Serre’s criterion on

regular local rings of finite homological dimension), and X is Calabi-Yau if and only if Y is

Calabi-Yau (this is proved by using Grothendieck-Verdier duality), and both of them must have

the same dimension. There are also other geometrical constraints which are induced by the

equivalence condition, but we ignore them here.

We finish this section by quickly deriving the inverse transform of a Fourier-Mukai functor

ΦP
•

X→Y . Since for an equivalence of categories, the adjoint functor is actually the inverse functor,

one can find it easily for the Fourier Mukai functor as follows,

RHomDb(Y )(Φ
P•
X→Y (F•),G•) = RHomDb(X×Y )(π

∗
XF•, π∗Y G• ⊗L P•∨ ⊗ π∗XωX [n])

= RHomDb(X)(F•, RπX∗(π∗YF• ⊗L P•∨ ⊗ π∗XωX [n])) (278)

= RHomDb(X)(F•,Φ
P•∨⊗π∗XωX [n]

Y→X (G•)),

where F• and G• are generic objects of derived category of varieties X and Y , n is the dimension

of both X and Y , and ωX is the canonical sheaf of X. Therefor the “inverse transform” is itself

a Fourier Mukai functor,

Φ
P•∨⊗π∗XωX [n]

Y→X . (279)
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10 Heterotic Hyperflux

The special plan in the following part will be to elucidate how heterotic hyperflux works in the

presence of localized gauge fields. To this end, we shall first review some features of bulk axion

couplings to gauge theory degrees of freedom. Then, we review the hyperflux mechanism for

F-theory compactification, and then translate this to our heterotic construction. In this section

we exhibit a heterotic dual to the hyperflux mechanism. The main idea is to show that an abelian

flux U(1)Y ⊂ SU(5)GUT can be activated, but which also decouples from all bulk axions.

To frame our discussion, let us briefly review some aspects of the hyperflux mechanism in F-

theory. We begin with F-theory compactified on a threefold base B, and study the worldvolume

theory of a seven-brane with gauge group G wrapping R3,1 × S for some Kähler surface S. In

the eight-dimensional gauge theory, we have the terms,

S10D ⊃ −M4
∗

∫
R3,1×S

Tr(F8D∧∗8F8D)+

∫
R3,1×S

i∗(C4)∧Tr(F8D∧F8D)+M6
∗

∫
R3,1×B

dC4∧∗10dC4, (280)

where i∗(C4) is the pullback of the bulk four-form potential C4 onto R3,1 × S, F8D is the 8D

field strength, and M∗ is a characteristic UV scale where the large volume approximation breaks

down.

Suppose now we expand this theory around a non-trivial internal gauge field flux valued in

some abelian subgroup U(1) ⊂ G. For ease of exposition, we treat all gauge fields as abelian.

We decompose the form content of the eight-dimensional field strength as,

F8D = F4D + FS, (281)

for some non-zero background value of FS. We also decompose the four-form C4 into a basis of

internal harmonic two-forms on B,

C4 = rα ∧ bα, (282)

where bα is a two-form on B, and rα is a two-form on R3,1 dual to an axion. Expanding around

this background, we get the four-dimensional terms,

S4D ⊃ −
1

4g2
U(1)

∫
R3,1

F4D ∧ ∗4F4D +

∫
R3,1

rα ∧ F4D

∫
S

i∗(bα) ∧ FS +M2
∗

∫
R3,1

drα ∧ ∗4drα. (283)

The middle term is a coupling between an axion and a gauge field. When it is non-zero, the

abelian gauge field picks up a large mass of order M∗.

In F-theory GUTs, such couplings can be eliminated provided,∫
S

i∗(bα) ∧ FS = 0, (284)

for all harmonic two-forms bα on B. This can be arranged by a trivialization condition of

the divisor dual to FS inside of B. The embedding i : S → B induces the pullback map for

cohomology,

i∗ : H2(B)→ H2(S). (285)
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So, a nontrivial relative cohomology allows us to generate a hyperflux which decouples from all

bulk axions.

Now, in heterotic strings, this GUT breaking mechanism would at first appear to be absent. As

explained, for heterotic strings compactified on a Calabi-Yau threefold, the hyperflux mechanism

is unavailable. This is because of the interaction terms in the ten-dimensional action,

S10D ⊃ −M6
∗

∫
R3,1×M

1

g2
Tr(F10D ∧ ∗10F10D) +

∫
R3,1×M

|dΛ + A ∧ F |2 , (286)

where Λ is the two-form potential of the heterotic theory. Let us now expand around a background

value of the internal field strength FM . Decompose Λ into a basis of harmonic two-forms λα on

M ,

Λ = cα ∧ λα, (287)

with cα an axion of the four-dimensional theory. Then, upon expanding with respect to an

internal flux,

F10D = F4D + FM , (288)

the four-dimensional effective action contains the terms,

S4D ⊃ −
1

4g2
U(1)

∫
R3,1

F4D ∧ ∗4F4D +

∫
R3,1

rα ∧ F4D

∫
M

∗6 λα ∧ FM +M2
∗

∫
R3,1

dcα ∧ ∗4dcα, (289)

where rα is the two-form dual to the axion cα in four-dimensions. Again, the middle term

is responsible for the Stückelberg mechanism of the four-dimensional effective theory. In the

standard heterotic compactification on a Calabi-Yau threefold, the harmonic two-forms λα and

FM are both representatives of elements in H2(M), so the hyperflux mechanism is unavailable.

With a position dependent dilaton, however, we can localize the profile of the heterotic

gauge fields. It is therefore worth revisiting whether the hyperflux mechanism holds in heterotic

models. In fact, localization is by itself not enough to ensure that a given heterotic gauge bundle

configuration will decouple from the axions. The main idea will be to formally construct a

non-trivial vector bundle on the “standard” middle region Mmid, and then show that in the full

geometry Mhet, it trivializes. In other words, we consider the embedding

i : Mmid →Mhet, (290)

and seek a non-trivial kernel to the pushforward

i∗ : H4(Mmid,Z)→ H4(Mhet,Z). (291)

The localization of the ten-dimensional gauge fields near the gluing regions DL and DR means

that effectively, the GUT breaking flux is localized on this lower-dimensional component of

the geometry. To construct examples of gauge field configurations which trivialize in the full

geometry, we can first construct a line bundle over Mmid which, upon gluing, trivializes in the

full geometry Mhet. Along these lines, recall that Mmid is given by an elliptic fibration with section
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over a base D. We shall assume that there are at least two effective divisors σ1, σ2 with homology

classes [σi] ∈ H2(D,Z) such that σ1−σ2 is trivial inside of ML, but is non-trivial inside of Mmid.

This can happen because in Mmid there is a section to the fibration, so σ1 and σ2 lift to two

non-trivial divisors S1, S2 with homology classes [Si] ∈ H4(Mmid,Z). So, let us consider the line

bundle Lmid = OMmid
(S1 − S2). Under the embedding map, we can pushforward Lmid to a rank

one sheaf on Mhet. Observe, however, that since [S1] = [S2] in H4(Mhet,Z), that the topology of

the line bundle is globally trivial, even though there is a non-trivial flux localized along DL and

DR. Indeed, upon restriction of Lmid to D, we get the line bundle OD(σ1 − σ2). As consequence

of this topological mechanism, all couplings to bulk axions automatically vanish. This includes

model-dependent axions coming from harmonic two-forms of Mhet, as well as the contribution

from the universal axion of a heterotic compactification. In our analysis, we have used the gluing

to the middle region as a means to track this possibility. Following up on the discussion it would

be quite interesting to understand this purely from the perspective of vector bundles on ML.

Finally, note that any holomorphic vector bundle on Mmid which trivializes in the full geometry

will automatically define a consistent solution to the Hermitian Yang-Mills equations. The reason

is that the Hermitian (1, 1) form Jmn is a bulk mode defined over the entire geometry Mhet. So,

there is automatically a representative flux which satisfies the condition FmnJ
mn = 0. One check

of the duality we can already perform involves the construction of a heterotic hyperflux. In the

F-theory model, suppose we have a seven-brane wrapping a divisor P1 × P1 in P3. There is a

single generator H for the homology ring of P3 whereas there are two generators σ1 and σ2 for

P1 × P1. Indeed, the two-cycle σ1 − σ2 trivializes in P3. The seven-brane two-form flux Poincaré

dual to this class gives a configuration which decouples from the bulk axions.

We can now see how a similar mechanism operates in the heterotic dual configuration. We

showed how to build up a heterotic gauge field configuration which breaks SU(5)GUT to the

Standard Model gauge group by activating a flux in the U(1)Y ⊂ SU(5)GUT subgroup. First, we

construct a line bundle on Mmid given by

Lmid = OMmid
(S1 − S2), (292)

where Si are the divisor classes coming from the two K3 fibers of the elliptic fibration T 2 →
Mmid→ P1

(1) × P1
(2). Upon restriction to the base D = P1

(1) × P1
(2), the line bundle becomes

Lmid|D = OD(σ1 − σ2), (293)

where σi is the divisor class for one of the P1
(i) factors. The important feature is that this class

σ1 − σ2 trivializes in Mhet.

Finally, the heterotic dual for XR is MR, that is, another copy of ML, and is constructed in

the same way as ML. In the heterotic theory, these geometric building blocks are then glued

together to construct the full compact six-manifold,

Mhet = ML ∪DL Mmid ∪DR MR. (294)

To complete the analysis, we also need to specify the profile of the heterotic fields on the other

side of the duality. Here, we must again take our guidance from the F-theory geometry. First of

52



all, deep in the middle region Mmid, we have a standard compactification of heterotic strings on a

Calabi-Yau threefold. This means the heterotic dilaton can be taken to be a constant, and there

is no three-form flux switched on. A particularly interesting feature of this specific heterotic

dual is that the presence of more than one K3 fibration in the F-theory geometry means we

have various string/string dualities in the heterotic theory. Now, as we move closer to the gluing

regions, the curvature of the metric becomes more pronounced. Additionally, we can see that

the profile of the dilaton as well as the three-form flux also changes. Near the gluing locus DL,

we see in particular that the profile of the string coupling becomes weakly coupled, while it can

be bigger deep in the ML and Mmid regions. This enforces the localization of the heterotic gauge

fields near the gluing region, which is simply the heterotic dual of the familiar localization of

gauge theory degrees of freedom in the F-theory geometry. Finally, deep in the regions ML and

MR, we can see that fluxes must be switched on. The simplest way to see this is to observe that

even after deleting DL to reach ML, we still have a non-compact positive curvature six-manifold.

Indeed, to reach a non-compact Calabi-Yau threefold, we would have needed to delete a K3

surface. It is beyond the scope of the present work to find an explicit solution to the metric

and background fluxes in this region, though we can see that the duality with F-theory clearly

predicts the existence of such a solution.

11 Conclusion

In this note we have proposed a generalization of heterotic/F-theory duality. Within heterotic/F-

theory duality, the constrained geometric arena – Weierstrass from for both the heterotic and

F-theory Calabi-Yau backgrounds – has long been a frustrating obstacle to studying new phe-

nomena. Within heterotic effective theories for example, there are a number of interesting effects

that are believed to have interesting F-theory duals, including perhaps novel mechanisms for

moduli stabilization such as the linking of bundle and complex structure moduli in the heterotic

theory through the condition of holomorphy and potentially new 4-dimensional N = 1 dualities

including heterotic threefolds admitting multiple elliptic fibrations and hence leading to multiple,

related dual F-theory fourfolds, the F-theory duals of heterotic target space duality or F-theory

duals of known “standard model like” heterotic compactifications. However in all cases, these

theories have crucially involved decidedly non-Weierstrass geometry on the heterotic side. These

questions have formed the motivation for the present work. We believe that here we have taken

important first steps towards extending the geometries for which explicit heterotic/F-theory duals

can be constructed. There remain however, important open questions. First, as mentioned above,

we require new and more robust tools to address the general case of a higher rank Mordell-Weil

group with rational generators. In addition, as illustrated in the explicit examples constructed

all the formulas we have derived in this work have been limited by the restriction of smoothness

of the spectral cover. In general many examples in the literature have demonstrated that smooth

vector bundles do not necessarily correspond to smooth spectral covers. Indeed, this observation

has been a powerful tool in determining the effective physics of T-brane solutions in F-theory.

By placing the constraint of smoothness on the spectral data, we are clearly loosing information

53



about general components of the bundle moduli space. Finally, there remain interesting open

questions about how to determine the full Picard groups of spectral covers since these are sur-

faces of general type, this is a notoriously hard problem in algebraic geometry, and a number

of interesting possibilities remaining to be explored related to higher co-dimensional behavior in

moduli superspaces i.e. so-called “jumping” phenomena or Noether-Lefschetz problems.

On the F-theory side, the building blocks of the duality are non-compact elliptically fibered

Calabi-Yau fourfolds which also admit aK3 fibration. These are glued together to form a compact

elliptic Calabi-Yau fourfold which need not have a global K3 fibration. On the heterotic side, the

K3 fiber of each F-theory building block is replaced by a T 2 fiber. In the heterotic description,

the gluing also involves a non-trivial three-form flux and position dependent dilaton. Using our

proposal, we reach new compact examples of heterotic/F-theory duality pairs. This leads to a

localization of heterotic gauge field degrees of freedom in various regions of the geometry, and

also provides a heterotic version of the hyperflux mechanism for breaking GUT groups. In other

words, we have used F-theory to argue for the existence of a new class of heterotic flux vacua. In

the remainder of this section we discuss some additional avenues of investigation. In this work

we have mainly focussed on the general contours of our proposal, emphasizing in particular the

simple form of the geometric F-theory building blocks. It would clearly be useful to confirm in

purely heterotic terms the exact form of the background fields necessary to solve the equations of

motion. Along these lines, it would be important to verify that the resulting low energy effective

action defined by the heterotic compactification indeed matches to the one defined by the F-

theory model. In the case of heterotic compactification on a model with a large radius limit,

there is a simple topological check which can be performed. It would be interesting to extend this

analysis to the class of flux vacua considered here. On the other hand, one might instead take the

F-theory geometry as a definition of what a generalized heterotic vacuum ought to be. From this

perspective, the relevant issue is to demonstrate existence of a solution and its topology rather

than a direct construction of all background fields. Along these lines, one ingredient which would

be very interesting to work out in more detail concerns the construction of heterotic vector bundles

on branched covers of twistor space. Roughly speaking, our proposal points to a generalization of

the standard spectral cover construction which should hold even when the elliptic fibration of the

heterotic model does not possess a holomorphic section. Another generalization concerns giving

a heterotic dual description of T-branes for such flux vacua. Expanding on these details further

would be most interesting. Finally, though we used the F-theory dual to motivate the existence of

a heterotic hyperflux mechanism, it should be possible to realize examples of heterotic hyperflux

even if there is no F-theory dual. Compared with standard Calabi-Yau compactification, the

main ingredient we have identified is a position dependent dilaton profile to trap the 10D gauge

fields on regions of the geometry, and the existence of vector bundles which are non-trivial on

components of a gluing construction, but which are globally trivial. This points to a potentially

vast generalization of heterotic model building. All of these problems deserve further attention

and are necessary for a general study of heterotic/F-theory duality. We hope to continue to

explore them in future research work.
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