Expansion, Topologie und Entropie

Gerd Pommerenke

Email: gerdpommerenke@arcor.de

Abstract

Object of this work is, to determine, if objects observed more distant are moving away faster than less distant ones. The escape velocity Hr is defined by the HUBBLE-Parameter H, locally H₀, which is proportional to the reciprocal of the age T. The calculations are based on the model published in viXra:1906.0321. The idea stems from Cornelius LANCZOS, outlined at a lecture on the occasion of the Einstein-Symposium 1965 in Berlin. The model defines the expansion of the universe as a consequence of the existence of a metric wave field. That field also should be the reason for all relativistic effects, both SR and GR. In the context of this work the propagation function of that wave field is determined. Its phase rate is equal to the reciprocal of PLANCK's smallest increment r_0 . Even the other PLANCK-units set up the basis of the model being functions of space and time. With it, the model leads to a quantization of the universe into single line-elements with the size of r_0 . Thus, a kind of finite-element-method becomes possible, at which point the single elements are explicitly defined by the wave function. As per definition, objects in the free fall, aren't moving either with respect to the metrics and are carried-with during expansion. With the help of the propagation function it's possible to calculate the HUBBLE-Parameter H even for greater distances. Furthermore the entropy of the universe as a whole is determined considering the special topology of the universe. English version available in viXra. "Expansion, Topology and Entropy"

2. Ausgabe Augsburg © 2024

<u>1. Vorwort</u>

Ziel dieser Arbeit ist es, festzustellen, ob sich Objekte, die sich weiter als 0,01R (Weltradius) befinden, schneller von uns fortbewegen, als näher liegende. Diese Frage interessiert vor allem Astronomen und Kosmologen. Die Fluchtgeschwindigkeit v_F =Hr ist ja durch den HUBBLE-Parameter H, lokal H₀, definiert, der proportional zum Kehrwert des Weltalters T ist. Es handelt es sich somit nicht um eine Konstante. Daher benutze ich hier bewußt den Ausdruck Parameter. Weiterhin soll hier noch untersucht werden, ob es möglich ist, die Entropie des Universums als ganzes zu bestimmen und in welcher Hinsicht man dabei Rücksicht auf die besondere Topologie (4D) nehmen muß.

Die Berechnungen basieren auf einem von mir in [1] und [1] veröffentlichten Modell. Die Idee dafür stammt von Cornelius LANCZOS [2], welche er auf einem Vortrag anläßlich des Einstein-Symposiums 1965 in Berlin umrissen hatte. Der Vortrag ist auch der Arbeit [1] vorangestellt. Das Modell definiert die Expansion des Universums als Folge der Existenz eines Vierbein-Wellenfelds, das gleichzeitig Ursache für alle relativistischen Effekte, sowohl SR, als auch GR, sein soll. Die Zeitfunktion dieses Felds basiert auf der Hankelfunktion, die sich wiederum aus der Summe zweier Besselfunktionen (J₀ und Y₀) zusammensetzt. Die besonderen Eigenschaften der Besselfunktionen führen zu einer Zunahme der Wellenlänge, die durch den Abstand zwischen zwei Nulldurchgängen definiert ist. Die Ausbreitungsgeschwindigkeit c_M dieses Feldes ist abhängig von Ort und Zeit und bewegt sich (heute) im Bereich von $1,09\cdot10^{-22}$ ms⁻¹ beim lokalen Beobachter bis zu 0,851661c am Partikelhorizont.

Dies hat zur Folge, daß die Wellenlänge λ_0 und das Phasenmaß β_0 der Ausbreitungsfunktion unterschiedliche Werte haben. Das Phasenmaß ist gleich dem Kehrwert der PLANCKschen Elementarlänge r₀. Auch die anderen PLANCKschen Einheiten bilden die Basis dieses Modells und sind Funktionen von Raum *und* Zeit. Im Abstand r₀ in der Form eines kubisch flächenzentrierten Raumgitters (fc) sind spezielle Vortices angeordnet. LANCZOS bezeichnet diese als "MINKOWSKIsche Linienelemente, die nur annähernd MINKOWSKIsch sind", hier abgekürzt als MLE. Es handelt sich damit eher um physikalische Objekte und nicht um das, als was das MINKOWSKIsche Linienelement eigentlich definiert ist. Das gesamte Wellenfeld habe ich Metrisches Wellenfeld (Metrik) genannt.

Das Modell führt damit zu einer Quantisierung des Universums in einzelne Linienelemente mit besonderen physikalischen Eigenschaften. Damit ist eine Art *Finite-Elemente-Methode* möglich, wobei die einzelnen Elemente die Abmessungen der PLANCKschen Elementarlänge r_0 haben und durch die Wellenfunktion eindeutig definiert sind. Die Wellenlänge λ_0 und r_0 nehmen mit der Zeit zu. Objekte, die sich im Freien Fall befinden, bewegen sich laut Definition nicht gegenüber der Metrik und werden damit bei Expansion mitgeführt. Damit ist es möglich, mit Hilfe der Ausbreitungsfunktion den HUBBLE-Parameter H auch für größere Abstände zu berechnen. Weiter weg beobachten wir ja ein größeres lokales H₀, da H früher größer war. Summiert müßte sich bei größeren Abständen auch ein größeres H ergeben, was die Berechnung bestätigt.

Da sich bei Wellenfeldern die Entropie berechnen läßt, wird hier auch diese bestimmt. Allerdings sind dabei besondere Bedingungen zu beachten. Dies läßt einen Blick auf die ferne Zukunft unseres Universums zu. Am Ende wird noch auf die verschiedenen Arten von Entfernungsvektoren eingegangen und die Frage beantwortet, warum Vektoren länger als cT möglich sind.

Eine Besonderheit des Modells besteht darin, daß der sogenannte *Subraum*, das ist der Raum, in dem sich das metrische Wellenfeld ausbreitet, neben μ_0 und ϵ_0 über eine dritte Eigenschaft, die spezifische Leitfähigkeit κ_0 in der Größenordnung von 1,23879·10⁹³ Sm⁻¹ verfügt. Diese ist Ursache der Expansion. Ob und wie dies nicht zu Widersprüchen bei der Ausbreitung "normaler" EM-Wellen führt, ist aber nicht Inhalt der vorliegenden Arbeit. Diese bewegen sich nach diesem Modell als überlagerte Störungen des metrischen Wellenfelds. Genaueres darüber kann in [1] nachgelesen werden. Dort ist auch ein spezieller Abschnitt den unerwarten Ergebnissen des SN-1a-Kosmologie-Experiments gewidmet.

2. Grundlagen und Hypothesen

Bevor wir zur eigentlichen Berechnung kommen, ist es notwendig, bestimmte Grundgrößen des Modells zu definieren, zum größten Teil ohne Herleitung. Diese kann man in [10] nachlesen. Einen besonderen Platz nehmen dabei die PLANCKschen Einheiten ein, weiterhin die Grundgrößen der Theoretischen Elektrotechnik. Aus diesem Grund verwende ich hier, wie dort üblich, den Buchstaben j anstelle des in der Mathematik üblichen i bzw. ¹/₁.

2.1. Definition der Grundgrößen

Zuerst einmal die Grundbeziehungen der Theoretischen Elektrotechnik. Diese gelten unabhängig vom Modell (1). Unter (2) sind die wichtigsten PLANCKschen Einheiten dargestellt. Die Einführung der spezifischen Leitfähigkeit des Vakuums erweist sich als das *missing link* zwischen diesen und auch zu anderen Größen.

$$\mathbf{c} = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \quad \left| \quad Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \sqrt{\frac{L_0}{C_0}} = \frac{\phi_0}{q_0} = \frac{\mathbf{E}}{\mathbf{H}} \quad \left| \quad \begin{array}{c} L_0 = \mu_0 r_0 \quad C_0 = \varepsilon_0 r_0 \\ R_0 = 1/(\kappa_0 r_0) \end{array} \right|$$
(1)

$$\mathbf{r}_{0} = \sqrt{\frac{G\hbar}{c^{3}}} = \sqrt{\frac{2t}{\mu_{0}\kappa_{0}}} \qquad \mathbf{m}_{0} = \sqrt{\frac{\hbar c}{G}} = \frac{\mu_{0}\kappa_{0}\phi_{0}^{2}}{Z_{0}} \qquad \mathbf{\phi}_{0} = \sqrt{\hbar Z_{0}} \qquad \mathbf{q}_{0} = \sqrt{\hbar Z_{0}} \qquad (2)$$

Ein einzelnes Linienelement kann durch das Modell eines verlustbehafteten Schwingkreises mit Parallelwiderstand beschrieben werden. Eine besondere Eigenschaft *nur dieses* Modells besteht darin, daß die Güte Q des Schwingkreises identisch mit dem Phasenwinkel $2\omega_0 t$ der Besselfunktion ist. Es gilt $Q_0=2\omega_0 t$. Der Wert ω_0 entspricht hierbei der PLANCKschen Frequenz.

$$Q_{0} = 2\omega_{0}t = \kappa_{0}r_{0}Z_{0} = \frac{\hbar R_{0}}{\varphi_{0}^{2}} = \frac{R_{0}}{Z_{0}} = \left(\frac{c}{c_{M}+v}\right)^{2} = \sqrt{\frac{2\kappa_{0}t}{\varepsilon_{0}}}$$
(4)

$$H_{0} = \frac{\dot{r}_{0}}{r_{0}} = \frac{1}{R_{0}C_{0}} = \frac{\varepsilon_{0}}{\kappa_{0}}\frac{1}{L_{0}C_{0}} = \frac{1}{\kappa_{0}\mu_{0}r_{0}^{2}} = \frac{\varepsilon_{0}\omega_{0}^{2}}{\kappa_{0}} = \frac{1}{2T} = \frac{\omega_{0}}{Q_{0}}$$
(5)

Der numerische Wert von Q_0 liegt nach Tabelle 1 bei ca. 7,5419 $\cdot 10^{60}$ und ist abhängig vom tatsächlichen Wert von H₀. Bis auf die Größen des Subraums μ_0 , ϵ_0 , κ_0 und c sind alle anderen Größen Funktionen von Raum und Zeit und sogar von der Geschwindigkeit v gegenüber dem metrischen Wellenfeld. Dies liegt daran, daß die Raum-Zeitfunktion des metrischen Wellenfelds die relativistischen Effekte emulieren soll. Die GR-Abhängigkeiten sollen hier nicht weiter betrachtet werden.

Daraus ergibt sich, daß die PLANCKgrößen abhängig vom Bezugssystem sind, dieses sogar definieren, und alle über den Phasenwinkel Q_0 miteinander verknüpft sind. Meist kürzen sich die Änderungen aber heraus, so daß der Eindruck entsteht, daß die Werte konstant sind. Bezugssystemabhängige Größen werden mit einer Tilde gekennzeichnet z.B. \tilde{Q}_0 und sind vom Charakter her Konstanten. Wichtig sind noch die Größen bei einem Phasenwinkel $Q_1=1$. Diese beschreiben die Verhältnisse direkt am Partikelhorizont und sind ebenfalls Konstanten, da sie nur durch Größen des Subraums definiert sind. Deshalb eignen sie sich besonders für bezugssystemunabhängige Umrechnungen bestimmter Größen, sogenannte Kopplungen. Ein Beispiel dafür wäre die Umrechnung des magnetischen Flusses φ_1 in die magnetische Feldstärke $H_1 = \varphi_1/(\mu_0 r_1^2)$ als Basis einer Zeitfunktion, die bezugssystemabhängige Elemente

(r₀) enthält. r₁ wäre hier die sogenannte Kopplungslänge. Ausdruck (8) zeigt die Verhältnisse zu den PLANCKeinheiten und zu den Größen des Universums als ganzes.

$$\mathbf{r}_{1} = \frac{1}{\kappa_{0} Z_{0}} \quad | \qquad \mathbf{M}_{1} = \mu_{0} \kappa_{0} \hbar \qquad | \qquad \mathbf{t}_{1} = \frac{1}{2} \frac{\varepsilon_{0}}{\kappa_{0}} \quad | \qquad \omega_{1} = \frac{\kappa_{0}}{\varepsilon_{0}} = \frac{1}{2t_{1}} \tag{6}$$

$$\mathbf{R} = \mathbf{Q}_0 \mathbf{r}_0 = \mathbf{Q}_0^2 \mathbf{r}_1 \qquad \mathbf{M}_1 = \mathbf{Q}_0 \mathbf{m}_0 \qquad \mathbf{T} = \mathbf{Q}_0 \mathbf{t}_0 = \mathbf{Q}_0^2 \mathbf{t}_1 \qquad \boldsymbol{\omega}_1 = \mathbf{Q}_0 \boldsymbol{\omega}_0 = \mathbf{Q}_0^2 \mathbf{H}_0 \tag{7}$$

$$\varphi_{1} = \sqrt{\hbar_{1}Z_{0}} \quad \left| \quad q_{1} = \sqrt{\hbar_{1}/Z_{0}} \quad \left| \quad \hbar_{1} = \hbar Q_{0} \quad \right| \quad \kappa_{0} = \frac{c^{3}}{\mu_{0}G\hbar H_{0}}$$
(8)

Das Wirkungsquantum \hbar_1 und $\hat{\hbar}_1$ ist keine Größe des Subraums, sondern die Wirkung, die "man" unserem Universum ganz am Anfang "mitgegeben" hat. Dieser Wert stellt die einzige "Stellschraube" dar, mit der "man" Einfluß auf das zukünftige Aussehen des Universums nehmen könnte. Alle anderen Werte sind über Q₀ fest miteinander verkoppelt und abhängig von Raum und Zeit. Es gibt also keine "Feinabstimmung". Bei (2) rechts und (8) handelt es sich um Effektivwerte, d.h. \hbar , ϕ_0 und q₀ sind ebenfalls Zeitfunktionen. Für den Abschnitt 3.2.1. noch die Definition der NEWTONschen Gravitationskonstante:

$$G = \frac{c^3}{\mu_0 \kappa_0 \hbar H} = \frac{2c^3 t}{\mu_0 \kappa_0 \hbar} = c^2 \frac{R}{M_1} = c^2 \frac{r_0}{m_0}$$
(868 [10])

2.2. Zeitfunktion

Die exakte Zeitfunktion für den magnetischen Fluß φ_0 erhalten wir durch Lösung der Differentialgleichung (9). Diese basiert auf einem verlustbehafteten Schwingkreis *mit Expansion*, d.h. die einzelnen Komponenten R₀, L₀ und C₀ ändern sich mit steigendem r₀. Ausdruck (9) unterscheidet sich von einem normalen Schwingkreis ohne Expansion mit harmonischer Lösung vor allem durch den Faktor vor $\dot{\varphi}_0$, 1 mit Expansion, $\frac{1}{2}$ ohne.

$$\ddot{\varphi}_0 t + \dot{\varphi}_0 + \frac{1}{2} \frac{\kappa_0}{\varepsilon_0} \varphi_0 = 0 \tag{9}$$

Im Gegensatz zum Ausdruck ohne Expansion kommt es bei (9) nicht zu einer Verringerung der Resonanzfrequenz ω_0 durch den Einfluß des Verlustwiderstands R₀. Allerdings erhalten wir eine andere Funktion als Lösung:

y =
$$a_{0.0}F_1(;1;-Bx)$$
 mit $a_0 = \hat{\phi}_i/2$ $B = \frac{1}{2}\frac{\kappa_0}{\epsilon_0}$ $x = t$ (10)

Nach [4] gilt

$${}_{0}F_{1}(;b;x) = \Gamma(b)(jx)^{b-1}J_{b-1}(j2x^{\frac{1}{2}})$$
 Hypergeometrische Funktion ${}_{0}F_{1}$ (11)

J_n ist die Besselsche Funktion n-ter Ordnung, also

$${}_{0}F_{1}(;1;-Bx) = \Gamma(1)(jBx)^{0} J_{0}(\sqrt{4}Bx)$$
(12)

$$y = a_0 J_0(\sqrt{4Bx}) \tag{13}$$

$$\varphi_0 = a_0 J_0 \left(\sqrt{\frac{2\kappa_0 t}{\epsilon_0}} \right) \qquad \qquad = a_0 J_0(Q_0) \tag{14}$$

Da es sich um eine Differentialgleichung zweiter Ordnung handelt und der Grad der Besselfunktion ganzzahlig ist, lautet die allgemeine Lösung:

$$\varphi_0 = \hat{\varphi}_i (c_1 J_0(2\omega_0 t) + c_2 Y_0(2\omega_0 t))$$
(15)

Auch hier können c_1 und c_2 imaginär oder komplex sein. Nach [5] ist es oft günstig, die beiden Funktionen (Hankelfunktionen):

$$H_0^{(1)}(x) = J_0(x) + Y_0(x)$$
 und (16)

$$H_0^{(2)}(x) = J_0(x) - Y_0(x)$$
(17)

als linear unabhängige Lösungen betrachten und damit die allgemeine Lösung

$$y(x) = c_1 H_0^{(1)}(x) + c_2 H_0^{(2)}(x)$$
(18)

zu bilden. Die allgemeine Lösung (15) lautet dann:

$$\varphi_0 = \hat{\varphi}_i(H_0^{(1)}(2\omega_0 t) + H_0^{(2)}(2\omega_0 t))$$
(19)

Für unsere weiteren Untersuchungen setzen wir vorerst c_1 und c_2 in (19) gleich 1. Wir erhalten dann als spezielle Lösung (20) und für Näherung, Hüllkurve und Effektivwwert:

$$\varphi_0 = \hat{\varphi}_i J_0(2\omega_0 t) = \hat{\varphi}_i \operatorname{Re}(H_0^{(1)}(2\omega_0 t)) \qquad \qquad \varphi_0 = \hat{\varphi}_i J_0\left(\sqrt{\frac{2\kappa_0 t}{\varepsilon_0}}\right)$$
(20)

$$\varphi_0 = \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{2\omega_0 t}} \cos\left(2\omega_0 t - \frac{\pi}{4}\right)$$
 Näherung (21)

$$\hat{\phi}_0 = \sqrt{\frac{2}{\pi}} \frac{\hat{\phi}_i}{\sqrt{2\omega_0 t}}$$
Hüllkurve (22)

$$\phi_0 = \frac{\phi_1}{\sqrt{2\omega_0 t}} \qquad \phi_0 \sim q_0 \sim Q_0^{-\frac{1}{2}} \mid \hbar = \phi_0 q_0 \sim Q_0^{-1} \qquad \text{Effektivwert}$$
(23)

Den genauen Verlauf von φ_0 (20), der Näherung (21), sowie der Näherungsfunktionen für die Hüllkurve (22) und den Effektivwert (23) zeigt Bild 1. Ebenfalls dargestellt sind die Original-Besselfunktionen, die man aber nicht sieht, da sie von der Näherung vollständig überdeckt werden.

Verlauf von magnetischem Fluß sowie der Näherungsund Hüllkurvenfunktionen über einen größeren Zeitraum

Bei größeren Argumenten sind also keinerlei Abweichungen feststellbar, weder in der Amplitude, noch in der Phase. Wichtig für die Qualität der Näherung ist aber der Verlauf in unmittelbarer Nähe von t=0. Dieser ist in Bild 2 dargestellt und erweist sich als sehr gut bis hin zum Partikelhorizont bei $Q_0=1$. Alle Daten bis hier sind eine Zusammenfassung. Einzelheiten und die genaue Herleitung entnehmen Sie bitte [10].

Bild 2

Verlauf von magnetischem Fluß sowie der Näherungsund Hüllkurvenfunktionen in der Nähe der Singularität

2.3. Ausbreitungsfunktion

2.3.1. Exakte Lösung

2.3.1.1. Zeitfunktion

Im Gegensatz zu MAXWELL, der den ersten Term der harmonischen Lösung (108 [1]) $e^{j\omega t}$ als Ansatz benutzt, wählen wir jetzt den ersten Term von Gleichung (19), den wir als eine unabhängige Lösung der Differentialgleichung (9) erhalten haben. Dabei handelt es sich um die Zeitfunktion des magnetischen Flusses φ_0 bezogen auf ein einzelnes MLE, aus dem sich die Ladung q_0 ableiten läßt. Für die Ausbreitungsfunktion benötigen wir aber die magnetische und elektrische Feldstärke **H** und **E**. Die Beziehung:

$$\varphi = \int_{A} \mathbf{B} dA \quad \text{mit } \mathbf{B} = \mu_0 \mathbf{H} \qquad \text{führt zu} \qquad \left| \mathbf{H} \right| = \frac{\varphi_0}{\mu_0 r_0^2} \tag{24}$$

Wegen r_0 ist rechte Ausdruck allerdings vom Bezugssystem abhängig. Auch suchen wir eigentlich nur den Startwert bei T=0. Die Zeitfunktion ist ja bekannt. Wir müssen also eine bezugssystemunabhängige Kopplung vornehmen. Die Kopplungslänge r_k ist hier nicht frei wählbar. Wegen des aus dem Unendlichen kommenden Imaginärteils der Hankelfunktion ist der Startwert von ϕ_0 am Punkt $2\omega_0 t=Q_0=1$ definiert. Die Kopplungslänge an diesem Punkt ist r_1 wie bereits weiter oben angekündigt. Wir bezeichnen diesen Wert als H_1 bzw. E_1 . Unter Berücksichtigung, daß es sich bei (23) um einen Effektivwert handelt, erhalten folgende Beziehungen:

$$\mathbf{E}_{1} = \frac{q_{1}}{\varepsilon_{0}r_{1}^{2}}\sqrt{2} = \frac{1}{Z_{0}}\frac{\phi_{0}}{\varepsilon_{0}r_{0}^{2}}\sqrt{2} \qquad \mathbf{H}_{1} = \frac{\phi_{0}}{\mu_{0}r_{0}^{2}}\sqrt{2}$$
(25)

$$\underline{\mathbf{E}} = \mathbf{E}_{1} \mathbf{H}_{0}^{(1)}(2\omega_{0} \mathbf{t}) \qquad \qquad \underline{\mathbf{H}} = \mathbf{H}_{1} \mathbf{H}_{0}^{(1)}(2\omega_{0} \mathbf{t})$$
(26)

Hierbei entspricht wieder der Realteil einer Orientierung des Vektors in y, der Imaginärteil einer Orientierung in z-Richtung, wobei x die Ausbreitungsrichtung ist. Wie bereits festgestellt, besteht eine Analogie zwischen der Exponentialfunktion $e^{j2\omega t}$ und der Hankelfunktion. Beides sind transzendente komplexe Funktionen und periodisch bzw. fast periodisch. Natürlich gibt es auch eine Lösung der MAXWELLschen Gleichungen für (26). Die genaue Herleitung kann wieder in [1] nachgelesen werden. Wichtig ist die komplexe Wellenausbreitungsgeschwindigkeit <u>c</u> und der Feldwellenwiderstand <u>Z</u>_F:

$$\underline{c} = \frac{c}{j\omega_{0}t} \frac{1}{\sqrt{1 - \left(\frac{H_{2}^{(1)}(2\omega_{0}t)}{H_{0}^{(1)}(2\omega_{0}t)}\right)^{2}}} \quad \text{mit} \quad \Theta = \frac{H_{2}^{(1)}(2\omega_{0}t)}{H_{0}^{(1)}(2\omega_{0}t)}$$

$$\underline{c} = \frac{c}{j\omega_{0}t} \frac{1}{\sqrt{1 - \Theta^{2}}} \qquad \underline{Z}_{F} = \frac{Z_{0}}{j\omega_{0}t} \frac{1}{\sqrt{1 - \Theta^{2}}}$$
(27)

Man sieht, daß die Ausbreitungsgeschwindigkeit für große t gegen Null geht. Das gleiche gilt auch für den Feldwellenwiderstand. Wir haben es mit einem quasi-stationären Wellenfeld zu tun (stehende Welle), das sehr gut die Anforderungen erfüllt, die an eine Metrik gestellt werden. Die Ausbreitungsgeschwindigkeit ist wieder komplex. Eine Aufspaltung in Real- und Imaginärteil gestaltet sich recht schwierig, ist aber mathematisch möglich. Die Lösung für <u>c</u> lautet:

$$\frac{1}{\rho_0 Q_0} = \frac{c_M}{c} = \frac{1}{Q_0} \left| \frac{2}{\sqrt{1 - \Theta^2}} \right|$$
RhoQ = 2/#/Abs[Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] & (30)

$$\phi_0 = \frac{1}{2}\arctan\theta = \arg\left[\frac{1}{\sqrt{1-\Theta^2}}\right] - \frac{\pi}{2} \quad \text{PhiQ} = \arg[1/\text{Sqrt[1 - (HankelH1[2, #]/HankelH1[0, #])^2]] - \pi/2 \text{ e}}$$

Es ergibt sich ein alles in allem recht komplizierter Ausdruck, der jedoch noch etwas vereinfacht werden kann (31). A kommt von $+\infty$ und konvergiert gegen -1. Der Verlauf ist annähernd $1/A^2-1$, was jedoch nicht gut als Näherung verwendet werden kann. B hat einen Verlauf wie $1/B^2$ und konvergiert gegen Null. Das gleiche gilt dann auch für θ . Der Klammerausdruck konvergiert damit gegen 1. $1/\rho_0$ ist die Betragsfunktion, diese konvergiert gegen $\frac{1}{2}\sqrt{2}$.

$$\underline{\mathbf{c}} = -\frac{2}{\rho_0} \frac{\mathbf{c}}{2\omega_0 t} \left(\sin \frac{1}{2} \arctan \theta + j \sin \frac{1}{2} \arctan \theta \right) = \frac{2}{\rho_0} \frac{\mathbf{c}}{2\omega_0 t} e^{-j \frac{1}{2} (\arctan \theta + \pi)}$$
(31)

Leider läßt sich (31) nicht in einen Ausdruck analog (179 [1]) mit Areafunktionen umwandeln, so daß die Mehrdeutigkeit der arctan-Funktion zu einem teilweise falschen Ergebnis führt. Man rechnet daher besser mit folgender Substitution:

¹ Aus Gründen der Programmierung ergibt Ausdruck (29) mit AB ein geringfügig anderes Ergebnis als die Betragsfunktion von (27). Um die Genauigkeit zu maximieren, wird zur Berechnung von Werten und Grafiken nur die Funktion (27) verwendet.

$$\arctan \theta = \arg 1 - A^2 + B^2 + j2AB$$
 $\arg \underline{c} = \frac{1}{2} \operatorname{arccot} \theta - \frac{\pi}{4}$ (32)

Während der Realteil von <u>c</u> die Geschwindigkeit in Ausbreitungsrichtung ist, kann der Imaginärteil als Geschwindigkeit rechtwinklig dazu interpretiert werden. Auch bedeutet ein imaginärer Anteil an <u>c</u>, daß eine Dämpfung auftritt (siehe Bild 4). Eine numerische Handhabung von (27) kann auch mit »Mathematica« erfolgen und ergibt den in Bild 3 dargestellten Verlauf für kleine t. Da sich die Hankelfunktionen bei größerem Argument gut durch andere analytische Funktionen ausdrücken lassen, werden wir später Näherungslösungen angeben.

Bild 3 Ausbreitungsgeschwindigkeit in Abhängigkeit von der Zeit (logarithmische Zeitskala)

Der Weltradius (Wellenfront) dieses Modells expandiert damit nicht mit c sondern nur mit 0,851661c, was keinen Verstoß gegen die SRT darstellt. Dabei kommt es dazu, daß später ausgestrahlte Wellenabschnitte die Wellenfront quasi überholen. Da das Verhältnis von Realzu Imaginärteil dann jedoch anders ist, geschieht dies nicht auf derselben Bahnkurve – die Wellenfronten kreuzen sich vielmehr. Es taucht jedoch ein Widerspruch zur üblichen Definition R/2=cT (Strahlungsuniverum) auf, der später gelöst wird.

2.3.1.2. Ausbreitungsmaß

Für die Aufstellung der Ausbreitungsfunktion benötigen wir sowohl die Zeitfunktion, als auch das Ausbreitungsmaß $\gamma = \alpha + j\beta$. Die Normalform der Ausbreitungsfunktion ist gegeben durch:

$$\underline{\mathbf{E}} = \mathbf{E} e^{j\omega\left(t-\frac{\mathbf{x}}{c}\right)} = \mathbf{E} e^{j\omega t-\gamma \mathbf{x}} = \mathbf{E} e^{j\left(\omega t+j\gamma \mathbf{x}\right)}$$
(33)

Im Gegensatz zu (33) ist das Argument beim Fall mit Expansion reell. Genaugenommen ist nämlich nicht die Hankelfunktion sondern die modifizierte Hankelfunktion $M_0^{(2)} = I_0(z) - jK_0(z)$ das Äquivalent zur Exponentialfunktion. Es gilt $I_0(z)=J_0(jz)$ allerdings nur für rein imaginäre Argumente. Bei komplexem Argument läßt sich der reelle Anteil nicht als Faktor analog e^a·e^{jb} vor die Hankelfunktion setzen, wie man es bei der Exponentialfunktion gewohnt ist, da die Potenzgesetze nicht für Hankelfunktionen gelten. Erst für größere Argumente z ist dies möglich. Die modifizierte Hankelfunktion wird aber im allgemeinen nicht verwendet. Daher benutzen wir für den Ansatz die normale Hankelfunktion und passen die Ausbreitungsfunktion dementsprechend an. Um nicht im Widerspruch zur klasssichen Definition für das Fortpflanzungsmaß – Realteil gleich Dämpfungsmaß, Imaginärteil gleich Phasenmaß – zu stehen, müßte die Ausbreitungsfunktion dann wie folgt lauten (analog für <u>H</u>):

$$\underline{\mathbf{E}} = \mathbf{E} \operatorname{H}_{0}^{(1)} \left(2\omega_{0} \left(\mathbf{t} - \frac{\mathbf{x}}{\underline{\mathbf{c}}} \right) \right) = \mathbf{E} \operatorname{H}_{0}^{(1)} (2\omega_{0}\mathbf{t} - \mathbf{j}\underline{\gamma}\mathbf{x})$$
(34)

Dies ist nicht ganz der klassische Ausdruck für eine Ausbreitungsfunktion. Zu beachten ist der Faktor 2 der sowohl der Frequenz, als auch der Zeitkonstante zugeordnet werden kann. Bei der Definition des Fortpflanzungsmaßes $\gamma = \alpha + j\beta = \pm j\omega_0/c$ gehört er eindeutig zur Frequenz, da γ abhängig von der Phasengeschwindigkeit dx/dt, nicht dx/(2dt) ist. Durch Gleichsetzen beider Argumente von (34) erhält man dann:

$$\underline{\gamma} = -\frac{2\omega_0}{\underline{c}} \qquad \qquad = \qquad j\kappa_0 Z_0 \sqrt{1-\Theta^2} \tag{35}$$

Aus (31) läßt sich sehr leicht der Kehrwert von <u>c</u> ermitteln, wir erhalten für $\underline{\gamma}$:

$$\frac{1}{\underline{c}} = -\frac{\omega_0 t \rho_0}{c} \left(\cos \frac{1}{2} \arctan \theta - j \sin \frac{1}{2} \arctan \theta \right)$$
(36)

$$\gamma = \alpha + j\beta = -2\omega_0 / \underline{c} = \frac{2\omega_0^2 t \rho_0}{c} \left(\cos \frac{1}{2} \arctan \theta - j \sin \frac{1}{2} \arctan \theta \right)$$
(37)

$$\gamma = \rho_0 \kappa_0 Z_0 \left(\cos \frac{1}{2} \arctan \theta - j \sin \frac{1}{2} \arctan \theta \right)$$
(38)

Bild 4 Phasenmaß und Dämpfungsmaß in Abhängigkeit von der Zeit (lineare Skala)

Bei genauer Betrachtung erkennt man, daß α und β von ihrer Wirkung gesehen eigentlich vertauscht sind (α = Phasenmaß, β = Dämpfungsmaß). Dies ist dadurch bedingt, daß es bei der Ausbreitung zu einer Drehung um 90° (j) kommt (Bild 7). x wird zu y und y zu –x. Die Dämpfung α nimmt vom Zeitpunkt t=0 beginnend von unendlich exponentiell ab. Zum heutigen Zeitpunkt kann man sagen, daß es im Prinzip keine Dämpfung mehr gibt. Dies gilt aber nicht, wenn man kosmologische Zeiträume betrachtet.

Zum Zeitpunkt 0,897 t₁ (Q=0,947) hat die Funktion β einen Nulldurchgang. Dies führt zu dem bei der logarithmischen Darstellung (Bild 5) etwas eigentümlichen Verlauf. Es handelt sich hierbei um einen Phasensprung um 180°. Ab dem Zeitpunkt 100 t₁ können wir aus Bild 4 folgende Näherung angeben:

Phasenmaß und Dämpfungsmaß in Abhängigkeit von der Zeit (logarithmisch)

Bild 5

$$\underline{\gamma} \approx (1+j)\kappa_0 Z_0 \sqrt[4]{\frac{\varepsilon_0}{2\kappa_0 t}} \qquad \underline{\gamma} \approx (1+j)\frac{\kappa_0 Z_0}{\sqrt{2\omega_0 t}}$$
(39)

Diese Beziehungen lassen sich sowohl graphisch aus Bild 4, als auch explizit aus (35) unter Anwendung von (40) herleiten. Jedoch muß man (35) mit j multiplizieren, um der 90° Drehung (Bild 7) Rechnung zu tragen. Für die Näherung gilt dann $\gamma = 2\omega_0/\underline{c}$. Phasenmaß und Dämpfungsmaß sind ab ca. 100 t₁ identisch. Dies ist das Verhalten eines idealen Leiters.

Für γ haben wir schon eine Näherung gefunden, bleiben noch <u>c</u> und <u>Z</u>_F. In Bild 3 haben wir bereits den Verlauf von c dargestellt. Zur graphischen Bestimmung einer Näherung benötigen wir jedoch die logarithmische Darstellung (Bild 6). Zu beachten ist, daß der Imaginärteil eigentlich negativ ist.

keit von der Zeit (doppelt logarithmisch)

Bild 6

$$\underline{\mathbf{c}} = \frac{1-j}{\sqrt{2}} \mathbf{c} \sqrt[4]{\frac{\varepsilon_0}{2\kappa_0 t}} \qquad \underline{\mathbf{c}} = \frac{1-j}{2} \frac{\mathbf{c}}{\sqrt{\omega_0 t}}$$
(40)

$$\underline{\mathbf{c}} = \mathbf{c} \sqrt[4]{\frac{\varepsilon_0}{2\kappa_0 t}} \qquad |\underline{\mathbf{c}}| = \frac{\mathbf{c}}{\sqrt{2\omega_0 t}} \qquad (1,03807 \cdot 10^{-22} \,\mathrm{ms}^{-1}) \qquad (41)$$

$$\underline{Z}_{F} = \frac{1-j}{\sqrt{2}} Z_0 \sqrt[4]{\frac{\varepsilon_0}{2\kappa_0 t}} \qquad \underline{c} = \frac{1-j}{2} \frac{Z_0}{\sqrt{\omega_0 t}}$$
(42)

2.3.2. Expansionskurve

Am Weltradius expandiert das Universum mit der maximalen Geschwindigkeit 0,851661c, im Innern mit immer kleiner werdender Geschwindigkeit. Da die Wellenzahl im Innern einer Kugel mit definiertem Radius r(c,t) sinkt, wird das Defizit durch eine Vergrößerung der Wellenlänge ausgeglichen. Außerhalb steigt die Wellenzahl durch Ausbreitung kontinuierlich an.

Bild 7 Bahnkurve für kleine, mittlere und große Werte von t in Abhängigkeit von der Zeit

Für größere t verläuft die Expansion der Wellenfront annähernd geradlinig im Winkel von -45° proportional $t^{3/4}$. In der Nähe der Singularität sieht das Verhalten etwas anders aus. In Bild 7 ist der Verlauf der Bahnkurve eines einzelnen Abschnittes der Wellenfront in der Nähe der Singularität dargestellt. Man erkennt eine Art Parabel, bei großem t eine Hyperbel. Es tritt eine Drehung in der Ausbreitungsrichtung um einen Winkel von 90° auf.

2.3.3. Näherungslösung

Wir wollen jetzt eine Näherung für die Ausbreitungsfunktion aufstellen. Die Normalform ist $\mathbf{E}=\hat{\mathbf{E}}e^{j\omega t-\gamma x}$ mit $\gamma=\alpha+j\beta$. Bei der exakten Lösung (39) haben wir jedoch einen Fall vorliegen, bei dem α und β sowohl Dämpfungs- als auch Phaseninformationen enthalten und die Wellenfunktion ist auch nicht harmonisch. So können wir keine vernünftige Ausbreitungsfunktion aufstellen.

Phasen- und Dämpfungsmaß haben im Fall t»t₁ die gleiche Größe. Damit verhält sich das Modell ähnlich wie ein Metall. α steht dort nicht für eine Dämpfung, sondern für eine Drehung und zwar so weit, bis bei senkrechtem Einfall ein Wert von π erreicht wird und die Welle nach minimalem Eindringen das Metall in umgekehrter Richtung wieder verläßt. Die Eindringtiefe ist abhängig von den Materialeigenschaften, der Wellenlänge und dem Einfallswinkel. Im Fall dieses Modells sind die Materialeigenschaften nicht konstant, γ nimmt mit t und x ab. Daher reicht es hier nur zu einer Drehung um 90° und die Welle verbleibt im Medium (Vakuum). Auf jeden Fall tritt auch hier eine Drehung auf.

Um dem Rechnung zu tragen, nehmen wir eine Drehung des Koordinatensystems um $\pi/4$ vor. Dies entspricht der Multiplikation mit \sqrt{j} und wir erhalten eine rein imaginäre Lösung. Damit wird $\alpha=0$ und $\gamma=j\beta$ und es tritt keine exponentiell bedingte Dämpfung auf. Allerdings müssen wir das Ergebnis noch mit $\sqrt{2}$ multiplizieren und x durch r ersetzen. Trotz $\alpha=0$ nimmt die Amplitude von E und H kontinuierlich ab. Dies wird allein durch die Hankelfunktion verursacht, bzw. durch den Wurzelausdruck in (43). Damit sind Amplitude und Phase fest miteinander verkoppelt (Minimalphasensystem). Der Drehwinkel im Raum ist jetzt gleich $\theta+\pi/4$. Eine Trennung in Phasen- und Dämpfungsinformation ist jedoch immer noch nicht möglich. In unserem Fall kann man aber mit sehr großer Genauigkeit mit den Näherungsformeln arbeiten. Für die allgemeine Hankelfunktion H₀⁽⁾(ω t- β x) gilt folgende Näherung (Analog für <u>H</u>):

$$\underline{\mathbf{E}} = \hat{\mathbf{E}} \mathbf{H}_{0}^{(1)}(\omega t - \beta \mathbf{x}) \approx \hat{\mathbf{E}} \sqrt{\frac{2}{\pi(\omega t - \beta \mathbf{x})}} e^{j(\omega t - \frac{\pi}{4} - \beta \mathbf{x})}$$
(43)

Anstelle von γx taucht im Exponenten nur das Produkt βx mit dem Phasengang auf, da der Amplitudengang ja schon durch den Wurzelausdruck emuliert wird. Für t \gg 0 kann der Winkel $\pi/4$ weggelassen werden. Nach Drehung und Übergang x \rightarrow r sowie $\omega \rightarrow 2\omega_0$ ergibt sich:

E₁ ist der Spitzenwert von **E** bei Q₀=1. Allerdings sind sowohl $\omega = 2\omega_0$, als auch $\beta = 2\beta_0$ (bei doppelter Frequenz muß auch das Phasenmaß verdoppelt werden) keine Konstanten, sondern von t und r abhängig, was die Handhabbarkeit der Näherung stark einschränkt. Dies sieht man auch an der Phasengeschwindigkeit v_{ph}. Diese ist folgendermaßen definiert:

$$\mathbf{v}_{\rm ph} = \frac{2\omega_0}{\beta} = \frac{2\mathbf{c}}{\sqrt{2\omega_0 t}} = 2|\underline{\mathbf{c}}| \qquad \qquad \text{für t} \gg 0 \tag{45}$$

Die Phasengeschwindigkeit ist also gleich dem doppelten absoluten Betrag der Ausbreitungsgeschwindigkeit. Dies ist durch den Faktor 2 bedingt, da sich die Phasenlage bei doppelter Frequenz auch mit doppelter Geschwindigkeit ausbreitet. Interessehalber soll hier auch noch die Gruppengeschwindigkeit angegeben werden:

$$\mathbf{v}_{gr} = \frac{1}{d\beta/d\omega_0} = -2|\underline{\mathbf{c}}| \qquad \qquad \text{für } t \gg 0 \tag{46}$$

Bis auf das Vorzeichen sind beide Ergebnisse gleich. Das bedeutet, die Ausbreitung erfolgt verzerrungsfrei. Weiter zur Näherung. Im Abschnitt 2.2. hatten wir für dieselbe Zeitfunktion mit (22) bereits eine sehr gute Näherung gefunden, die fast exakt ist.

$$\underline{\mathbf{E}} \approx \hat{\mathbf{E}} \sqrt{\frac{2}{\pi}} \frac{e^{j(2\omega_0 t + 2\beta_0 x)}}{\sqrt{2\omega_0 t + 2\beta_0 x}} = 2\mathbf{E}_1 \frac{e^{j2(\omega_0 t + \beta_0 r)}}{\sqrt{2\omega_0 t + 2\beta_0 r}} \quad \text{mit} \quad \beta_0 = \frac{\kappa_0 Z_0}{\sqrt{2\omega_0 t}}$$
(47)

Ausdruck (47) erlaubt es nun, ein Ersatz- $\alpha = \alpha_0$ und damit auch ein Ersatz- $\gamma_0 = \alpha_0 + j2\beta_0$ zu definieren, so daß man ihn in die Normalform für Ausbreitungsfunktionen bringen kann.

$$\underline{\mathbf{E}} \approx 2 \, \mathbf{E}_{1} \, \mathrm{e}^{\mathrm{j}2\omega_{0}t - \underline{\gamma}_{0}r} \qquad \text{mit} \quad \underline{\gamma}_{0} = \frac{1}{2r} \ln \left(2\omega_{0}t + \frac{2\kappa_{0}Z_{0}}{\sqrt{2\omega_{0}t}}r \right) + \mathrm{j}\frac{2\kappa_{0}Z_{0}}{\sqrt{2\omega_{0}t}} \tag{48}$$

Dies ist schon ein großer Schritt vorwärts. Leider sind sowohl ω_0 als auch γ_0 Funktionen der Zeit. Für $2\omega_0 t$ ist dies nicht weiter kritisch, da ohnehin mit t multipliziert wird. Anders bei γ_0 , es sollte nur von r abhängen. Zur Substitution von t in (49ff) setzen wir zunächst (41) links in t=r/|c| ein. Wirksam ist hier die tatsächliche Ausbreitungsgeschwindigkeit und nicht v_{ph} oder v_{gr}. Anschließend stellen wir nach t um und setzen in (47) rechts ein.

$$t = \frac{r}{c} \sqrt[4]{\frac{2\kappa_0 t}{\varepsilon_0}} \qquad t^{43} = \frac{r^4}{c^4} \frac{2\kappa_0 t}{\varepsilon_0} = 2r^4 \mu_0^2 \varepsilon_0 \kappa_0 \qquad (49)$$

$$\beta_0^{12} = \frac{1}{8} \kappa_0^{\cancel{12}8} Z_0^{\cancel{12}8} \frac{\cancel{2}_0^{\cancel{2}}}{\cancel{2}_0^{\cancel{2}}} \cdot \frac{1}{2r^4 \mu_0^{\cancel{2}} \cancel{2}_0^{\cancel{2}} \cancel{2}_0^{\cancel{2}}} = \frac{\kappa_0^8 Z_0^8}{2^4 r^4} \qquad \beta_0 = \sqrt[3]{\frac{1}{2rr_1^2}}$$
(50)

Damit erhalten wir für γ_0 und das Produkt γ_0 r folgende Ausdrücke:

$$\underline{\gamma}_{0} = \frac{1}{2r} \ln \left(2\omega_{0}t + \left(\frac{2r}{r_{1}}\right)^{\frac{2}{3}} \right) + j \left(\frac{2}{rr_{1}^{2}}\right)^{\frac{1}{3}} \qquad \text{für } t \gg 0$$
(51)

$$\underline{\gamma}_0 \mathbf{r} = \frac{1}{2} \ln \left(2\omega_0 \mathbf{t} + \left(\frac{2\mathbf{r}}{\mathbf{r}_1}\right)^{\frac{2}{3}} \right) + j \left(\frac{2\mathbf{r}}{\mathbf{r}_1}\right)^{\frac{2}{3}} \qquad \qquad \text{für } \mathbf{t} \gg 0$$
(52)

Schließlich und endlich läßt sich die Zeit t vollständig eliminieren. Der Wert χ_0 ist proportional r^{-1/3} und, noch wichtiger, das Produkt χ_0 r proportional r^{2/3}. Leider kann man, wie schon gesagt, $\chi_0(r)$ nur in der Näherung explizit angeben. Bei der exakten Funktion (38) ist eine Trennung, speziell von t nicht möglich. Eine exakte Lösung wird aber im allgemeinen nicht benötigt, da die Näherung fast bis zum Partikelhorizont bei Q₀=1 sehr gute Ergebnisse liefert, siehe Bild 2. Daher wollen wir die Angelegenheit hier nicht weiter verfolgen.

Alle bis hierher angegebenen Näherungen sind bezogen auf den 4D-Expansionsmittelpunkt $\{r_1,r_1,r_1,t_1\}$. Es ist aber zweckmäßig, eine Funktion zu finden, die von einem anderen Punkt als Mittelpunkt ausgeht. Am besten geeignet ist hier der Punkt, an dem wir uns befinden. Zuerst substituieren wir die Zeit gemäß t \rightarrow T+t. Die Tilde steht für den Ausgangswert am Punkt t=0 (heute) und bezeichnet ein Bezugssystem, ist also eine Konstante. Wegen T=t₁Q₀² können wir Q₀ ausklammern. Die Zeitrichtung ändert sich nicht. Für den Zeitanteil gilt:

$$2\omega_0 t = \tilde{Q}_0 \left(1 + \frac{t}{\tilde{T}}\right)^{\frac{1}{2}}$$
(53)

Für den räumlichen Anteil β_0 bauen wir wieder unser Bezugssystem auf und verwenden die Substitution $r_1 \rightarrow \tilde{R}$. Wegen $\tilde{R}=r_1\tilde{Q}_0^2$, sowie $\tilde{r} \tilde{Q}_0=-r$, wir messen ja jetzt vom anderen Ende her, können wir für $2\beta_0$ schreiben:

$$2\beta_{0} = \tilde{Q}_{0} \left| \frac{2}{\tilde{r}\tilde{Q}_{0}\tilde{r}_{1}^{2}\tilde{Q}_{0}^{2}} \right|^{\frac{1}{3}} = -\tilde{Q}_{0} \left| \frac{2}{r\tilde{R}^{2}} \right|^{\frac{1}{3}} \qquad 2\beta_{0}r = -\tilde{Q}_{0} \left| \frac{2r-\tilde{r}_{0}}{\tilde{R}} \right|^{\frac{2}{3}} = -\tilde{Q}_{0} \left| \frac{2r}{\tilde{R}} - \frac{1}{\tilde{Q}_{0}} \right|^{\frac{2}{3}}$$
(54)

Exakt →

Eigentlich müßte statt r auch \tilde{r} stehen. Da es aber das Argument der Funktion ist, lassen wir die Tilde weg. Der rechte Ausdruck berücksicht die Tatsache, daß r₀ als kleinste Länge nicht unterschritten werden kann. Der Wert α_0 ist durch die Hüllkurve der Hankelfunktion

eindeutig festgelegt und wäre ansonsten gleich Null. Damit erhalten wir für γ_0 und das Produkt γ_0 r:

$$\underline{\gamma}_{0} = \frac{1}{2r} \ln \tilde{Q}_{0} \left(\left(1 + \frac{t}{\tilde{T}} \right)^{\frac{1}{2}} - \left(\frac{2r}{\tilde{R}} \right)^{\frac{2}{3}} \right) + j \tilde{Q}_{0} \left(\frac{2}{r \tilde{R}^{2}} \right)^{\frac{1}{3}}$$
(55)

$$\underline{\gamma}_{0}\mathbf{r} = \frac{1}{2}\ln\tilde{Q}_{0}\left(\left(1+\frac{t}{\tilde{T}}\right)^{\frac{1}{2}} - \left(\frac{2r}{\tilde{R}}\right)^{\frac{2}{3}}\right) + j\tilde{Q}_{0}\left(\frac{2r}{\tilde{R}}\right)^{\frac{2}{3}}$$
(56)

Mit r₀ haben wir bereits eine Elementarlänge gefunden. LANCZOS spricht jedoch noch von einer zweiten [2]. Dies ist die Wellenlänge des metrischen Wellenfeldes $\lambda_0=2\pi/\beta$. Bei der Näherung von λ_0 muß wieder durch 2 dividiert werden, wegen der doppelten Phasengeschwindigkeit. Es gilt also $\lambda_0=2\pi/\beta_0$. Zum Vergleich auch noch einmal der Ausdruck für r₀:

$$\lambda_0 = \frac{2\pi}{\rho_0(2\omega_0 t)\kappa_0 Z_0} \operatorname{cosec} \frac{1}{2} \arctan\theta(2\omega_0 t)$$
(57)

$$\lambda_0 = \frac{\pi}{\kappa_0 Z_0} \sqrt[4]{\frac{2\kappa_0 t}{\varepsilon_0}} = \frac{\pi}{\kappa_0 Z_0} \sqrt{2\omega_0 t} \qquad \qquad \text{für } \omega_0 t \gg 0 \tag{58}$$

$$\mathbf{r}_{0} = \frac{1}{\kappa_{0}Z_{0}}\sqrt{\frac{2\kappa_{0}t}{\varepsilon_{0}}} = \frac{2\omega_{0}t}{\kappa_{0}Z_{0}} = \sqrt{\frac{2t}{\kappa_{0}\mu_{0}}}$$
(59)

Jedoch ist λ_0 kleiner als r_0 und damit nicht identisch mit der HEISENBERGschen Elementarlänge. λ_0 liegt derzeit in der Größenordnung von 10^{-68} m. LANCZOS irrt also in diesem Punkt. Es war aber auch nur eine Vermutung seinerseits. Es handelt sich vielmehr um die Wellenlänge der Wellenfunktion, die unser metrisches Gitter selbst bildet. (57) bis (59) stellen nur die Zeitfunktionen dar. Die Funktionen von Zeit und Ort lauten folgendermaßen.

$$\lambda_0 = \frac{2\pi}{\rho_0(2\omega_0 t - \underline{\gamma}_0 r)\kappa_0 Z_0} \operatorname{cosec} \frac{1}{2} \arctan\theta(2\omega_0 t - \underline{\gamma}_0 r)$$
(60)

$$\lambda_{0} = \pi r_{0} \tilde{Q}_{0}^{-\frac{1}{2}} \left(\left(1 + \frac{t}{\tilde{T}} \right)^{\frac{1}{2}} - \left(\frac{2r}{\tilde{R}} \right)^{\frac{2}{3}} \right)^{\frac{1}{2}} = \frac{\pi}{\kappa_{0} Z_{0}} \sqrt{2\omega_{0} t - 2\beta_{0} r}$$
(61)

$$\mathbf{r}_{0} = \mathbf{d}\mathbf{r} = \tilde{\mathbf{r}}_{0} \left(\left(1 + \frac{t}{\tilde{T}}\right)^{\frac{1}{2}} - \left(\frac{2r}{\tilde{R}}\right)^{\frac{2}{3}} \right) = \frac{2\omega_{0}t - 2\beta_{0}r}{\kappa_{0}Z_{0}}$$
(62)

Die Wellenlänge λ_0 der Metrik hat keine Bedeutung für die weiteren Betrachtungen dieser Arbeit, wichtig ist nur β_0 . Der doppelte Klammerausdruck in (62) wird in Zukunft als *Navigationsgradient* bezeichnet. Das ist der eigentliche Ausdruck, nach dem wir gesucht haben.

Wir kennen nur das örtliche Weltalter T, das sich aus dem lokalen HUBBLE-Parameter ergibt (63). Dieses stellt quasi die zeitliche Entfernung zum Expansionszentrum dar. Man kann aber den räumlichen Abstand zum Weltradius R bestimmen. Dieser stellt damit eine räumliche Singularität (Ereignishorizont) dar.

$$2\omega_0 t - \beta_0 r = \frac{\omega_0(H)}{H} \qquad \qquad \text{bei } r = 0 \qquad \qquad T = \frac{1}{2H}$$
(63)

$$R = -\frac{\omega_0(H)}{\beta_0 H} = -\frac{\omega_0 r_0}{H} = -2ct \qquad \text{bei} \quad 2\omega_0 t = 0$$
(64)

$$\beta_0 = \kappa_0 Z_0 \sqrt[4]{\frac{\varepsilon_0 H}{\kappa_0}} = \sqrt{\frac{c^3}{G\hbar}} = \frac{1}{r_0}$$
(65)

Den Wert für $\beta_0=1/r_0$ erhält man also auch aus (39), wenn man die Zeit durch den HUBBLE-Parameter H₀ ersetzt. Für R gilt:

$$R = -\frac{c}{H_0} = -1,22471 \cdot 10^{26} \text{ m} = -1,2946 \cdot 10^{10} \text{ Ly} = -3,96896 \text{ Gpc}$$
(66)

$$R = -\frac{c}{H_0} = -1,34803 \cdot 10^{26} m = -1,4249 \cdot 10^{10} Ly = -4,36862 \, Gpc$$
(67)

Das sind ca. 13 Milliarden Lichtjahre für $H_0=71,9963 \,\mathrm{kms}^{-1}\mathrm{Mpc}^{-1}$. Das Ergebnis (67) für den alternativen Wert von $H_0=68,6241 \,\mathrm{kms}^{-1}\mathrm{Mpc}^{-1}$ wurde mit Hilfe von ([9] 1049) und den CODATA₂₀₁₈-Werten berechnet. Das lokale Weltalter hat den Charakter einer Zeitkonstante und beträgt nur die Hälfte, nämlich 6,5/7,1 Milliarden Jahre. Der lokale Weltradius ist gleich cT. Längere zeitartige Vektoren bis hin zu 2cT sind möglich aufgrund der Expansion und Wellenausbreitung des metrischen Wellenfelds. Näheres dazu in den nächsten Abschnitten.

Das hier betrachtete Wellenfeld bildet die Metrik des Universums (leerer Raum), das (annähernd MINKOWSKIsche) Metrische Linienelement. Dieses können wir hier schon einmal angeben. Weitere Betrachtungen werden im Kapitel 7.2.1 von [10] vorgenommen. Wir gehen von ([10] 0.23) in der differentiellen Form aus und setzen anstelle der sonst üblichen Lichtgeschwindigkeit c unsere Ausbreitungsgeschwindigkeit <u>c</u> des metrischen Wellenfeldes ein:

$$ds^{2} = dx^{2} + dy^{2} + dz^{2} - \underline{c}^{2} dt^{2} \qquad \text{oder} \qquad (68)$$

$$ds^{2} = dr^{2} + r^{2} (d\vartheta^{2} + \sin^{2}\vartheta \ d\varphi^{2}) - \underline{c}^{2} dt^{2} \qquad (69)$$

Hier wird sofort klar, welche physikalische Bedeutung dem MLE zukommt. Für die genaue Formel benutzen wir vorteilhaft Polarkoordinaten. Wir setzen jetzt den genauen Ausdruck für \underline{c} ein (r=0) und erhalten:

$$ds^{2} = dr^{2} + r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}) - \frac{c^{2}dt^{2}}{4\omega_{0}^{2}t^{2}\rho_{0}^{2}(2\omega_{0}t - \underline{\gamma}r)}(\sin\frac{1}{2}\arctan\theta(2\omega_{0}t - \underline{\gamma}r) - j\cos...)^{2}$$
(70)

$$ds^{2} = dr^{2} + r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}) + \frac{c^{2}dt^{2}}{4\omega_{0}^{2}t^{2}\rho_{0}^{2}(2\omega_{0}t - \underline{\gamma}r)}(\cos \arctan\theta(2\omega_{0}t - \underline{\gamma}r) + j\sin...) (71)$$

$$ds^{2} = dr^{2} + r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}) + \frac{c^{2}dt^{2}}{4\omega_{0}^{2}t^{2}\rho_{0}^{2}(2\omega_{0}t - \underline{\gamma}r)} \frac{1 + j\theta(2\omega_{0}t - \underline{\gamma}r)}{\sqrt{1 + j\theta^{2}(2\omega_{0}t - \underline{\gamma}r)}}$$
(72)

$$ds^{2} = dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \frac{c^{2}dt^{2}}{4\omega_{0}^{2}t^{2}(1 - A^{2}(\phi) + B^{2}(\phi))(1 - j\theta(\phi))}$$
(73)

$$ds^{2} = dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \frac{dr_{0}^{2}}{1 - (A(\phi) - jB(\phi))^{2}} \quad \text{wegen} \quad \dot{r}_{0}dt = dr_{0}$$
(74)

mit $\phi = 2\omega_0 t - \gamma r$. Interessant ist die Umkehrung des Vorzeichens. Aus dem Lichtkegel wird eine Kugel. Für überlagerte Signale, die sich mit Lichtgeschwindigkeit ausbreiten, gilt aber weiterhin der bisherige Lichtkegel. Es addiert sich die lokale Ausbreitungsgeschwindigkeit (nicht die Expansionsgeschwindigkeit!). A(ϕ) und B(ϕ) bestimmen die Drehung in der Nähe der Singularität, Definition siehe (29). Der Kehrwert des Ausdrucks im Nenner zeigt dem Betrag nach ein Verhalten wie t^{1/2}. Nun noch die Näherung:

$$ds^{2} \approx dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) + (\phi - \frac{1}{2}) \, dr_{0}^{2}$$
(75)

$$ds^{2} \approx dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}) + Q_{0}dr_{0}^{2}$$
(76)

$$ds^{2} = dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \underline{\tilde{c}}^{2} \left(\left(1 + \frac{t}{\tilde{T}} \right)^{\frac{1}{2}} - \left(\frac{2r}{\tilde{R}} \right)^{\frac{2}{3}} \right)^{-1}$$
(77)

3. Expansion, Topologie und Entropie

Im Abschnitt 2.3.3. haben wir mit (62) einen Ausdruck für die zeitliche und räumliche Abhängigkeit der PLANCKschen Elementarlänge r_0 gefunden, die zumindest lokal einen Maßstab für die Größenverhältnisse (Abstand) darstellt. Hierbei sei noch einmal darauf verwiesen, daß dies *auch* für die Größe materieller Körper gilt, die sich im gleichen Maßstab verändert, wie r_0 . Ansonsten wäre auch keine Expansion zu beobachten.

An diesem Punkt geht es uns aber vor allem um die Abstände materieller Körper untereinander. Diese folgen einer Funktion, die wiederum vom betrachteten Abstand abhängig ist, da sich Größe und Expansionsgeschwindigkeit der PLANCKschen Elementarlänge mit steigendem Abstand vom Koordinatenursprung ändern. Hier sollen nur Abstände betrachtet werden, deren Anfangspunkt im Ursprung liegt. Von großer Bedeutung für weitergehende Betrachtungen ist auch die Anzahl der Linienelemente entlang einer gedachten Linie mit der Länge r (Wellenzahlvektor Λ).

Hierbei unterscheiden wir zwei Fälle: Wellenzahlvektor bei konstantem r und r bei konstantem Wellenzahlvektor. Letzterer Fall entspricht am ehesten den bestehenden Verhältnissen, da man davon ausgehen kann, daß kein Punkt gegenüber anderen Punkten im Weltall ausgezeichnet ist. Die durchschnittliche Relativgeschwindigkeit gegenüber der Metrik am Koordinatenursprung im freien Fall ist gleich Null. Dies sollte dann überall so sein. Die Expansion des Universums ist damit nur zurückzuführen auf die Expansion der Metrik. Dies entspricht dem Fall konstanter Wellenzahlvektor.

3.1. Expansion

3.1.1. Konstanter Abstand

Für kleine Abstände r ist der Wellenzahlvektor Λ aufgrund der *Realen Gitterkonstante* r₀ folgendermaßen definiert:

$$\Lambda = \frac{\mathbf{r}}{\mathbf{r}_0} \mathbf{e}_{\mathbf{r}}$$
(78)

 $\mathbf{e_r}$ ist der Einheitsvektor. Im folgenden betrachten wir jedoch nur den Betrag A. Für größere Abstände müssen wir A durch dA, r durch dr ersetzen und für r₀ den entsprechenden Ausdruck (62) einsetzen:

$$d\Lambda = \frac{1}{\tilde{r}_0} \frac{dr}{(1+t')^{\frac{1}{2}} - \left(\frac{2r}{\tilde{R}}\right)^{\frac{2}{3}}} \quad \text{mit } t' = \frac{t}{\tilde{T}}$$
(79)

Zur Lösung substituieren wir folgendermaßen (es gilt $\tilde{R}/\tilde{r}_0 = \tilde{Q}_0$)

$$d\Lambda = \frac{3}{2} \frac{\tilde{R}}{\tilde{r}_0} \frac{r'^2}{a^2 - r'^2} dr' \qquad \text{mit } r' = \left(\frac{2r}{\tilde{R}}\right)^{\frac{1}{3}} \left| a^2 = (1+t')^{\frac{1}{2}} \right| dr = \frac{3}{2} \tilde{R} r'^2 dr' \quad (80)$$

$$\Lambda = \frac{3}{2} \tilde{Q}_0 \int \frac{r'^2}{a^2 - r'^2} dr' = \frac{3}{2} \tilde{Q}_0 \left(a \operatorname{artanh}^* \frac{r'}{a} - r' \right) \xrightarrow{\text{(binter dem Partikelhorizont)}} (81)$$

$$\Lambda = \frac{3}{2}\tilde{Q}_0 \left(\left(1 + \frac{t}{\tilde{T}}\right)^{\frac{1}{4}} \operatorname{artanh} \frac{\left(\frac{2r}{\tilde{R}}\right)^{\frac{1}{3}}}{\left(1 + \frac{t}{\tilde{T}}\right)^{\frac{1}{4}}} - \left(\frac{2r}{\tilde{R}}\right)^{\frac{1}{3}}\right) \qquad \operatorname{def} \Lambda_0 = \frac{R}{2r_0} = \frac{Q_0}{2}$$
(82)

des Abstands r und t

Bild 8

Die Wellenzahl A folgt der im Bild 8 dargestellten blauen Funktion. Nähert man sich dem halben Weltradius (R/2), so geht Λ scheinbar gegen unendlich. Will man also eine endliche Wellenzahl Λ_0 definieren, nimmt man nur einen bestimmten Teil des Weltradius und berechnet dafür die Wellenzahl. Wegen $R/(2r_0) = Q_0/2$ entscheiden uns für diesen Wert. Er liegt bei 0,273965R, das sind 54,79% des Abstands zum Partikelhorizont (cT). Insgesamt wird aber ein unendlicher Wert nicht erreicht, da r₀ immer kleiner wird und gegen r₁ strebt. Bei Q=1 ist Schluß, dort haben wir den Partikelhorizont erreicht. Meine erste Vermutung war, daß der Wert $\Lambda_1 = Q_0^2$ beträgt, da auch $R = r_1 Q_0^2$ gilt. Dies ist jedoch nicht der Fall. Die etwas anspruchsvolle Berechnung für $r = R/2 - r_1 \rightarrow 1 - 10^{-120}$ unter Anwendung der Potenzreihe für $(1-x)^{\frac{1}{3}}$, mehrfacher Substitution bis zur Wandlung der Funktionen für kleine Werte artanh \rightarrow arsinh \rightarrow ln, führt zum Ergebnis $\Lambda_1 = \frac{3}{2} Q_0 \ln Q_0 \approx 210 Q_0 = 1,75495 \cdot 10^{63}$ mit den Werten aus Tabelle 1. Für Λ_1 gilt t'=t=0 das ist ein konstanter Wellenzahlvektor. Durch die Expansion und Wellenausbreitung nach »außerhalb« erhöht sich aber der Phasenwinkel $2\omega_0 T = Q_0 \sim t^{\frac{1}{2}}$ und aufgrund von (51) gilt $\Lambda_1(T) = \frac{3}{2}\sqrt{bT} \ln \sqrt{bT}$ mit $b = 2\kappa_0/\epsilon_0$.

Bild 9 Zeitliche Abhängigkeit des Wellenzahlvektors für verschiedene Abstände r

Die zeitliche Abhängigkeit für verschiedene Ausgangsabstände r ist im Bild 9 dargestellt. Je größer die betrachtete Länge, umso später der Zeitpunkt, ab dem der Wellenzahlvektor definiert ist. Dies ist leicht zu verstehen, kann ich doch eine Länge erst dann als existent ansehen, wenn der Weltradius größer oder gleich dieser Länge ist. Ist der Weltradius kleiner, so existiert eine solche Länge nicht. Daher sind raumartige Vektoren größer als 0,5R derzeit nicht definiert und die Funktion (82) hat erst ab einem Wert von z.B. t=0,75T eine reelle Lösung, t=0 ist der jetzige Zeitpunkt. Insgesamt nimmt die Wellenzahl ab. Dies resultiert daraus, daß wir eine konstante Länge betrachten bei expandierendem r_0 . So kommt es dazu, das am Ende ständig MLE's "herausgerollt" werden, was zur Erniedrigung des Wellenzahlvektors führt.

3.1.2. Konstanter Wellenzahlvektor

3.1.2.1. Lösung

Wir gehen zunächst vom linken Ausdruck von (82) für t=0 (a=1) aus. Dieser gibt die Größe des Wellenzahlvektors zum jetzigen Zeitpunkt an und zu jedem Zeitpunkt, wenn wir ihn als konstant annehmen wollen. Wir suchen also nach der Funktion F(a, \tilde{r}'), die nichts anderes ist, als die zeitliche Abhängigkeit einer gegebenen Länge \tilde{r}' . Für a(t) siehe (80).

$$\Lambda = \frac{3}{2}\tilde{Q}_0 \quad \operatorname{artanh} \tilde{r}' - \tilde{r}' = \frac{3}{2}\tilde{Q}_0 \left(\operatorname{a artanh} \frac{\tilde{r}'F}{a} - \tilde{r}'F \right) = \operatorname{const}$$
(83)

Explizites Auflösen durch Differenzieren und Nullsetzen (hierbei wird der linke Ausdruck Null) führt zur trivialen Lösung F=0. Ansonsten kann nur eine implizite Lösung gefunden werden als Lösung der Gleichung:

a artanh
$$\frac{\tilde{r}'F}{a}$$
 – artanh $\tilde{r}' - \tilde{r}'(F-1) = 0$ $r(t) = \tilde{r}F^{3}(t)$ (84)

oder in »Mathematica«-Notation F1[t,r]:

Hierbei ist besonderer Wert auf das Verfahren (Tangentenverfahren) und den Startwert zu legen. Mit dem Sekantenverfahren gab es Probleme. Der zeitliche Verlauf ist in Bild 10 dar-

gestellt. Für die Lösung gibt es nur einen beschränkten Definitionsbereich. Dieser ist zeitlich nach unten begrenzt durch die räumliche Singularität, die betrachtete Länge ist größer, als der Weltradius und existiert noch nicht. Je größer die betrachtete Länge um so kleiner der Definitionsbereich. Unter Weltradius wird hier der raumartige Vektor R/2 = cT verstanden.

3.1.2.2. Näherungslösungen

Eine einfache Lösung für kleine r ergibt sich explizit aus (84) unter Anwendung der zwei ersten Glieder der TAYLOR-Reihe für die Funktion artanh:

Diese entspricht genau dem Verhalten der PLANCKschen Elementarlänge (MLE) und ist gültig bis ca. 0,01R. Für größere Abstände ist der Anstieg größer. Wir untersuchen zunächst den Verlauf in der Umgebung von t=0 (Bild 11) sowie den Anstieg $\Delta r/\Delta t$ mit $\Delta t=2 \cdot 10^{-3}$. Bei Wurzelfunktionen ist der Anstieg (dr/dt) in diesem Punkt gleich dem Exponenten m in:

$$\mathbf{r} = \tilde{\mathbf{r}} \left(1 + \frac{\mathbf{t}}{\tilde{\mathbf{T}}} \right)^m \approx \tilde{\mathbf{r}} \left(1 + m \frac{\mathbf{t}}{\tilde{\mathbf{T}}} \right)$$
(87)

Dieser ist im Bild 11 dargestellt. Er liegt im Bereich von 1/2...3/4. Mit der Funktion Fit[] lassen sich unter Anwendung von (88) Näherungsformeln verschiedener Genauigkeit für den Exponenten m finden:

$$m \approx 0.513536 + 0.17937r + 0.490927r^{2}$$
mit $r = r/\widetilde{R}$

$$m \approx 0.500(980) + 0.50052r - 1.13082r^{2} + 2.16233r^{3}$$

$$m \approx 0.500(1002) + 0.598206r - 3.45991r^{2} + 18.3227r^{3} - 42.6995r^{4} + 38.0733r^{5}$$
(89)

Die dritte Gleichung von (89) ist sehr genau und eignet sich auch für Berechnungen mit höheren Ansprüchen. Allerdings muß man hierbei den eingeschränkten Definitionsbereich beachten, der von der Näherungslösung nicht automatisch mit emuliert wird. Es sei hier noch einmal darauf hingewiesen, daß es sich bei den in diesem Abschnitt betrachteten Entfernungen und Geschwindigkeiten um raumartige Vektoren handelt, die nichts mit den zeitartigen Vektoren zu tun haben, wie sie im Abschnitt 4.3.4.4.6. von [1] Kosmologische Rotverschiebung betrachtet wurden.

3.1.2.3. Der HUBBLE-Parameter

Haben wir den HUBBLE-Parameter bisher nur für kleine Längen und die PLANCKsche Elementarlänge (r_0) definiert, die den Beziehungen für einen Strahlungskosmos (m=1/2) folgen, müssen wir unsere Aussagen für größere Abstände korrigieren. Mit m=m(r) wird der HUBBLE-Parameter H=r/r damit auch eine Funktion des Abstands:

$$H = \frac{m}{\tilde{T} + t} \qquad \qquad H_0 = \frac{m}{\tilde{T}}$$
(90)

Den Verlauf zeigt Bild 12. Die von diesem Modell untersuchte Metrik ist eine nichtlineare Metrik. Damit hat sich die Frage erübrigt, ob es sich bei unserem Universum um einen Strahlungs- oder Staubkosmos handelt. Die Antwort lautet – sowohl, als auch. Es ist eine Frage der Größe des betrachteten Gebiets. Für kleine Längen verhält sich der Abstand wie ein Strahlungskosmos, zwischen Null und 0,5R wie ein Staubkosmos, bei 0,5R, wie der Metrik überlagerte Photonen.

Abstands für t=0, die Werte r>0,5R sind extrapoliert.

Letzterer Abstand ist jedoch kein Gebiet unendlicher Rotverschiebung, wie in anderen Modellen. Dies sieht man sehr gut am Verzögerungsfaktor q. Der Verlauf ist in Bild 13 dargestellt.

$$q = -\frac{r\ddot{r}}{\dot{r}^2} = \frac{1}{m} - 1 \tag{91}$$

Bild 13 Verzögerungsfaktor als Funktion des Abstands für t=0, die Werte r>0,5R sind extrapoliert.

Die Expansionsgeschwindigkeit Hr als Funktion des Abstands zeigt Bild 14. Die Lichtgeschwindigkeit wird schon in einem wesentlich geringeren Abstand als bei den Standardmodellen erreicht, allerdings nur auf dem Papier. Während die Größe von r_0 bei 0.5R=cTgegen r_1 geht, ist die Expansionsgeschwindigkeit entlang der zeitartigen Weltlinie an diesem Punkt nicht unendlich, sondern kleiner als c (0,75c).

Expansionsgeschwindigkeit H r als Funktion des Abstands für t=0, die Werte r>0,5R sind extrapoliert.

Andererseits hatten wir festgestellt, daß die maximale Ausbreitungsgeschwindigkeit $|\underline{c}_{max}|$ des metrischen Wellenfelds nur 0,851661c beträgt. Weiterhin soll aber der Weltradius cT betragen, wohingegen zeitartige Vektoren mit bis zu 2cT möglich sind.

Wir haben es somit mit vier unterschiedlichen Längen bzw. Geschwindigkeiten zu tun, die alle irgendwie nicht zusammenzupassen scheinen. Es ist aber möglich, diesen Widerspruch mit Hilfe des Modells aufzulösen. Betrachten wir dazu Bild 15, das bis auf r_K maßstabsgerecht dargestellt ist.

Wir vermuten, daß sich die Front des metrischen Wellenfelds geradlinig mit der maximalen Geschwindigkeit 0,85166135c ausbreitet. Im Bild 15 entspricht das dem Vektor ① also dem Propagation share.

Bild 15 Expansionsgeschwindigkeit und Weltradius im Modell

Der dadurch verursachte Anteil r_M am Weltradius wäre dann 0,85166135cT. Im Bild sind allerdings andere Werte angegeben, warum, werden wir noch sehen. Wie wir weiterhin festgestellt haben, expandiert der konstante Wellenzahlvektor r_K , der bis nahe R/2 entgegengesetzt zur eingehenden zeitartigen Weltlinie r_T verläuft, mit 0,75 c (Bogenlänge 0,75 cT), allerdings im Winkel α dazu, so daß wir hier geometrisch addieren müssen. Zusätzlich ist der Teilvektor P gekrümmt. Gesucht ist der raumartige Vektor r_R (Anteil Expansion O). Wir begradigen zunächst den Teilvektor P, indem wir ihn auf D aufbiegen. Dann projizieren wir ihn auf r_R , es gilt $r_R = -r_K \cos\varphi$ mit dem Winkel $\varphi = \arg \underline{c} = \alpha - \pi/2 = 48,6231^\circ$ der metrischen Wel-lenfunktion. Für Q = 0,8652911138 mit $\alpha = 2,419430697 \triangleq 138,6231678^\circ$ erhalten wir:

$$c = \sqrt{c_{\rm M}^2 + c_{\rm R}^2} = \sqrt{c_{\rm M}^2 + c_{\rm K}^2 \cos^2 \alpha} = c\sqrt{0.85166^2 + 0.75^2 \cos^2 2.41943}$$
(92)

c =
$$c\sqrt{0.85166^2 + 0.562784^2}$$
 = 1.02081c $\Delta = +2.08 \cdot 10^{-2}$ (93)

Dieses Ergebnis ist nicht besonders genau, da Werte für β , φ und c_M verwendet wurden, die nicht zu Q=1 passen. Wir wollen sehen, ob wir ein genaueres Ergebnis bekommen können. Wenn man sich Bild 15 genauer anschaut, so sieht man, daß r_K gebogen ist und selbst in diesem Zustand wesentlich über r_R hinausragt. Wenn wir also eine korrekte Beziehung haben wollen, müssen wir ihn gegebenenfalls mit einem Korrekturfaktor belegen. Da wäre einerseits das Verhältnis RS=r_K /r_N, das wir berechnen können. Andererseits gibt es im 3.3.2.3. von [10] einen ähnlichen Fall beim klassischen Elektronenradius, wo wir einen Korrekturfaktor ζ =1,01619033 definiert haben. Da ich es ganz genau wissen wollte, habe ich eine Reihe von Möglichkeiten durchgerechnet, aber weder der Korrekturfaktor ζ , als auch RS=r_K/r_N erwiesen sich als besonders hilfreich.

Es gibt aber eine Version, die sogar ohne Korrekturfaktor ein exaktes Ergebnis liefert. Das ist *der* Fall, bei dem der Realteil der Wellenfunktion \underline{c}_M (27) einen Nulldurchgang (Phasensprung) hat. Da es die einfachste Variante ist, ist es wohl auch die richtige und wird von mir priorisiert. Mehr dazu in [10]. Hier die genauen Parameter für diese Variante:

$$\begin{array}{ll} Q = 0.95013820167858442645 \\ \alpha = 134,86993657768931460^{\circ} \\ \end{array} \begin{array}{l} c_{M} = 0.8485439825230016c \\ \beta = 31.94634370109298^{\circ} \\ \end{array} \begin{array}{l} c_{R} = 0.529124852680352c \\ \varphi = 44,8699365776893146^{\circ} \\ \end{array} \begin{array}{l} c_{K} = 0.75c \\ RS = 1.02469672804290424 \\ \end{array} \end{array}$$

Das Fazit ist, das Universum expandiert hinter dem Partikelhorizont bei Q=0.9501382. Das liegt zwischen dem Punkt mit der maximalen Ausbreitungsgeschwindigkeit und Q=1. Es erinnert an einen Surfer, der ja auch nicht auf dem Wellenkamm, sondern immer etwas daneben entlangfährt. Damit sind die Widersprüche der unterschiedlichen Weltradien und

Expansionsgeschwindigkeiten geklärt. Dem Namen nach handelt sich um eine Art LEHU (Lightspeed Expanding Hyperspherical Universe) ähnlich [11] aber ohne Standardmodell und mit vollständig anderen Grundlagen.

Weitere Informationen über den zeitartigen Vektor r_T finden Sie im Abschnitt 5. Die hier gewonnenen Erkenntnisse haben einen wesentlichen Einfluß auf die Berechnung der Entropie der Metrik.

Bild 16 Expansionsgeschwindigkeit und Weltradius ohne Korrekturfaktor

3.2. Energie und Entropie

3.2.1. Entropie

Wir möchten nun das einzelne MLE und unser Modell vom energetischen Standpunkt aus betrachten. Da für den Thermodynamiker die Entropie weit wichtiger als die Energie ist, wollen wir dies berücksichtigen und zuerst die Entropie untersuchen. Diese wollen wir künftig mit S bezeichnen. Um Verwechslungen mit dem POYNTING-Vektor zu vermeiden, werden wir diesen daher immer fett, als Vektor (S) darstellen. Wenn wir S schreiben, meinen wir immer die Entropie und mit S immer den POYNTING-Vektor.

Rein statistisch gesehen ist die Entropie eines Systems definiert gemäß (95), wobei k die BOLTZMANN-Konstante und N die Zahl der möglichen inneren Konfigurationen ist.

$$S = k \ln N \tag{95}$$

Bei einem einzelnen MLE (N=1) wäre die Entropie dann gleich Null. Dies ist natürlich falsch, da die Statistik eine minimale Anzahl von N erfordert, um überhaupt angewandt werden zu können. Bei N=1 kann das Ergebnis mathematisch gesehen jeden beliebigen Wert annehmen, ohne gegen die »Statistik« zu verstoßen. Wir wollen daher versuchen, ob es nicht möglich ist, eine andere Möglichkeit zu finden, die Entropie dieses einzelnen MLE zu bestimmen.

Genau betrachtet handelt es sich bei dem MLE um unseren Kugelkondensator, der sich in seinem eigenen Magnetfeld bewegt. Dieser hat die Masse m_0 (2). Was sich im Innern dieses Kondensators abspielt, wissen wir nicht. Er verhält sich im Prinzip wie ein (primordiales) schwarzes Loch. Laut [7] ist der SCHWARZSCHILD-Radius definiert als:

$$r_{s} = \frac{2mG}{c^{2}}$$
(96)

Setzen wir hier nun m₀ (2) für m ein, so erhalten wir $r_s=2r_0$, was unsere obige Annahme untermauert. Die Oberfläche dieses schwarzen Lochs ergibt sich damit zu A=4 πr_0^2 . Interessant ist, daß sich der Ausdruck für den SCHWARZSCHILD-Radius auch ohne Zuhilfenahme der SRT bzw. ART herleiten läßt. Da die SRT und die ART nach diesem Modell durch das metrische Grundgitter nur emuliert wird, müssen solcherlei Beziehungen grundlegende Eigenschaften des Gitters selbst sein. Sie gelten dann sowohl mikroskopisch als auch makroskopisch. In [8] S.211ff wird eine Methode dargestellt, die Entropie eines schwarzen Loches zu bestimmen. Sie beruht auf quantenphysikalischen Überlegungen, was gut zu unserem MLE paßt. Der Autor geht von der KERR-NEWMAN-Lösung der EINSTEINschen Vakuumgleichungen $R_{ik}=0$ mit stationär rotierender, elektrisch geladener Quelle und äußerem elektromagnetischen Feld aus. Siehe (97) mit R \equiv r²-2mr+a² und $\rho^2\equiv$ r²+a²cos² ϑ , M=mGc⁻² und a=Lm⁻¹c⁻¹; m ist die Masse und L der Drehimpuls.

$$ds^{2} = -\frac{R}{\rho^{2}} \Big[c \, dt - a \sin^{2} \vartheta \, d\phi \Big]^{2} + \frac{\rho^{2}}{R} dr^{2} + \rho^{2} d\vartheta^{2} + \frac{\sin^{2} \vartheta}{\rho^{2}} \Big[(r^{2} + a^{2}) \, d\phi - a \, dt \Big]^{2}$$
(97)

Dies wollen wir hier nicht weiter vertiefen. Der Autor kommt schließlich zu folgenden Aussagen für den Radius r_{\pm} des schwarzen Loches und dessen Oberfläche A:

$$r_{\pm} = M \pm \sqrt{M^2 - a^2}$$
 $A = 8\pi \left[M^2 \pm M \sqrt{M^2 - a^2} \right]$ (98)

$$\mathbf{r}_{\pm} = \sqrt{\frac{2t}{\mu_{0}\kappa_{0}}} \pm \sqrt{\frac{2t}{\mu_{0}\kappa_{0}} - \left(\frac{2t}{\mu_{0}\kappa_{0}}\right)_{\mathbf{L}=\hbar}} \qquad \mathbf{r}_{\pm} = \mathbf{r}_{0} \pm \sqrt{\mathbf{r}_{0}^{2} - (\mathbf{r}_{0}^{2})_{\mathbf{L}=\hbar}}$$
(99)

Das Ergebnis ist davon abhängig, ob das MLE über einen Drehimpuls verfügt oder nicht. Mit $m=m_0$ unter Anwendung von (2), (4) und (868 [10]) erhalten wir folgende Werte für den SCHWARZSCHILD-Radius: Ohne Drehimpuls (L=0) für r_=0, r_+= r_s=2r_0 sowie A=4\pi r_0^2. Mit Drehimpuls L= \hbar , hier gilt die Klammer, erhalten wir zwei identische Lösungen $r_{\pm}=r_0$. Die Oberfläche ergibt sich zu A= πr_0^2 .

Weiterhin bezieht sich der Autor dann auf eine Arbeit von BEKENSTEIN (1973) derzufolge die Entropie eines schwarzen Loches proportional zu seiner Oberfläche ist. Der genaue Proportionalitätsfaktor wurde von HAWKING (1974) quantenphysikalisch bestimmt zu:

$$S_{b} = -\frac{kc^{3}}{4G\hbar}A = -k\frac{A}{4r_{0}^{2}} = -k\frac{A}{(4)r_{s}^{2}}$$
 (100)

k ist die BOLTZMANN-Konstante, die Klammer gilt wieder für $L=\hbar$. Interessanterweise enthält dieser Ausdruck die PLANCKsche Elementarlänge und sogar mit \hbar nach unserer Definition anstelle von h. Setzen wir jetzt wieder die Werte ein, so erhalten wir:

$$S_b = 4\pi k$$
 für L=0 bzw. $S_b = \pi k$ für L= \hbar (101)

Wir wollen jetzt untersuchen, ob das MLE tatsächlich über einen Drehimpuls verfügt. Ausgehend von unserem im Abschnitt 3.2. von [10] erarbeiteten Modell (Effektivwert) gilt allgemein für den Drehimpuls L:

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{m} \cdot (\mathbf{r} \times \mathbf{v}) \tag{102}$$

Mit $m = m_0$, $r = r_0$, v = c, $c \perp r$ erhalten wir nach Einsetzen von (2) für den Betrag L:

$$L = m_0 cr_0 = \hbar \qquad \text{und wegen} \qquad c = \omega_0 r_0 \qquad (103)$$

$$W_0 = m_0 c^2 = \hbar \omega_0 \tag{104}$$

Ausdruck (104) ist offenbar richtig. Damit haben wir eindeutig nachgewiesen, daß das MLE über einen Drehimpuls verfügt. Dieser ist gleich dem PLANCKschen Wirkungsquantum, d.h. wie bei einem Spin–2–Teilchen oder umgekehrt:

Das PLANCKsche Wirkungsquantum ist definiert durch den Effektivwert des Drehimpulses des MLE. Der Eigendrehimpuls (Spin) ist identisch mit dem Bahndrehimpuls. Die letzte Aussage ist dadurch begründet, daß es sich hier um Effektivwert handelt. In Wirklichkeit sind r_0 , m_0 und der Bahn- und Eigendrehimpuls zeitlich veränderliche fastperiodische Funktionen. Das PLANCKsche Wirkungsquantum ist dann die Summe aus Bahn- und Eigendrehimpuls. Diese ist gleich \hbar , wobei einmal der Bahn-, das andere mal der Eigendrehimpuls gleich Null ist. Ein solcher Zusammenhang wird auch als Dualismus bezeichnet. Natürlich läßt sich das PLANCKsche Wirkungsquantum nicht nur als Drehimpuls definieren. Eine andere Möglichkeit ist z.B. $q_0\phi_0$. Aufgrund der GIBBSschen Fundamentalgleichung ist die Temperatur des MLE und damit des gesamten metrischen Wellenfelds gleich Null [8].

Zurück zur Entropie. Man sieht, daß die BOLTZMANN-Konstante eine grundlegende Eigenschaft unseres metrischen Grundgitters darstellt, so grundlegend wie ε_0 , μ_0 und κ_0 . Hier werden einige sagen, dies könne nicht sein, da k eine rein statistische Konstante ist. Auf diesen Einwurf kann man nur antworten: "Die BOLTZMANN-Konstante ist deswegen so grundlegend, *weil* sie statistisch ist". Auch π läßt sich statistisch definieren.

3.2.2. Topologie

Wir haben die Entropie eines einzelnen MLE bestimmt. Wie sieht es aber mit einem größeren Abschnitt aus? Da die Einzelenentropie ein Vielfaches der BOLTZMANN-Konstante ist, können wir mit den bereits bekannten statistischen Beziehungen (95) weiterrechnen. Hierbei ist die (absolut) maximale Anzahl der möglichen inneren Konfigurationen innerhalb eines Volumens mit dem Radius r gegeben durch die Anzahl der in diesem Volumen enthaltenen MLE's. Bei einem kubisch-flächenzentrierten Gitter ist die Anzahl der Elemente innerhalb eines Würfels mit der Kantenlänge d folgendermaßen definiert:

$$N = 4 \left(\frac{d}{\rho}\right)^3 = 4 \left(\frac{d}{r_0}\right)^3$$
(105)

Hierbei ist ρ die Gitterkonstante. Der fc-Würfel enthält ja insgesamt 4 Elemente. Innerhalb einer Kugel mit dem Durchmesser d = Λr_0 und dem Volumen $\pi/6d^3$ befinden sich dann

$$N = \frac{2}{3}\pi \left(\frac{d}{\rho}\right)^3 = \frac{2}{3}\pi \left(\frac{\Lambda r_0}{r_0}\right)^3 = \frac{2}{3}\pi \Lambda^3$$
(106)

einzelne MLE's. Solange ρ nicht allzu groß ist, können wir für Λ Ausdruck (78), ansonsten (82) einsetzen:

$$N = \pi \tilde{Q}_0^3 \left(\left(1 + \frac{t}{\tilde{T}} \right)^{\frac{1}{4}} \operatorname{artanh} \left(\left(1 + \frac{t}{\tilde{T}} \right)^{-\frac{1}{4}} \left(\frac{2r}{\tilde{R}} \right)^{\frac{1}{3}} \right) - \left(\frac{2r}{\tilde{R}} \right)^{\frac{1}{3}} \right)^3 \quad \text{oder} \quad (107)$$

$$N = \pi \tilde{Q}_0^3 \left(t^{\frac{1}{4}} \operatorname{artanh} \left(t^{-\frac{1}{4}} (2K_1 r)^{\frac{1}{3}} \right) - (2K_1 r)^{\frac{1}{3}} \right)^3 \quad \text{mit } r = r/\widetilde{R} \text{ und } K_1 = 1$$
(108)

Dies ist die Anzahl Elemente innerhalb einer Kugel mit dem Radius r. Den Verlauf zeigt Bild 17 Kurve \mathbb{O} . Wenn wir den Ausdruck $\Lambda_1 = \frac{3}{2} Q_0 \ln Q_0$ in (106) einsetzen, erhalten wir auch ein Ergebnis für N₁. Hierbei gilt wieder t = 0. Das gesamte Universum enthielte dann insgesamt $N_1 = \frac{9}{4} \pi Q_0^3 \ln^3 Q_0 = 1,13203 \cdot 10^{190}$ Elemente. Aufgrund der Ausbreitung des metrischen Wellenfelds steigt auch dieser Wert kontinuierlich an (Bild 19), und zwar gemäß $N_1(T) = \frac{9}{4} \pi (\sqrt{bT})^3 \ln^3 \sqrt{bT}$ mit $b = 2\kappa_0/\epsilon_0$.

Für die Berechnung der Entropie S sind diese Werte aber wenig hilfreich. Bekanntermaßen handelt es sich bei S um einen statistischen Wert und (108) verstößt gegen eine grundsätzliche Regel der Statistik: *Jeder Wert darf nur einmal gezählt werden*. Die Beziehungen (96ff) gelten nämlich nur für eine »normale« 3D-Kugel.

Beim Universum müssen wir aber die besondere 4D-Topologie berücksichtigen. Ein Beobachter im Freien Fall glaubt nur, daß er sich im räumlichen Mittelpunkt des Universums befindet. In Wirklichkeit befindet er sich an einer zeitlichen Singularität, dem Ereignishorizont $\{0,0,0,T\}$. Er kann diesen nicht überwinden, denn dahinter befindet sich die Zukunft. Allerdings handelt es sich dabei nicht um einen Punkt, sondern um eine Hyperfläche. Alle anderen Beobachter an ihren eigenen 3D-Standpunkten befinden sich auf dieser Fläche verstreut. Da T stetig fortschreitet, erhöht sich der zeitliche Radius und die Beobachter »surfen« quasi auf der »Zeitwelle«. Will ein Beobachter den anderen besuchen, muß er beschleunigen. Dadurch verlangsamt sich für ihn der Zeitablauf. Er reist aber nicht zurück in die Vergangenheit, sondern wird nur vom ungebremsten Zeitablauf wabgehängt« und befindet sich plötzlich im Innern der Kugel. Bei v=c bleibt die Zeit für ihn stehen. Er befindet sich jetzt am tatsächlichen räumlichen Mittelpunkt, aber nur, weil sich ihm dieser angenähert hat.

Das heißt also, der räumliche 4D-Mittelpunkt befindet sich nicht beim Beobachter, sondern im Abstand cT bei den Koordinaten {cT,cT,cT,0}. Korrekter wäre hier t_1 anstelle der Null. Beim räumlichen Mittelpunkt handelt es sich auch um eine Hyperfläche, eine räumliche Singularität, den Partikelhorizont. Auch diesen kann man nicht überschreiten. Wie der zeitliche Radius expandiert dieser stetig. Es handelt sich um ein geschlossenes System.

Falls zwei Beobachter ihre Positionen wechseln könnten, würden sie an beiden Orten die selben Bedingungen vorfinden. Überall im Universum gelten ja die gleichen physikalischen Gesetze. Das interessante daran ist nun, daß man in einem bestimmten Abstand r andere Bedingungen *beobachtet*.

Das liegt an der endlichen Lichtgeschwindigkeit. Das Universum ist *nicht* in sich *kurzgeschlossen*, jeder Punkt *nicht* mit jedem instantan verbunden (Ausnahme Quantenverschränkung). Für alle Beobachter besteht das Universum daher aus den lokalen Gegebenheiten plus den aus alten Zuständen resultier-enden, um $t \ge r/c$ verzögerten Wir-kungen und Signalen. Je weiter weg, um so älter der Zustand, der die Wirkung verursacht hat.

Und genau das ist der Grund, warum wir (108) nicht nutzen können. Wenn wir uns dem Abstand cT nähern, steigt zwar die MLE-Dichte innerhalb Λ enorm an. Gleichzeitig hatte das

Universum in diesem Abstand, »damals« aber einen wesentlich geringeren Weltradius, eine geringere Oberfläche. Das bedeutet, der Wirkungsquerschnitt muß kleiner sein, als bei Lösung ^①. Je größer der Abstand r, umso kleiner die Oberfläche A, genau umgekehrt, wie bei einer »normalen« Kugel. Auch besteht z.B. die Kugelschale im Abstand R/2–r₁ eigentlich nur noch aus einem Element. Ändert sich dessen Zustand, wirkt sich das gleichzeitig aus allen Richtungen kommend auf alle Vektoren aus. Gezählt werden darf aber nur eines.

Dies ist zwar gut für das MACHsche Prinzip, die räumliche Dämpfung wird aufgehoben, die stärkste Wirkung kommt vom »Rand«, nicht aber für die Statistik. Wir müssen daher eine Funktion finden, die diese besonderen Verhältnisse berücksichtigt. Dabei sollte die Abhängigkeit von der Zeit *t* nicht verlorengehen. Da ich kein Topologiespezialist bin, habe ich versucht, eine solche Funktion zu finden, zumindest annähernd durch Einführung eines Korrekturfaktors K; das Ganze durch Probieren. Es handelt sich hier also nicht um eine korrekte Herleitung. Eine mögliche Lösung sollte bei kleinem r wie bei einer 3D-Kugel ähnlich wie Lösung ① verlaufen. In der Nähe von R/2 sollte sie dagegen abflachen. Auch sollte sie die Grenze R/2 nicht überschreiten.

In Bild 18 sind neben ① zwei weitere mögliche Lösungen dargestellt für die Korrektur einer einzelnen Koordinate. Bei Lösung ② (109) bin ich davon ausgegangen, daß das Volumen der inversen Kugel mit *r* abnimmt. Lösung ③ (110) berücksichtigt zusätzlich die Krümmung in der Nähe von R/2 unter Beachtung des Winkels α .

$$N = \pi \tilde{Q}_0^3 \left(t^{\frac{1}{4}} \operatorname{artanh} \left(t^{-\frac{1}{4}} (2K_2 r)^{\frac{1}{3}} \right) - (2K_2 r)^{\frac{1}{3}} \right)^3 \text{ mit } K_2 = \sqrt{1 - r^2}$$
(109)

$$N = \pi \tilde{Q}_0^3 \left(t^{\frac{1}{4}} \operatorname{artanh} \left(t^{-\frac{1}{4}} (2K_3 r)^{\frac{1}{3}} \right) - (2K_3 r)^{\frac{1}{3}} \right)^3 \text{ mit } K_3 = r \cos \alpha + \sqrt{1 - r^2 \sin^2 \alpha}$$
(110)

Der Winkel $\alpha(r)$ berechnet sich folgendermaßen (*Gilt nur im Zusammenhang mit (110)!!!*)

$$\alpha = \frac{\pi}{4} - \arg\left(-j4r\left(1 - \left(\frac{H_2^{(1)}(r^{-1}/2)}{H_0^{(1)}(r^{-1}/2)}\right)^2\right)^{-\frac{1}{2}}\right)$$
(111)

Es ist eben nur eine Faustformel. Der Verlauf beider Funktionen ist in Bild 18 dargestellt. Man sieht, Funktion (109) ist weniger geeignet, da sie die R/2-Grenze überschreitet bei $N=2/3\pi(1,1955\cdot Q_0)^3=2/3\pi(2,3909\cdot \Lambda_0)^3$ - ein krummer Wert. Es gibt auch keine Abflachung, sondern eine Polstelle außerhalb R/2.

Funktion (110) hingegen erfüllt alle Anforderungen, sie verläuft wie bei einer 3D-Kugel, wie Lösung \mathbb{O} bei kleinem r. In der direkten Nähe von R/2 gibt es eine Abflachung. Zwar ist die Funktion auch über R/2 hinaus definiert, allerdings ohne Polstelle, und der Wert geht bei 2cT wieder auf Null zurück. Das bedeutet, es handelt sich um einen zeitartigen Vektor und dieser verbleibt innerhalb des Weltradius. Das ist leicht zu verstehen. Wenn dieser den 4D-Mittelpunkt {cT,cT,cT,0} durcheilt oder nahe an ihm vorbeiläuft, nähert er sich dem Beobachter ja wieder an und N muß wieder sinken. Das Maximum liegt bei dem "magischen" Wert N₀=2/3 π (Q₀/2)³=2/3 π A₀³=1,51894·10¹⁸². Daß das Maximum bereits vor R/2 erreicht wird, liegt an der Krümmung. Wirksam ist hier die Bogenlänge.

Übrigens kommen alle zeitartigen Vektoren der Länge 2cT, egal ob vollständig oder unterbrochen (virtuell), von einem Punkt mit den Koordinaten $\{r_1/2, r_1/2, r_1/2, t_1/4\}$. Das ist hinter dem Partikelhorizont, vor dem Phasensprung bei Q=1, aus einer Zeit, an dem Ereignisund Partikelhorizont noch übereinander lagen (Q=1/2). Das tatsächliche Weltalter ist T, die Länge 2cT ist das Ergebnis von Krümmung, Ausbreitung und Expansion (siehe Bild 24).

Daher glaube ich, daß (110) die tatsächlichen Verhältnisse am besten widerspiegelt. N_0 wäre dann identisch mit der Anzahl der möglichen Mikrozustände des Universums insgesamt und Kandidat für die Berechnung der Entropie S₀. Die zeitliche Abhängigkeit von N nach (110) für verschiedene konstante Abstände zeigt Bild 19. Der Verlauf von N₀(T) und N₁(T)

im Vergleich ist rechts oben dargestellt, wobei der Maßstab von N_1 um 10^8 verschoben wurde, da die Werte zu weit auseinanderliegen.

Die Zeitfunktionen sind natürlich erst ab N_0 definiert, darüber sind sie abgeschnitten. Lösung ① verläuft ähnlich, nur liegt N_1 um Größenordnungen darüber, so daß der Schnitt viel höher erfolgt, in einem Bereich, der fast senkrecht verläuft und vom Plotprogramm nicht mehr dargestellt werden kann. Es gibt noch einen weiteren Unterschied. Entfernungen >R/2 werden von Lösung ① und ② in die Zukunft verschoben, ähnlich wie die gestrichelte blaue Linie (nicht maßstabsgerecht). Dies ist korrekt. Dagegen zeigt Lösung ③ diese so, als handele es sich um eine Entfernung <R/2, was auch korrekt ist. Natürlich existiert auch bei Lösung ③ eine solche Linie (Beispiel 0,8R'), nur wird diese von Ausdruck (110) nicht emuliert. Dies ist ebenfalls korrekt, da es im Beispielbereich 0,5…0,8R eine nahezu unendliche Anzahl Lösungen gibt, je nach R'.

nach Lösung ③

3.2.3. Entropie

Kommen wir nun zur Entropie. Allgemein gilt hier (95). Wie wir aber weiter oben festgestellt haben, berechnet sich die Entropie des MLE ähnlich der eines schwarzen Lochs gemäß (101) rechts (S_b). Wir müssen Ausdruck (95) daher mit π multiplizieren. Dies gilt aber nur für das metrische Wellenfeld und nicht für die CMBR. Alle anderen Probleme lassen sich ja mit dem klassischen Ansatz und (95) berechnen. Im Zweifel dividieren Sie einfach die Ergebnisse durch π .

Den Verlauf der Entropie S in Abhängigkeit vom Radius zeigt Bild 20. Beginnend mit dem Wert $\pi k = 4,337465 \cdot 10^{-23} \text{JK}^{-1}$ bei $r=r_0$ steigt die Entropie 0 mit größer werdendem r stetig an, durchläuft eine Phase geringeren Anstiegs und geht mit $r \rightarrow cT$ steil gegen unendlich, erreicht diesen Wert aber nicht, da die Anzahl Linienelemente bis zum Rand endlich ist $S_1(\Lambda_1)$.

Aufgrund der Polstelle ist Lösung ⁽²⁾ weniger brauchbar. Für Lösung ⁽¹⁾ erhalten wir einen Wert von $S_1 = 3\pi k (\frac{2}{3} + \ln Q_0 + \ln \ln Q_0) \approx 1375 k = 1,89832 \cdot 10^{-20} \text{ J K}^{-1}$. Für Lösung ⁽³⁾ gilt die Entropie S₀. Sie ist folgendermaßen definiert:

$$S_0 = \pi k \ln\left(\frac{2}{3}\pi\Lambda_0^3\right) = \pi k \ln\left(\frac{1}{12}\pi\tilde{Q}_0^3\right) = 1,81950\cdot10^{-20} \,\mathrm{JK}^{-1} \tag{112}$$

Die zeitliche Abhängigkeit von S₀ für den Fall r=const ist im Bild 21 dargestellt. Interessant ist, daß die Werte für Bereiche mit konstanten Abmessungen sinken. Dies könnte der »Motor« für die Entwicklung vom niederen zum höheren sein. Im Fall konstanter Wellenzahlvektor bleibt die Entropie S(r \neq R/2) über den gesamten Definitionsbereich konstant. Sie berechnet sich nach (113) links. Für S₀ gilt der rechte Ausdruck:

$$S = \pi k \ln N$$
 $S_0 = \tilde{S}_0 + 6\pi k \ln t = \tilde{S}_0 + 3\pi k \ln \left(1 + \frac{t}{\tilde{T}}\right)$ (113)

Für S₁ substituiert man am besten Q₀ mit $\tilde{Q}_0 t^2$ im Ausdruck über (112). Auch die Entropie bei konstantem Wellenzahlvektor ist nicht über alle Zeiten für alle Radien definiert. Gewisse Abstände existieren erst, wenn der Radius des expandierenden Universums diese Länge erreicht hat. Im Einstieg hat S dann genau den Wert S₀ bzw. S₁. Es gilt: Je später der Einstieg, umso höher die Startentropie. Es werden also auch hier wieder Kurven abgeschnitten. Lösung 0 sieht ähnlich aus wie im Bild 21. Die Kurve S₁ verläuft wieder weit über dem Plot. Startabstände > R/2 werden ebenfalls in die Zukunft verschoben, bei Lösung 3 in den Bereich < R/2, genau wie bei N₁ und N₀.

Die Grenzwerte der Zeitfunktionen S_0 und S_1 liegen bei ∞ , wie man unter Anwendung der Grenzwertsätze leicht feststellen kann. In Bezug auf die Zukunft des Universums kann man sagen, daß wir keinen Wärmetod befürchten müssen. Ein thermodynamisches Gleichgewicht wird nicht eintreten. Grund dafür ist sowohl die Ausbreitung des metrischen Wellenfelds, als auch die Expansion des Universums. Glück gehabt.

4. Horizonte im Universum

4.1. Partikelhorizont

Wie im Abschnitt 3.2.1. festgestellt, verfügt das MLE über einen inneren SCHWARZSCHILD-Radius mit dem Wert $r_{\pm}=r_0$. Dieser hat die Eigenschaften eines Partikelhorizonts. Aufgrund der Beziehungen $R=r_0Q_0$ und $r_1=r_0/Q_0$ könnte es möglich sein, daß es diesen Partikelhorizont auch im makroskopischen Maßstab gibt, für den Kosmos als ganzes. Der HUBBLE-Parameter $H_0 = \omega_0 Q_0^{-1}$ hat ja den Charakter einer Kreisfrequenz, genau wie $\omega_0 = \omega_1 Q_0^{-1}$. Daher ist es wahrscheinlich, daß auch das gesamte Universum über einen Drehimpuls der Größe $\hbar_1=\hbar Q_0$ verfügt. Das MLE mit seinem Spin 2 läßt vermuten, daß das Universum ebenfalls einen Spin der Größe 2 hat. Dies würde viele Phänomene erklären. Wir werden daher versuchen, ob sich mit diesen Informationen so ein hypothetischer SCHWARZSCHILD-Radius R $_{\pm}$ berechnen läßt ($L=\hbar_1=\hbar Q_0$).

Wir starten, indem wir (99) mit Q_0 multiplizieren und den Klammerausdruck auf die Definition $a=\hbar m^{-1}c^{-1}$ zurücksetzen. Den Wert M₁ bestimmen wir durch den Ansatz rechts und (868 [10]):

$$R_{\pm} = Q_0 r_{\pm} = R \pm \sqrt{R^2 - \left(\frac{Q_0 \hbar_1}{2M_1 c}\right)^2} \quad \text{mit} \quad \frac{M_1 G}{c^2} = 2ct \quad | \quad M_1 = m_0 Q_0 = \mu_0 \kappa_0 \hbar \quad (114)$$

$$R_{\pm} = R \pm \sqrt{R^2 - Q_0^2 r_0^2} = R \pm \sqrt{R^2 - R^2} = R$$
(115)

Als Ergebnis erhalten wir wieder eine Doppellösung mit $R_{\pm}=R$, genau wie beim MLE aber im größeren Maßstab. Das Universum ist anscheinend innen größer als außen, was an der Krümmung der zeitartigen Vektoren liegen könnte. Besonders interessant ist der Wert $M_1=1.81525\cdot10^{53}$ kg, bei $H_0=68,6241$ kms⁻¹Mpc⁻¹. Das ist die Gesamtmasse des metrischen Wellenfelds und identisch mit der MACHschen Gegenmasse. Dividiert durch das Volumen $V_1=\frac{4}{3}\pi R^3$ erhält man für die Dichte einen Wert von 1,76907 $\cdot 10^{-29}$ kg dm⁻³. Dieser ist exakt um den Faktor 3/2 größer als der im Abschnitt 7.2.7.2. von [10] ermittelte Wert $G_{11}(R/2)$. Wir leben also tatsächlich in einem Schwarzen Loch, wobei wir fast 100% davon nutzen können. Oder gibt es doch ein »Außerhalb« und das Universum ist nichts anderes als ein gigantisches Linienelement?

4.2. Ereignishorizont

Das ist der Punkt oder besser die Hyperfläche, auf der sich der Beopbachter (wir) befindet. In Wirklichkeit handelt es sich nicht um einen Punkt im Raum, sondern in der Zeit: *Die Gegenwart*. Das bedeutet, daß dieser nicht überwunden werden kann, denn dahinter befindet sich: *Die Zukunft*. Weiterhin müssen wir anmerken, daß wir für die bisherigen Betrachtungen immer den Expansionsmittelpunkt als Basis des Koordinatensystems angenommen haben, an dem eigentlich keine Länge definiert ist. Daraus ergeben sich für die beiden Punkte weitere wesentliche Eigenschaften.

Für die räumliche Singularität (Expansionsmittelpunkt) gilt: Jede Länge, die man von diesem Punkt aus mißt, hat immer die Größe R/2. Jede Zeit, die man an diesem Punkt mißt, hat immer den Betrag T, jede Frequenz 2H. Es handelt sich um einen Ereignishorizont. Er ist eine Senke des elektromagnetischen Feldes. Für die Näherung gilt $r=\infty$, $t=\infty$.

Für die zeitliche Singularität (Wellenfront) gilt: Jede Länge, die man von diesem Punkt aus mißt, hat immer die Größe $r_1/2$. Jede Zeit, die man an diesem Punkt mißt, hat immer den Betrag t_1 , jede Frequenz $2\omega_1$. Es handelt sich um einen Partikelhorizont. Er ist eine Quelle des elektromagnetischen Feldes. Für die Näherung gilt r=0, t=0.

Ein Partikelhorizont innen ist außen ein Ereignishorizont und umgekehrt. Hierbei sieht es ähnlich aus wie beim Magnet- und elektrischen Feld. Egal an welchem Pol man sich befindet, glaubt man immer, daß man sich im Mittelpunkt befindet, da alle Feldlinien immer aus allen

Bild 22 Pole und Feldlinien im elektrischen Feld [12]

Bild 23 Horizonte und Feldlinien im Gravitationsfeld

Gravitational

Particle horizon centre (4D)

interaction

Richtungen rechtwinklig auf den Beobachter zulaufen (Bild 23). Nur daß dieser den Partikelhorizont nicht wirklich erreichen kann. Ob die beiden Pole im Hintergrund miteinander verbunden sind wie beim Hufeisenmagneten, kann ich nicht sagen. Auf jeden Fall gibt es mehr als nur einen Ereignishorizont, einmal für das Universum als ganzes, und dann eine Unmenge bei den vielen schwarzen Löchern.

5. Entfernungsvektoren

Durch die in jüngster Zeit erfolgten Fortschritte auf technischem Gebiet gelingt es den Astronomen, immer weiter ins Universum zu schauen und damit auch immer weiter zurück in der Zeit. Je weiter man aber schaut, umso mehr macht sich die Struktur des Universums bemerkbar und muß bei der Interpretation der Meßergebnisse Berücksichtigung finden, ansonsten wäre das viele Geld zum Fenster herausgeworfen.

Bevor wir aber weiter in die Tiefe gehen, betrachten wir doch einmal eine so einfache Größe, wie die Entfernung bzw. den Abstand zu einem stellaren Objekt. Der Astronom sitzt also vor seinem »Fernrohr«, betrachtet dieses Objekt und versucht mit unterschiedlichen Methoden zu bestimmen, wie weit dieses von ihm entfernt ist. Denn bevor man den HUBBLE-Parameter ermitteln kann, muß man natürlich die Entfernung bzw. den Abstand zu dem Objekt bestimmen. Und hier tritt schon das erste Problem auf: Was verstehen wir eigentlich unter Entfernung bzw. Abstand? Was wollen wir wirklich bestimmen?

Im Nahbereich läßt sich diese Frage relativ einfach beantworten: Der Abstand ist gleich der Entfernung und das Licht vom Objekt hat diese zurückgelegt, wenn es beim Beobachter angekommen ist. Wenn wir aber den Nahbereich verlassen und weiter entfernte Objekte betrachten, ist dies nicht mehr so. Zuerst einmal betrachten wir das Objekt mittels Photonen, die sich vom Objekt in unsere Richtung bewegt haben. Gegenüber der Metrik handelt es sich damit um einen (eingehenden) zeitartigen Vektor (Bild 24 und 22 r_T rot dargestellt), eine negative Entfernung. Wir bezeichnen sie als *zeitartige Entfernung*. Sie korrespondiert mit dem konstanten Wellenzahlvektor der Metrik. Hierbei beobachten wir aber eigentlich den Nullvektor und nicht den zeitartigen Vektor. Bei verschwindender Krümmung fallen beide allerdings zusammen.

Das Objekt das wir heute beobachten, befindet sich aber bereits an einer ganz anderen Stelle, als unsere Beobachtungsdaten weismachen wollen, da diese ja schon total »veraltet«

sind, wenn sie bei uns ankommen. Ein Vorteil dieses Modells ist nun, das dies nicht der Fall ist. Auch wenn die Signale schon sehr alt sind, befindet sich das Objekt in Bezug auf das R⁴-Koordinatensystem des Beobachters tatsächlich an der Stelle, wo er es beobachtet. Die Länge des Vektors vom Objekt zum Beobachter kann von diesem jedoch nicht beeinflußt werden, da er eben nur Beobachter ist.

Hat der Beobachter jedoch die Absicht, das Objekt zu besuchen, das wäre ein (ausgehender) raumartiger Vektor, eine positive Entfernung/Abstand, kann dies nicht auf demselben Weg geschehen, den der Lichtstrahl zurückgelegt hat, denn dazu müßte sich der Beobachter mit c bewegen und jeder Nullvektor ist einmalig. Für ihn gilt jetzt eine andere Entfernung/Abstand.

Zum Unterschied zwischen *Entfernung* und *Abstand*: Diese sind nur im Nahbereich (ungefähr) gleich. Bei größeren Entfernungen bewegen sich Objekte im freien Fall nach der Abstandsfunktion bei konstantem Wellenzahlvektor voneinander fort. Das wäre der eigentliche *Abstand* (r_K blau dargestellt). Damit ergibt sich auch die Definition der *raumartigen Entfernung* (r_R grün dargestellt). Diese ist der kürzeste Weg zwischen dem Beobachter oder besser dem Reisenden und dem Objekt. Sie ist eine gedachte Linie und fällt zusammen mit der Koordinate r des Koordinatensystems. Lokal ist sie gleich dem raumartigen Vektor der Metrik.

- Der Nullvektor r_N ist der Weg, den ein Lichtstrahl zurücklegt, wobei die Geschwindigkeit gegenüber dem Subraum konstant c beträgt. Im lokalen Bereich ist er gleich der geometrischen Summe aus raumartigem und zeitartigem Vektor.
- Die zeitartige Entfernung r_T ist der Weg, den ein Lichtstrahl, ausgehend von der Quelle, zurückgelegt hat, wenn er beim Beobachter angekommen ist. Im lokalen Bereich entspricht sie dem zeitartigen Vektor der Metrik. Beobachtet wird jedoch eigentlich der Nullvektor r_N.
- Der Abstand r_K ist die Entfernung zwischen zwei Objekten im freien Fall. Der Vektor verläuft entlang der Feldlinien des Gravitationsfelds und ändert sich gemäß der Abstandsfunktion bei konstantem Wellenzahlvektor. Er korrespondiert mit dem Nullvektor r_N der Metrik.
- 4. Die raumartige Entfernung r_R ist der k
 ürzeste Vektor zwischen einem Reisenden und seinem Ziel. Es handelt sich um eine gedachte Linie. Sie ist identisch mit der Koordinate r des Koordinatensystems. Im lokalen Bereich entspricht sie dem raumartigen Vektor der Metrik. Will man entlang dieser Linie reisen, ist dauernde Navigation (Beschleunigung) erforderlich.

Auf diesem Weg kann das Ziel aber nicht im freien Fall erreicht werden, wie eine Analogie aus der Seefahrt nahelegt – der Unterschied zwischen Breitenkreis- und Großkreisentfernung. Wenn Start und Ziel auf gleicher Breite liegen und wenn dies nicht gerade der Äquator ist, ist die Großkreisentfernung immer kleiner als die Breitenkreisentfernung. Bei der Großkreisnavigation muß der Kapitän aber ständig den Kurs ändern, also beschleunigen, während er auf dem Breitenkreis theoretisch ohne Beschleunigung, also im freien Fall weiterfahren könnte, wenn der Wasserwiderstand gleich Null wäre. Der Reisende hat damit die Möglichkeit, die Entfernung zu beeinflussen und zwar mittels Navigation. Im Kasten zur besseren Übersicht noch einmal die Definitionen.

Kommen wir aber noch einmal auf die *zeitartige Entfernung* zu sprechen. Dies ist die Entfernung, die der Astronom bestimmt, wenn er die eingehenden Licht- bzw. Radiosignale (Nullvektoren) analysiert. Sie unterliegen einer Rotverschiebung gemäß der Ausbreitungsfunktion aus Abschnitt 4.3.5.4.3. bzw. 5.3.2. von [10]. Die *zeitartige Entfernung* ist beschränkt auf die maximale *zeitartige Entfernung*, die sich aus dem Gesamtweltalter 2T ergibt. Es gilt $r_{Tmax} = R = 2cT$.

Alle diese Vektoren kommen aus dem selben Punkt $\{r_1, r_1, r_1, 2t_1\}$ und enden auf allen Punkten der Hyperfläche $\{R, R, R, 2T\}$ gleichzeitig. Für einen Beobachter liegen beide räumlich übereinander. Der Punkt $\{r_1, r_1, r_1, 2t_1\}$ ist damit heute quasi über das gesamte Universum "verschmiert", das heißt, alle Punkte auf der Hyperfläche sind für Photonen über $\{r_1, r_1, r_1, 2t_1\}$ miteinander verbunden, da Photonen zeitlos sind, sogar instantan. Dies ist Ursache für Effekte wie Quantenverschränkung etc.

Im Verlaufe der Arbeit hatten wir auch festgestellt, daß die maximale *raumartige Entfernung* nur die Hälfte davon beträgt: $r_{Rmax}=R/2=cT$. Interessant wäre es, wenn wir in der Lage wären, o.g. Werte ineinander umzurechnen. Hierzu würde sich zuerst einmal Ausdruck (116) anbieten.

$$r_{\rm T} = -\frac{r_{\rm R}}{\sqrt{1 - \frac{4r_{\rm R}^2}{R^2}}} \qquad r_{\rm R} = -\frac{r_{\rm T}}{\sqrt{1 + \frac{4r_{\rm T}^2}{R^2}}} \tag{116}$$

Betrachtet man sich beide Ausdrücke genauer, so erkennt man, daß diese am »Rande« des Universums versagen. Der linke Ausdruck ergibt eine negative unendliche *zeitartige Entfernung* für R/2, der rechte Ausdruck eine *raumartige Entfernung* von 0,447214R=0,894427cT für –R/2. Eigentlich sollte sich aber ein Wert von 0,5R=cT ergeben. Da r_T im Laufe der Zeit zu seinem Ausgangspunkt zurückkehrt, müßte es außerdem eine zweite Lösung für den linken Ausdruck geben.

Beim zeitartigen Vektor ist folgendes zu beachten: Dieser kann sowohl ein eingehender (negative Entfernung), als auch ein ausgehender Vektor (positive Entfernung) sein. Ein Beobachter hat es immer mit einem eingehenden Vektor zu tun, dessen Länge auf –2cT beschränkt ist. Das Licht hat dann das gesamte Universum durchmessen und ist wieder an seinem Ausgangspunkt, einer raumartigen Singularität (Ereignishorizont) angekommen. Der am weitesten entfernte Ausgangspunkt eines eingehenden zeitartigen Vektors befindet sich im Anstand –cT. Die maximale Länge eines ausgehenden zeitartigen Vektors dagegen ist unbeschränkt, da er in die Zukunft verweist. Er unterliegt allerdings ebenfalls der parametrischen Dämpfung. Man kann keine Signale zurück in der Zeit aussenden.

Besonders interessant sind die Signale direkt vom Urknall –2T. Diese haben ihren Ausgangspunkt wieder erreicht und sind als kosmologische Hintergrundstrahlung zu beobachten, allerdings mit extremer Rotverschiebung. Bei dem Bild, das diese erzeugen handelt es sich damit tatsächlich um die Sicht vom Punkt des Beobachters zum Zeitpunkt – 2T, allerdings seitenverkehrt in allen vier Dimensionen (aus einem ausgehenden zeitartigen Vektor wird ein eingehender). Der Bereich zwischen –2T und –T ist zwar auch zugänglich, jedoch stammen diese Signale aus Bereichen am entgegengesetzten Ende, mit einem geringeren Abstand als –R/2, wobei uns das Signal »hintenherum« auf einem Umweg erreicht. Hierbei gilt, je älter das Signal, umso näher die Quelle.

Beide Ausdrücke sind damit nur bedingt für die Berechnung von Problemen, die das Universum als ganzes betreffen, geeignet. Für weitergehende Betrachtungen benötigen wir die

die korrekten Ausdrücke unter Berücksichtigung des Winkels α . Diesen können wir mit Hilfe von (30) als Funktion von Q bestimmen. Da Q wiederum vom Abstand r abhängig ist, beim Beobachter hat er den Wert Q₀, im Abstand R/2 ist er gleich eins, benötigen wir eine Funktion Qr=Q(r). Diese erhalten wir durch Umstellen von (895 [10]) zu (117), da r in diesem Fall umgekehrt orientiert ist.

Der Ausdruck $\sqrt{-g_{00}}$ wirkt sich erst im mikroskopischen Abstand zu R/2 aus und kann daher vernachlässigt werden. Für Q_{max} setzen wir Q_0 ein, von dem wir annehmen, daß es sich so ziemlich um den Maximalwert handelt (844 [10]) Ich habe diese Form gewählt, um auch den Verlauf bei anderen Bezugssystemen berechnen zu können und um Gleichheit mit der Funktion RhoQ herzustellen. Der Verlauf von α als Funktion von Q_0 ist in den Bildern 26 und 27 dargestellt.

Kommen wir nun zur eigentlichen Berechnung. Allerdings läßt sich nur die Funktion $r_R(r_T)$ explizit darstellen.

$$Q(r) = \frac{\dot{Q}_0}{Q_{max}} \frac{\ddot{R}}{2r}$$
(117)

Qr = Function[#1/Q0/2/#2]; PhiQ = Function[If[# >10^4, -Pi/4-3/4/#, Arg[1/Sqrt[1-(HankelH1[2, #]/HankelH1[0, #])^2]]- Pi/2]]; PhiR = Function[PhiQ[Qr[#1, #2]]]; AlphaR = Function[N[Pi/4 - PhiR[#1, #2]]];

$$r_{\rm R} = -r_{\rm T} \left(\frac{r_{\rm T}}{R} \cos \alpha(r_{\rm T}) + \sqrt{1 - \left(\frac{r_{\rm T}}{R}\right)^2 \sin^2 \alpha(r_{\rm T})} \right)^{\frac{1}{3}}$$
(118)

rtrr = Function[# (# Cos[AlphaR[Q0, #]] + Sqrt[1 - #^2 Sin[AlphaR[Q0, #]]^2])^(1/3)];

Ausdruck (118) habe ich in Anlehnung an (110) in Kombination mit Ausdruck (698 [10]) bestimmt. Bei der Berechnung der Entropie trat ja schon einmal ein ähnliches Problem auf. Die inversen Funktio-nen r_{T1} (RTR1) und r_{T2} (RTR2) erhalten wir mit Hilfe der Funktion Interpolation[Liste], indem wir $r_R(r_T)$ berechnen und die x- und y-Werte in der Liste der Stützstellen vertauschen zu:

```
inrt1={};
For[d=0.001; i=0,d<.739,(++i),d+=.001; AppendTo[inrt1,{rtrr[d],d}]]
inrt2={};
For[d=0.739; i=0,d<.999,(++i),d+=.001; AppendTo[inrt2,{rtrr[d],d}]]
RTRR1=Interpolation[inrt1];
RTRR2=Interpolation[inrt2];
RTR1=Function[If[#<=0.49034 ,RTRR1[#],Null]];
RTR2=Function[If[#<=0.49034 ,RTRR2[#],Null]];</pre>
```

Für den konstanten Wellenzahlvektor r_K erhalten wir:

$$r_{\rm R} = r_{\rm K} \left(1 - \left(\frac{3}{4} \frac{r_{\rm K}}{R} \right)^2 \right)^{\frac{2}{3}}$$
(120)

rkrr = Function[# (1 - (3/4 #)^2)^(2/3)];

Der Faktor ³/₄ resultiert aus unserer Feststellung, daß der HUBBLE-Parameter H₁ am Rande des Universums den Wert ³/₄T⁻¹ im Gegensatz zum lokalen Wert H₀=¹/₂T⁻¹ hat. Oder besser gesagt, die gesamte Strecke zwischen dem Beobachter und R/2 expandiert mit dem Exponenten ³/₄ bezogen auf T. Mit H₀=¹/₂T⁻¹ würde r_K den Rand bei R/2 überhaupt nicht erreichen und schon vorher »abbiegen«. Auch bei r_K läßt sich eine inverse Funktion nur mit Hilfe der Funktion Interpolation[Liste] definieren. Da r_K vom Beobachter weg weist, benötigen wir sie aber auch nicht. Der Verlauf o.g. Funktionen ist im Bild 28 dargestellt.

Man erkennt, im Nahbereich und auch noch weit darüber hinaus fallen alle drei Vektoren zusammen. Bei 400 Mpc Entfernung z.B. liegt die Abweichung zwischen r_R und r_T nur bei 2% und damit weit unter dem Beobachtungsfehler. Die Funktion r_T verläßt das Universum nicht, was korrekt ist, erreicht aber auch nicht R/2, sondern wird kurz davor zum Ausgangspunkt zurückgelenkt. Damit können wir insgesamt auch nur 94,31% des Universums beobachten.

Auch die schnellere Expansion kurz nach dem BB wird berücksichtigt. Der Wendepunkt, d.h. der größte Abstand wird bereits im ersten Drittel erreicht. Damit erfüllt Ausdruck (118) die an ihn gestellten Anforderungen. Wie sieht es aber mit r_K aus? Aufgrund von $H_1=3/4T^{-1}$ wird der Rand bei R/2 erreicht und mit dem Winkel φ durchdrungen, siehe Bild 16 und Bild 29. Der Raum dahinter liegt für uns in der Zukunft.

Entfernungsvektoren im Universum (1D)

Bild 28

Bild 28 wurde mit folgendem Programm erstellt:

```
GH=Function[Graphics[Line[{{#2,#1},{#3,#1}}]];
GU=Function[Graphics[Line[{{#1,#2},{#1,#3}}]];
x01=.35 (* The example distance *);
y02=FindMaximum[rtrr[r], {r,.5,.8}]
y2=First[y02];
x2=r/.First[Rest[y02]];
y03=FindMaximum[rkrr[r], {r,.5,.8}]
y3=First[y03];
x3=r/.First[Rest[y03]];
z3=xx/.FindRoot[R3[2Pi xx]-.5==0, {xx,0.5,.7}]
```

Plot[{RTR2[r]}, {r,0,1}, PlotRange->{0,1.03}, ImageSize->Large]; Plot[{RTR1[r], r, rtrr[r], rkrr[r]}, {r,0,1}, PlotRange->{0,1.03}, ImageSize->Large, PlotStyle->{Thickness[0.0038]}]; Show[%, %%, GH[y2,0,2], GH[1/2,0,2], GH[1,0,2], GH[x2,0,2], GU[.5,-1,2], GU[x2,-1,2], GU[1,-1,2], GU[y2,-1,2], GU[x01,-1,2], GU[z3,-1,2], Graphics[{PointSize[0.01], Blue, Point[{x01,RTR1[x01]}, {x01,RTR2[x01]}}]}, Graphics[{PointSize[0.01], ColorData[1,12], Point[{x2,y2}]}], Graphics[{PointSize[0.01], ColorData[2,2], Point[{x3,0.5}]}], PlotLabel->,Blau Rt(Rr), Orange Rr(Rr), Grün Rr(Rt), Rot Rr(Rk)", LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large]

Bild 29 zeigt die 2D-Darstellung r(T) in Polarkoordinaten, wobei die Zeit T durch den Winkel ϑ repräsentiert wird. Der Beobachter befindet sich im Punkt {0,0}. Das Weltalter 2T entspricht einer vollständigen Umdrehung. Jeder Beobachter hat immer den Eindruck, daß er sich am Punkt 2T (Ereignishorizont) befindet. Dies ist korrekt. Daher kommt es auch nicht zu einer Fortsetzung von r_K entlang der gestrichelten schwarzen Linie. Der Vektor r_R mutiert zur normalen logarithmischen Spirale.

Bild 29 2D Verlauf der Entfernungsvektoren r_R , r_K und r_T als Funktion der Zeit

(122)

Bild 29 wurde mit folgendem Programm dargestellt:

z31=r/.FindRoot[R3[r]-.5==0, {r,.1,.5}] z32=r/.Chop[FindRoot[R3[r]-.5==0, {r,5,6}]] z33=r/.First[Rest[FindMaximum[R3[r], {r,5,6}]]] R2=Function[rtrr[#/2/Pi]]; R3=Function[rkrr[#/2/Pi]];

```
Plot[{Pi*r+Pi/2}, {r,-.6,-.45}, ImageSize->Large,
PlotRange->{-0.52,0.52}, PlotStyle->{Thickness[0.001],Black}, AspectRatio->1];
PolarPlot[{Null,r/2/Pi,R2[r],R3[r]}, {r,0,8/3 Pi}, PlotRange->0.59,
ImageSize->Large,AspectRatio->1];
```

37

Die 2D-Darstellung erweckt den Eindruck, als würde der eingehende Vektor r_T aus der Richtung kommen, in die er ursprünglich ausgestrahlt wurde. Dies ist aber nicht der Fall. Tatsäch-lich kommt er aus der entgegengesetzten Richtung. Dies kann man sehr gut in der 3D-Darstellung im Bild 30 sehen.

Hierbei machen wir uns die Tatsache zunutzen, daß es sich bei H_0 um eine Kreisfrequenz handelt. Und für jeden Beobachter, egal in welchem Bezugssystem oder wo er sich auch befindet, hat das Universum immer genau eine Umdrehung vollführt und zwar um alle drei räumlichen Achsen. Im Bild 30 sind allerdings nur zwei davon dargestellt, so daß der Eindruck entsteht, daß der maximal beobachtbare Radius r_R der Punkt C ist. Die aus einer Richtung eintreffenden Bilder stammen aber in Wirklichkeit von einem Kreis mit dem Durchmesser 0,490339R, der durch den Punkt C geht. Daher ist eine genaue Verortung der eigentlichen Position nicht möglich.

3D Verlauf der Entfernungsvektoren r_R, r_K und r_T als Funktion der Zeit

Bild 30

Wir können aber nicht nur Objekte auf diesem Kreis beobachten. Da es sich um ein R⁴-Universum handelt, haben wir noch einen zusätzlichen Freiheitsgrad übrig, das heißt, daß der Kreis zusätzlich um seinen Durchmesser rotiert. Damit können wir alle Objekte innerhalb einer Kugel mit dem Radius 0,490339R beobachten, wobei die Signale dann aus dem gesamten Raumwinkel 4π eintreffen.

Im Bild 30 ist die Beispielkugel und die R/2-Kugel eingezeichnet. Wie auch im Bild 29 sind die Extrema und die Durchdringungen durch farbige Punkte und Buchstaben gekennzeichnet. Leider war es nicht möglich, den Abschnitt D-F-z gestrichelt darzustellen. Auch kann man erkennen, daß der Vektor r_R schon sehr früh extrem von r_K abweicht, eine Herausforderung für die Navigation. Bild 30 wurde mit folgendem Programm erstellt:

```
z1=Line[{{{0,0,-.7},{0,0,.7}},{{0,-.7,0},{0,.7,0}},{{-.7,0,0},{.7,0,0}}]
                                                                     (*Achsenkreuz*);
ParametricPlot3D[{{1,1,1}, {r Cos[r]Sin[r/2], r Sin[r]Sin[r/2], r Cos[r/2]},
{R2[r]Cos[r]Sin[r/2],R2[r]Sin[r]Sin[r/2],R2[r]Cos[r/2]},
{R3[r]Cos[r]Sin[r/2],R3[r]Sin[r]Sin[r/2],R3[r]Cos[r/2]}},
{r,0,8/3 Pi}, PlotRange->0.6, ImageSize->Large, AspectRatio->1,
LabelStyle->{FontFamily->"Chicago",10,GrayLevel[0]}, ImageSize->Large];
Show[%,
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, 0.5]}],
Graphics3D[{Opacity[0.1], Sphere[{0,0,0}, x01]}],
Graphics3D[{Thickness[0.0025], Blue,z1}],
Graphics3D[{PointSize[0.0125], Orange, Point[{
                                                                                                    (124)
{.5 Cos[.5]Sin[.25],.5 Sin[.5]Sin[.25],.5 Cos[.25]}}]}],
Graphics3D[{PointSize[0.0125], Red, Point[{
{R3[z31]Cos[z31]Sin[z31/2],R3[z31]Sin[z31]Sin[z31/2],R3[z31]Cos[z31/2]},
{R3[z32]Cos[z32]Sin[z32/2],R3[z32]Sin[z32]Sin[z32/2],R3[z32]Cos[z32/2]},
{R3[z33]Cos[z33]Sin[z33/2],R3[z33]Sin[z33]Sin[z33/2],R3[z33]Cos[z33/2]}}]}],
Graphics3D[{{PointSize[0.0125],ColorData[1,12],Point[{{0,0,0},
{y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], y2 Cos[Pi RTR1[y2]]},
{x01 Cos[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],
x01 Sin[2 Pi RTR1[x01]]Sin[Pi RTR1[x01]],
x01 Cos[Pi RTR1[x01]]},
{x01 Cos[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]],
x01 Sin[2 Pi RTR2[x01]]Sin[Pi RTR2[x01]],
x01 Cos[Pi RTR2[x01]]} }])}]]
```

Es gibt aber noch eine weitere Darstellungsmöglichkeit. Wenn wir die zeitliche durch die dritte räumliche Dimension ersetzen, kann man die r_T -Kurve rotieren lassen und erhält einen Drehkörper mit interessanten Eigenschaften:

Bild 31 Mögliche Form des Elektrons und/oder der PLANCKschen Ladung

Die Darstellung hat Ähnlichkeit mit Bild 8 in [10], womit sich der Kreis schließen würde. Das Modell hat ja die Eigenschaft der logarithmischen Periodizität, d.h. es gibt Ähnlichkeiten zwischen dem Mikro- und dem Makrokosmos.

Meine Vermutung ist daher, daß das Objekt in Bild 31 identisch mit der PLANCKschen Ladung und/oder dem Elektron, als deren frei vorkommende Form sein könnte, nur eben in einer anderen Größenordnung. Anstatt mit H₀ würde es dann mit ω_0 rotieren und ein Teil der Ladung würde sich im Innern befinden, so daß der beobachtbare Teil abhängig vom Betrachtungswinkel wäre. Auch die Notwendigkeit einer Korrektur von r_e würde sich damit erklären. Das Elektron wäre dann die 3D-Manifestation eines 4D-Objekts. Dies ist aber wie gesagt nur eine Vermutung. Das Objekt kann mit folgendem Programm dargestellt werden:

 $\label{eq:posterior} Pl1=ParametricPlot3D[{R2[r]Cos[s]Sin[r/2],R2[r]Sin[s]Sin[r/2],R2[r]Cos[r/2]}, \\ \{r,0,2 \ Pi\}, \{s,0,2 \ Pi\}, PlotRange->0.5, ImageSize->Large, \\ PlotStyle->{Opacity[1],FillingStyle->Opacity[0.1]}, AspectRatio->1, \\ LabelStyle->{FontFamily->"Chicago", 10,GrayLevel[0]}]; \\ Pl2=ParametricPlot3D[{R2[r]Cos[r/2],R2[r]Cos[r/2]}, \\ \{r,0,2 \ Pi\}, PlotRange->0.5, ImageSize->Large, AspectRatio->1, \\ PlotStyle->{ColorData[1,8],Thickness[0.005]}, \\ LabelStyle->{FontFamily->"Chicago", 10,GrayLevel[0]}]; \\ Show[Pl2, Pl1, Graphics3D[{Opacity[0.75], Sphere[{0,0,0},0.5]}], \\ \end{tabular}$

Snow[P12, P11, GraphicsSU[{Upacity[0.075], Sphere[{0,0,0},05]}], Graphics3D[{Thickness[0.0025],Blue,z1}], Graphics3D[{{PointSize[0.013],ColorData[1,8], Point[{{0,0,0}, {y2 Cos[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]],y2 Sin[2 Pi RTR1[y2]]Sin[Pi RTR1[y2]], y2 Cos[Pi RTR1[y2]]} }]]}]

6. Zusammenfassung

Im Verlauf dieser Arbeit ist es gelungen, mit Hilfe des Modells aus [10] die Ausbreitungsfunktion des von LANCZOS postulierten metrischen Wellenfelds zu definieren. Diese wiederum war Grundlage für die Bestimmung des HUBBLE-Parameters für größere Abstände. Es konnte gezeigt werden, daß dieser abhängig von der Ausgangsentfernung ist. Die genaue Funktion konnte bestimmt werden. Weiterhin wurde die Entropie des metrischen Wellenfelds bestimmt – unter Berücksichtigung der besonderen 4D-Topologie des Universums. Dabei steigt der Entropiewert auch in Zukunft stetig an, ein Wärmetod ist nicht zu befürchten. Der Grund dafür liegt wiederum in der Expansion des Universums, der Ausbreitung des metrischen Wellenfelds und der Krümmung des konstanten Wellenzahlvektors.

7. Das Konzertierte Einheitensystem

Im Verlauf dieser Arbeit ist eine Reihe von Formeln zur Berechnung verschiedener Größen und Grafiken aufgeführt. Darin wird auf bestimmte Werte und Naturkonstanten zurückgegriffen, deren Bedeutung bzw. Werte im Text nicht dargestellt sind, die aber benötigt werden, um die Berechnungen korrekt auszuführen.

Mit Hilfe des hier verwendeten MLE-Modells aus [10] ist es gelungen, eine Reihe von mit dem Elektron, dem Proton und dem ¹H-Atom verbundenen Naturkonstanten über ihr Verhältnis zum Bezugssystem Q_0 zu berechnen und dies exakt. Das Modell basiert auf den Grundgrößen des Subraums, die feste Werte und unabhängig vom Bezugssystem sind. Dabei genügt es, nur fünf echte Konstanten (μ_0 , c, κ_0 , \hbar_1 und k) als Ausgangsgrößen zu definieren plus einem sogenannten *Magischen Wert*, hier m_e zur Identifikation des Bezugssystems Q_0 . Alle Werte sind über Q_0 verknüpft, ändert sich ein Wert, ändern sich alle. Kommt ein Einfluß hinzu, so ist das schon wieder ein anderes Bezugssystem. Alle Werte außer den fixierten bilden damit ein sogenanntes Kanonisches Ensemble das *Konzertierte Einheitensystem*.

Das Programm zur Bereitstellung dieser grundlegenden Konstanten und Funktionen befindet sich im Anhang. Es ist auch in anderen meiner Veröffentlichungen verwendbar. Die damit berechneten Zahlenwerte im Vergleich zu den entsprechenden CODATA₂₀₁₈-Werten sind in Tabelle 1 dargestellt. Bei der Erstellung der Tabelle habe ich noch weitere Werte, die einfach

abhängig von den bereits definierten sind, in das System aufgenommen, u.a. σ_e , a_e , g_e , γ_e , μ_e , μ_N , Φ_0 , G_0 , K_J und R_K . Mit Ausnahme von r_e , dessen Definition über alle Ausgaben falsch angegeben ist, habe ich für die anderen Werte die im CODATA₂₀₁₈-Dokument [13] angegebenen Formeln und Formelzeichen verwendet. Die Definition der Formelzeichen entnehmen Sie daher bitte von dort.

8. Anmerkungen zum Anhang

Wie bereits dargelegt sind die in dieser Arbeit verwendeten grundlegenden Formeln und Definitionen im Anhang dargestellt. Es handelt sich um den Quellcode für *Mathematica*. Die Daten können per Konvertierung in eine Textdatei (UTF8) übernommen werden, die dann direkt geöffnet werden kann. Die Daten liegen dann als eine einzige Zelle vor. Es ist aber von Vorteil, wenn man nicht den gesamten Quellcode in einer einzelnen Zelle evaluiert. Verwenden Sie zum Teilen die Funktion Cell/Divide Cell (*Strg/Umschalt/d*). Bei diesem Verfahren gibt es aber u.U. Probleme mit Sonderzeichen, die nicht korrekt übernommen werden (z.B. ε , ε) oder sogar zum Abbruch der Konvertierung führen. Vorteilhafter ist es, wenn die Daten seitenweise per Copy&Paste über die Zwischenablage in die Textdatei kopiert werden. Dann liegt allerdings jede Zeile als eigene Zelle vor. Mit dem Kommando Cell/Merge (*Strg/Umschalt/m*) können dann die zusammengehörigen Zellen vereinigt werden, am Besten blockweise zwischen den Überschriften. Die in der Spalte »Variable« dargestellten Größen stehen dann zur Verfügung für eigene Berechnungen.

Symbol	Variable	Berechnet (CA)	Quelle	CODATA ₂₀₁₈ (CD) © COBE Daten	±Fehler	Δy (CA/CD–1)	Einheit
С	С	2,99792458 ·10 ⁸	S	2,99792458 ·10 ⁸	definiert	definiert	m s ^{−1}
E 0	ep0	8,854187817620390·10 ⁻¹²	S	8,854187817620390·10 ⁻¹²	definiert	definiert	As V ⁻¹ m ⁻¹
К0	ka0	1,369777663190222·10 ⁹³	S	n.v.	n.v.	definiert	A V-1m-1
μo	my0	1,256637061435917·10 ⁻⁶	S	1,256637061435917·10 ⁻⁶	exakt	exakt	Vs A ⁻¹ m ⁻¹
k	k	1,3806485279 ·10 ⁻²³	S	1,380649 ·10 ⁻²³	statistisch	+3,41941·10 ⁻⁷	J K-1
ħ1	hb1	8,795625796565460·10 ²⁶	S	n.v.	n.v.	definiert	Js
ħ	hb0	1,054571817000010·10 ⁻³⁴	С	1,054571817·10 ⁻³⁴	definiert	+8.88178·10 ⁻¹⁵	Js
Qo	Q0	8,340471132242850·10 ⁶⁰	С	8,3415·10 ⁶⁰ ©	3,3742·10 ⁻²	-1.23343.10-4	1
Zo	ZO	376,7303134617700	F	376,73031366857	1,5·10 ⁻¹⁰	-5,48932·10 ⁻¹⁰	Ω
G	G0	6,674301499999827·10 ⁻¹¹	С	6,6743014999999999·10 ⁻¹¹	2,2·10 ⁻⁵	-5,48932·10 ⁻¹⁰	m ³ kg ⁻¹ s ⁻²
G1	G1	9,594550966819210·10 ⁻¹³³	С	n.v.	n.v.	unüblich	m ³ kg ⁻¹ s ⁻²
G ₂	G2	1,150360790738584·10 ⁻¹⁹³	F	n.v.	n.v.	unüblich	m ³ kg ⁻¹ s ⁻²
me/mp	mep	5.446170214846793·10 ⁻⁴	F	5.4461702148733 ·10 ⁻⁴	6.0·10 ⁻¹¹	-4.867·10 ⁻¹²	1
M ₂	M2	1,514002834704114·10 ¹¹⁴	F	n.v.	n.v.	unüblich	kg
M ₁	M1	1,815248576128075·10 ⁵³	С	n.v.	n.v.	unüblich	kg
mp	mp	1,6726219236951 ·10 ⁻²⁷	С	1,6726219236951 ·10 ⁻²⁷	1,1·10 ^{–5}	-2,22045·10 ⁻¹⁶	kg
me	me	9,109383701528 ·10 ⁻³¹	Μ	9,109383701528 ·10 ⁻³¹	3,0·10 ⁻¹⁰	magisch ±0	kg
m ₀	m0	2,176434097482374·10 ⁻⁸	С	2,176434097482336.10-8	berechnet	+1,70974·10 ⁻¹⁴	kg
M _H	MH	2,609485798792167·10 ⁻⁶⁹	С	n.v.	n.v.	unüblich	kg
T _{p2}	Tp2	9,855642915740690·10 ¹⁵³	С	n.v.	n.a.	unusual	K
T _{p1}	Tp1	1,181665011421291·10 ⁹³	С	n.v.	n.a.	unusual	K
T _{p0}	Tp0	1,416784486973613·10 ³²	С	1,416784486973588 ·1032	1,1·10 ^{–5}	+1,75415·10 ⁻¹⁴	K
T _{k1}	Tk1	5,475357175411492·10 ¹⁵²	С	n.v.	n.v.	unüblich	K
T _{k0}	Tk0	2,725436049425770	С	2,72548 ©	4,3951·10 ⁻⁵	–1,61258·10 ^{–5}	K
r ₁	r1	1,937846411698606·10 ⁻⁹⁶	F	n.v.	n.v.	unüblich	m
r 0	r0	1,616255205549261·10 ⁻³⁵	С	1,616255205549274·10 ⁻³⁵	berechnet	-8,21565·10 ⁻¹⁵	m
r _e	re	2,817940324662071·10 ⁻¹⁵	С	2,817940326213 ·10 ⁻¹⁵	4,5·10 ⁻¹⁰	-5,50377·10 ⁻¹⁰	m
えc	AbarC	3,861592677230890·10 ⁻¹³	С	3,861592679612 ·10 ⁻¹³	3,0·10 ⁻¹⁰	-6,16614·10 ⁻¹⁰	m
λc	٨C	2,426310237188940·10 ⁻¹²	С	2,4263102386773 ·10 ⁻¹²	3,0·10 ⁻¹⁰	-6,13425·10 ⁻¹⁰	m
a 0	a0	5,291772105440689·10 ⁻¹¹	С	5,291772109038 ·10 ⁻¹¹	1,5·10 ⁻¹⁰	-6,79793·10 ⁻¹⁰	m
R	R	1,348032988422084·10 ²⁶	С	n.v.	strittig	strittig	m
R	RR	4,368617335409830	С	n.v.	strittig	strittig	Gpc

Symbol	Variable	Berechnet (CA)	Quelle	CODATA ₂₀₁₈ (CD) © COBE Daten	±Fehler	Δy (CA/CD–1)	Einheit
t1	2 t1	6,463959849512312·10 ⁻¹⁰⁵	F	n.v.	n.v.	unüblich	S
to	2 t0	5,391247052483426·10 ⁻⁴⁴	С	5,391247052483470.10-44	berechnet	-8,43769·10 ⁻¹⁵	S
Ť	2 T	4.496554040802734·10 ¹⁷	С	4.497663485280829·10 ¹⁷	1.1385·10 ⁻³	-2.46671·10 ⁻⁴	s
Т	2 T	1.424902426903056·10 ¹⁰	С	1.425253996152531.1010	1.1385.10-3	-2.46671.10-4	а
R∞	R∞	1.097373157632934·107	С	1.097373156816021.107	1.9.10-12	+7.44426.10-10	m-1
ω1	Om1	1.547039312249824·10 ¹⁰⁴	F	n.v.	n.v.	unüblich	s ⁻¹
ω	Om0	1.854858421929227·10 ⁴³	C	1.854858421929212·1043	berechnet	+8.65974.10-15	s ⁻¹
ωR∞	OmR∞	2.067068668297942·10 ¹⁶	Ċ	2.067068666759112.1016	1.9.10-12	+7.44451.10-10	s ⁻¹
cR∞	cR∞	3 289841962699988 10 ¹⁵	Ĉ	3 289841960250864 1015	1.9.10-12	$+744450 \cdot 10^{-10}$	Hz
Ho	HO	2 223925234581364.10-18	Č	2 223376656062923.10-18	1 1385.10-3	$+246732 \cdot 10^{-4}$	s-1
Ho	HPC[Q0]	68 62410574852400	Ĉ	68 60717815146482←↑©	1 1385.10-3	$+246732 \cdot 10^{-4}$	kms ⁻¹ Mpc ⁻
01	n1	1 527981474087040 · 10 ¹²	F	n v	n v	unüblich	As
00	a0	5 290817689717126·10 ⁻¹⁹	Ċ	5 2908176897171 ·10 ⁻¹⁹	berechnet	+4 44089.10-15	As
e	de	1 602176634000007·10 ⁻¹⁹	Č	1 602176634 ·10 ⁻¹⁹	exakt	+4 44089 10 ⁻¹⁵	As
Ŭ1	U1	8 698608435529670 10 ⁸⁷	F	n v	n v	unüblich	V
	U0	1 042939697003725.1027	Ċ	1 042939697286845 1027	berechnet	-2 71463.10-10	v
W ₁	W1	1 360717888312544·10 ¹³¹	F	n v	n v	unüblich	, J
Wo	WO	1 956081416291675·10 ⁹	Ċ	1 956081416291641.109	berechnet	$+1.73195 \cdot 10^{-14}$	
Wk1	Wk1	6 30195828203116 10 ¹²⁶	Ċ	$h_{\rm V}$ $k \rightarrow CMBR$	n v	unüblich	
S1	S1	5 605711433987692.10426	F	n v	n.v.	unüblich	Wm-2
So	SO	1 388921881877266-10 ¹²²	Ċ	n.v.	n.v.	unüblich	Wm ⁻²
Sk1	Sk1	2 596200130940090 .10422	C	n.v. k→CMBR	n.v.	unüblich	Wm ⁻²
SLO	Sk0	1 251454657497949 .10-5	Ċ	1 25013 .10-5	1 05962.10-3	herechnet [59]	Wm-2
		6 652458724888907·10 ⁻²⁹	C	6 6524587321600 ·10 ⁻²⁹	9 1.10-10	_1 09299.10-9	m ²
0e 3.	20	1 159652181281556.10-3	ĉ	1 1596521812818 .10-3	1 5·10-10	-2 1005/.10-13	1
de d		-2 00231930/36256	ĉ	-2 00231930/36256	1,3 10	-2,1000 + 10 -2,220/15.10 - 16	1
ye Ve	ye ve	1 760859630228709.1011	ĉ	1 7608506302353 .1011	3 0.10-10	-2,220+3 10	e-1T-1
γe LL		-9.28476469866128,10-24	ĉ	-9.284764704328 .10-24	3 0.10-10	-6 10325.10-10	IT-1
he	μe μB	_9.27/01007265130.10-24	ĉ	_9.27/01/078328 .10-24	3.0.10-10	_6 12109.10-10	IT-1
μв	μN	5 0507837/208626/.10-27	ĉ	5 0507837/61150 ·10-27	3 1.10-10	-6 19/56 10-10	IT-1
μ _N Φο	μη Φ0	2 0678338/710/037.10-15	ĉ	2 0678338/18 .10-15	J, I TU	-3 80327.10-10	J I Wh
$ \Phi_0 $	φ0 CO0	7 7/800173/611053.10-5	ĉ	7 7/8/01720/0002.10-5	exakt	-3,03327 10	5 VID
Gu K	K I	/ 835078/87132011.1014	ĉ	1,740091729000002*10*	exakt	+7,2410310	− H 7 \/-1
Rj Dv		2 5812807//3/8851.104	ĉ	2 581280745 .104	exakt	2 52258.10-10	112 0
nk a	alaba	7 207352560776440-10-3	Ē	7 207352560311 .10-3	1 5.10-10	+6 37821.10-11	1
α Σ	dolta	0.378551014802563.10-1		0.378551000654370.10-1	1,5*10-10	+0,3702110	1
U ⊽	vtildo	9,370331014002303*10	C	9,37033100903437010	n,0°10 to	+0,40902 10 10	1
X GL		2,021439372122070	Ē	2,021439372	borochnot	unüblich	M/m - 2k - 4
σ^{1}		5,77320000097090010-10-10-		11.V. 5 670366673885406.10-8	Derechinet	evakt/unfixed	Wm-2K-4
0	U	3,010300013003490.10-0	U	0,070000070000490.10	exaKl	exani/ulliixeu	WIII 41
$ \begin{array}{llllllllllllllllllllllllllllllllllll$							

Tabelle 1: Universelle Naturkonstanten Konzertiertes System

9. Literatur

[1]	Gerd Pommerenke					
	Struktur des Universums, Augsburg 2021 (2005-2013, 2020-2021) viXra:1906.0321					
	6. überarbeitete Ausgabe + [Corrigendum] viXra:2203.0090					
[2]	HJ. Treder (Herausgeber), Gravitationstheorie und Theorie der Elementarteilchen,					
	Cornelius Lanczost Dublin Irland					
	»Tetraden-Formalismus und definite Raum-Zeit-Struktur«					
	Akademieverlag, Berlin (O) 1979, S. 24 ff. (German)					
	ISBN: none, Lizenznummer:202 • 100/559/78, Bestellnummer: 762 6051 (6506) • LSV 1115					
	Alternative source German: viXra:1906.0321 pp. 9-15					
	Alternative source English: <i>viXra:1310.0189</i> pp. 9-15					
[3]	Prof. Dr. sc. techn. Dr. techn. h.c. Eugen Philippow, 1H limenau					
	Vorlag Tashnik Parlin, 1, Auflaga 1077					
	ASIN: B008365UYE					
[4]	Slater/Lucy/Joan, Generalized Hypergeometric Functions,					
	Cambridge 1966					
-	ISBN:978-0521090612					
[5]	Bronstein [†] /Semendjajew, Taschenbuch der Mathematik					
	BSB B. G. Teubner Verlagsgesellschaft, Leipzig 1979					
[6]	Sieber/Sebastian, Spezielle Funktionen					
[•]	Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und Landwirte,					
	Band 12, BSB B. G. Teubner Verlagsgesellschaft, Leipzig 1977					
_	ISBN: none, VLN: 294-375/47/77 • LSV 1034, Bestellnummer: 6657980					
[7]	Brockhaus ABC Physik,					
r 8 1	F.A. Brocknaus-venag Leipzig 1972 Cernot Neugebauer Relativistische Thermodynamik					
[0]	Akademieverlag, Berlin (O) 1980					
	ISBN: 978-3528068639					
[9]	Gerd Pommerenke					
	Das metrische Universum, 3. Ausgabe Augsburg 2023, viXra:2209.0025 und					
51.03	<u>10.13140/RG.2.2.26200.88325</u>					
[10]	Gerd Pommerenke Des Elektron und Schwachnunkte des metrischen Systems					
	2 Ausgabe Augsburg 2023 viXra 201 0121 und					
	10 13140/R G 2 2 12779 11044					
[11]	Pereira MA (2016)					
	The Hypergeometrical Universe: Cosmogenesis, Cosmology and Standard Model.					
	J Generalized Lie Theory Appl 10:248.					
	https://doi.org/10.4172/1736-4337.1000248					
[12]	User Geek3: Datei "VFPt charges plus minus.svg". In: Wikimedia Commons,					
	Bearbeitungsstand: Mai 2010. Bilddatei wurde nachbearbeitet und ergänzt gemäß					
	https://commons.wikimedia.org/wiki/File:VEPt_charges_plus_minus.svg					
	(Abgerufen: 25. März 2023, 10:28 UTC)					
[13]	Fundamental Physical Constants –Extensive Listing,					
-	In: 2018 CODATA adjustment					
	https://physics.nist.gov/cgi-bin/cuu/Category?view=pdf&All+values.x=64&All+values.y=13					

The Concerted International System of Units

Declarations

```
Off[General::spell]
Off[General::spell1]
Off[InterpolatingFunction::dmval]
Off[FindMaximum::lstol]
Off[FindRoot::nlnum]
```

Units

```
km = 1000;
pc = 3.08572*10^16;
Mpc = 3.08572*10^19 km;
minute = 60;
hour = 60 minute;
day = 24*hour;
year = 365.24219879*day;
F0 = 2.51*10^-8
L0 = 3.09*10^28
L1a= 6.40949*10^35
```

Basic Values

c=2.99792458*10^8; my0=4 Pi 10^-7; ka0=1.3697776631902217*10^93; hb1=8.795625796565464*10^26; k=1.3806485279*10^-23; me=9.109383701528*10^-31; mp=1.6726219236951*10^-27;

```
Auxilliary Values
```

```
(*Speed of light*);
(*Permeability of vacuum*);
(*Conductivity of vacuum*);
(*Planck constant slashed init*);
(*Boltzmann constant*);
(*Electron rest mass with Q0 Magic value 1*);
(*Proton rest mass Magic value 2*);
```

(*Zero flux brightness Wm^{^-2*});

(*Zero luminosity W*);

(*Standard candle SNIa W*);

```
mep=SetPrecision[me/mp,20];
                                                                               (*Mass ratio e/p*);
 ma=1822.8884862171988 me;
                                                                             (*Atomic mass unit*);
  ϵ=ArcSin[0.3028221208819742993334500624769134447]-3Pi/4;
                                                                       \gamma = Pi/4 - \epsilon;
                                                                      (*RnB angle \gamma nullvector*);
  ζ=1/(36Pi^3)(3Sqrt[2])^(-1/3)/mep;
                                                                        (*re-correction factor*);
 xtilde=xtilde=3+N[ProductLog[-3E^-3]];
                                                        (*Wien displacement law constant (v)*);
  alpha=Sin[Pi/4-\[Epsilon]]^2/(4Pi);
                                                        (*Correction factor QED \[Alpha](Q0)*);
                                                        (*Correction factor QED \[Delta](Q0)*);
  delta=4Pi/alpha*mep;
(*Q0=(9Pi^2 Sqrt[2]delta me/my0/ka0/hb0SI)^(-3/4) (*Phase Q0=2w0t during calibration*);*)
Q0=(9 Pi^2 Sqrt[2]delta me/my0/ka0/hb1)^(-3/7); (*Phase Q0=2w0t after calibration*);
```

Composed Expressions

```
Z0=my0 c;
                                                      (*Field wave impedance of vacuum*);
                                                             (* Permittivity of vacuum*);
ep0=1/(my0 c^2)
R∞=1/(72 Pi^3)/r1 Sqrt[2] alpha^2 /delta Q0^(-4/3);
                                                                     (*Rydberg constant*);
Om1=ka0/ep0;
                                                        (*Cutoff frequency of subspace*);
                                                                   (*Planck's frequency*);
Om0=Om1/Q0;
OmR∞=2 Pi c R∞;
                                                           (*Rydberg angular frequency*);
cR∞=c R∞;
                                                                    (*Rydberg frequency*);
H0=Om1/Q0^2;
                                                              (*Hubble parameter local*);
H1=3/2*H0;
                                                     (*Hubble parameter whole universe*);
r1=1/(ka0 Z0);
                                                            (*Planck's length subspace*);
a0=9Pi^2 r1 Sqrt[2] delta/alpha Q0^(4/3);
                                                                          (*Bohr radius*);
AbarC=a0 alpha;
                                                          (*Reduced Compton wavelength*);
AC=2 Pi AbarC;
                                                         (*Compton wavelength electron*);
re= r1 (2/3)^(1/3)/\zeta Q0^(4/3);
                                                             (*Classic electron radius*);
r0= r1 Q0;
                                                                 (*Planck's length vac*);
R= r1 Q0^2;
                                                                         (*World radius*);
RR=R/Mpc/1000;
                                                                     (*World radius Gpc*);
                                                                 (*Planck time subspace*);
t1=1/(2 \text{ Om1}):
t0=1/(2 Om0);
                                                                   (*Planck time vacuum*);
T=1/(2 H0);
                                                                  (*World time constant*);
TT=2T/year;
                                                                              (*The Age*);
hb0=hb1/Q0;
                                                              (*Planck constant slashed*);
                                                           (*Planck constant unslashed*);
h0=2Pi*hb0;
q1=Sqrt[hb1/Z0];
                                                                      (*Universe charge*);
                                                      (*or qe/Sin[\pi/4-\epsilon] Planck charge*);
q0=Sqrt[hb1/Q0/Z0];
                                                                  (*Elementary charge e*);
qe=q0 Sin[Pi/4-\varepsilon];
M2=my0 ka0 hb1;
                                                                  (*Total mass with Q=1*);
```

M1=M2/Q0; (*Mach mass*); $m0=M2/00^2$: (*Planck mass downwardly*); (*m0=(9Pi^2Sqrt[2]*delta*me)^.75*(my0*ka0*hb0SI)^.25; (*Planck mass upwardly*);*) mp=4Pi me/alpha/delta; (*Proton rest mass with Q0*); (*me=Sqrt[hb1/Q0/Z0]*Sin[Pi/4-ε]; (*if using Q0 as Magic value*);*) MH=M2/Q0^3; (*Hubble mass*); G0=c^2*r0/m0; (*hb0*c/m0^2*) (*Gravity constant local*); G1=G0/Q0^2; (*Gravity constant Mach*); $G2=G0/Q0^3;$ (*Gravity constant Init*); U0=Sqrt[c^4/4/Pi/ep0/G0]; (*Planck voltage generic*); (*Planck voltage Mach*); U1=U0*O0; W1=Sqrt[hb1 c^5/G2]; (*Energy with Q=1*); W0=W1/Q0^2; (*Planck energy*); S1=hb1 Om1^2/r1^2; (*Poynting vector metric with Q=1*); s0=s1/Q0^5; (*Poynting vector metric actual*); Sk1=4Pi^2*E^2/18^4/60*hb1*Om1^2/r1^2; (*Poyntingvec CMBR initial*); Sk0=Sk1/Q0^4/Q0^3/E^2; (*Poyntingvec CMBR actual*); (*Energy density CMBR initial*); wk1=Sk1/c (*Energy density CMBR actual*); wk0=Sk0/c : (*Energy CMBR initial*); Wk1=wk1*r1^3; µB=-9/2Pi^2 Sqrt[2 hb1/Z0]delta Sin[y]/my0/ka0 Q0^(5/6); (*Bohr magneton*); $\mu N = -\mu B * mep;$ (*Nuclear magneton*); µe=1.0011596521812818 µB (*Electron magnetic moment*); (*CMBR-temperature Q=1*); Tk1=hb1 Om1/18/k; Tk0=Tk1/Q0^(5/2); (*CMBR-temperature*); Tp0=Sqrt[hb0 c^5/G0]/k; Tp1=Tp0*Q0; Tp2=Tp0*Q0^2; (*Planck-temperature*); $\Phi 0 = Pi Sqrt[hb1 Z0/Q0]/Sin[Pi/4-\epsilon];$ (*Magnetic flux quantum Pi ħ/e)*); GQ0=1/Pi/Z0*Sin[Pi/4-ε]^2; (*Conductance quantum e^2/Pi h*); KJ=2q0 Sin[Pi/4- ϵ]/h0; (*Josephson constant 2e/h*); RK=.5 my0 c/alpha; (*von Klitzing constant μ0c/2α*); $\sigma e=8Pi/3 re^2;$ (*Thomson cross section (8Pi/3)re²*); ae=SetPrecision[µe/µB,20]-1; (*Electron magnetic moment anomaly*); (*electron g-factor*); qe = -2(1 + ae);ye=2 Q0 Abs[µe]/hb1; (*electron gyromagnetic ratio*); σ 1= SetPrecision[Pi^2/60 k^4/c^2/hb1^3, 16]; (*Stefan-Boltzmann constant initial*); σ=σ1*Q0^3; (*Stefan-Boltzmann constant*); Basic Functions cMc=Function[-2 I/#/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]; Qr=Function[#1/Q0/2/#2]; PhiQ=Function[If[#>10^4,-Pi/4-3/4/#, Arg[1/Sqrt[1-(HankelH1[2,#]/HankelH1[0,#])^2]]-Pi/2]]; (*Angle of c arg $\theta(Q)$ *); PhiR=Function[PhiQ[Qr[#1,#2]]]; RhoQ=Function[If[#<10^4,N[2/#/Abs[Sqrt[1-HankelH1[2,#]/HankelH1[0,#])^2]]],1/Sqrt[#]]]; RhoR=Function[RhoQ[Qr[#1,#2]]]; (*Angle a*); AlphaQ=Function[Pi/4-PhiQ[#]]; AlphaR=Function[N[Pi/4-PhiR[#1,#2]]]; BetaQ=Function[Sqrt[#1]*((#2)^2+#1^2*(1-(#2)^2)^2)^(-.25)]; GammaPQ=Function[N[PhiQ[#]+ArcCos[RhoQ[#]*Sin[AlphaQ[#]]]+Pi/4]]; HPC=Function[Om1/#^2/km*Mpc]; (*H0=f(Q0)[km*s-1*Mpc-1]*); $ra=\{\{0,0\}\};$ For[x=-8;i=0,x<4,++i,x+=.01;AppendTo[rq,{10^x,N[10^x*Rhog[10^x]]}]];</pre> RhoQ1=Interpolation[rq]; RhoQQ1=Function[If[#<10^3,RhoQ1[#],Sqrt[#]]]; (*Interpolation RhoO*); Rk=Function[If[#<10^5,3/2*Sqrt[#]*NIntegrate[RhoQQ1[x],{x,0,#}],6#]]; Rn=Function[Abs[3/2*Sqrt[#]*NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; RnB=Function[Arg[NIntegrate[RhoQQ1[x]*Exp[I*(PhiQ[x])],{x,0,#}]]]; alphaF=Function[Sin[Pi/2+ ϵ -(*RNBP*)RnB[#]]^2 /(4Pi)]; (*RNBP def further below*); deltaF=Function[4Pi/alphaF[#]*mep]; (*Correction factor QED ΔQ)*);

End of Metric System Definition

rn={};

End of Optional Metric System Definition