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Abstract.  This is an exercise without a conclusion, intended to examine a phenomenon that, in the 
relativistic world, seems most difficult to comprehend, let alone explain – relativistic rotational angular 
momentum.  Many have tackled the problem, first cited by Ehrenfest in 1909, and known since then as the 
“Ehrenfest Paradox,” primarily in terms of analyzing effects on the size and geometry of a relativistically 
rotating disk.  Length contraction and time dilation interplay with aspects of general relativity and 
hyperbolic geometry according to the experts.  Tackling this aspect is beyond me, so I try to examine a 
somewhat more predictable phenomenon, relativistic angular momentum as a result of relativistic mass 
increase in both a rotating rod and disk.  No conclusions are drawn, but observations are offered as food for 
thought for the reader.

 
1. INTRODUCTION 
 

Rotational motion has always posed intriguing 
phenomena that sometime seem to defy the laws of 
physics.  For example, consider the stability of a 
bicycle in motion or a spinning gyroscope.  Or the 
underwater rotating cylinders of Ionel Dinu that 
seem to mimic the behavior of bar magnets, 
whereby cylinders rotating in the same direction 
(clockwise-clockwise or counterclockwise-
counterclockwise) will “repel” each other, while 
those rotating in opposite directions (clockwise-
counterclockwise) will “attract.” In fact, if left to 
spin on their own in either direction, they will align 
just as the north and south poles of a pair of bar 
magnets will. 
(https://sciencewoke.org/scientist/ionel-dinu/)  Or 
Eric Laithwaite’s famous 1983 video 
demonstration of how a spinning disk at the end of 
rod, too heavy to easily lift when stationary, 
becomes surprisingly “lightweight” when set to 
rotating rapidly. 
(https://www.youtube.com/watch?v=JRPC7a_Ac
Qo)  Standard explanations can be complex and 
seemingly contrary to common sense, but are 
relatively straightforward when compared to 
explaining disk rotational behavior in the 
relativistic realm, the subject of what is known as 
the “Ehrenfest Paradox.” 

																																																								
1  “Born rigidity is satisfied … if the length of the rigid 
body in momentary co-moving inertial frames measured 
by standard measuring rods (i.e., the proper length) is 
constant and is therefore subjected to Lorentz 
contraction in relatively moving frames.  Born rigidity is 
a constraint on the motion of an extended body, achieved 

 
2. THE EHRENFEST PARADOX 
 

“The Ehrenfest paradox [see Figure 1] concerns 
the rotation of a ‘rigid’ disc in the theory of 
relativity. … as presented by Paul Ehrenfest [in] 
1909 in relation to the concept of Born 
rigidity within special relativity1 … [I]t discusses 
an ideally rigid cylinder that is made to rotate about 
its axis of symmetry.  The radius R as seen in the 
laboratory frame is always perpendicular to its 
motion and should therefore be equal to its value 
R0 when stationary.  However, the circumference 
(2πR) should appear Lorentz-contracted to a 
smaller value than at rest, by the usual factor γ. This 
leads to the contradiction that R = R0 and R < R0. 

 “The paradox has been deepened further 
by Albert Einstein, who showed that … the 
circumference … would … measure greater than 
2πR [contrary to Ehrenfest].  This indicates that 
geometry is non-Euclidean for rotating observers, 
and was important for Einstein's development 
of general relativity.  Any rigid object made from 
real materials that is rotating with a 
transverse velocity close to the speed of sound in 
the material must exceed the point of rupture due 
to centrifugal force, because centrifugal 
pressure cannot exceed the shear modulus of 
material ... Therefore, when considering velocities 
close to the speed of light, it is only a thought 

by careful application of forces to different parts of the 
body. A body rigid in itself would violate special 
relativity, as its speed of sound would be infinite.” 
(https://en.wikipedia.org/wiki/Born_rigidity) 
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experiment.  Neutron-degenerate matter allows 
velocities close to speed of light, because, e.g., the 
speed of neutron-star oscillations is relativistic; 
however; these bodies cannot strictly be said to be 
‘rigid’ (per Born rigidity) …  

“Ehrenfest considered an ideal Born-
rigid cylinder that is made to rotate … [I]ts radius 
stays the same, [b]ut measuring rods laid out along 
the circumference should be Lorentz-contracted to 

a smaller value than at rest, by …[ 1 − #
$

%
].  This 

leads to the paradox that the rigid measuring rods 
would have to separate from one another due to 
Lorentz contraction; the discrepancy noted by 
Ehrenfest seems to suggest that a rotated Born rigid 
disk should shatter … [and] that Born rigidity is not 
generally compatible with special relativity.  
According to special relativity an object cannot 
be spun up from a non-rotating state while 
maintaining Born rigidity, but once it has achieved 
a constant nonzero angular velocity it does maintain 
Born rigidity without violating special relativity, 
and then (as Einstein later showed) a disk-riding 
observer will measure a circumference [increased 
by  1

1 − #
$

%
]. 

“The rotating disc and its connection with 
rigidity was also an important thought experiment 
for Albert Einstein in developing general relativity 
… [concluding] that the geometry of the disc 
becomes non-Euclidean for a co-rotating observer. 
Einstein wrote (1922):  

‘Imagine a circle drawn about the 
origin in the x'y' plane of K' and a diameter 
of this circle.  Imagine, further, that we 
have given a large number of rigid rods, all 
equal to each other ... laid in series along 
the periphery and the diameter of the circle, 
at rest relatively to K'.  If U is the number 
of these rods along the periphery, D the 
number along the diameter, then, if K' does 
not rotate relatively to K, we shall have But 
if K' rotates … [w]ith respect to K all the 
rods upon the periphery experience the 
Lorentz contraction, but the rods upon the 
diameter do not experience this contraction 
(along their lengths!).  It therefore follows 
that .  It therefore follows that the laws of 
configuration of rigid bodies with respect 
to K' do not agree with the laws of 
configuration of rigid bodies that are in 

accordance with Euclidean geometry.  If, 
further, we place two similar clocks 
(rotating with K'), one upon the periphery, 
and the other at the centre of the circle, 
then, judged from K, the clock on the 
periphery will go slower than the clock at 
the centre.  The same thing must take place, 
judged from K' if we define time with 
respect to K' … Space and time, therefore, 
cannot be defined with respect to K' as they 
were in the special theory of relativity with 
respect to inertial systems ...’ 
“Grøn [in Einstein's General Theory of 

Relativity, Springer, p. 91 (2007), ISBN 978-0-387-
69200-5] states that the resolution of the paradox 
stems from the impossibility of synchronizing 
clocks in a rotating reference frame ...  The modern 
resolution can be briefly summarized as follows: … 
Small distances measured by disk-riding observers 
… is indeed well approximated (for small angular 
velocity) by the geometry of the hyperbolic plane 
… For physically reasonable materials, during the 
spin-up phase a real disk expands radially due to 
centrifugal forces, relativistic corrections partially 
counteract (but do not cancel) this Newtonian 
effect.” 
(https://en.wikipedia.org/wiki/Ehrenfest_paradox) 

Figure 1 
(https://en.wikipedia.org/wiki/Ehrenfest_paradox) 
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In the chapter on “Relativistic Paradoxes” (The 
Dynamics of Relativistic Length Contraction and 
the Ehrenfest Paradox, 2007 
[https://arxiv.org/pdf/0712.3891.pdf]), Fayngold 
tackles the Ehrenfest Paradox by “… analyz[ing] 
the Lorentz contraction in rotational motions.  The 
analysis will demonstrate the physical mechanism 
of deformation of a spinning disk and, accordingly, 
the dynamical origin of its specific geometry.”  The 
analysis is too lengthy (and quite a bit too much for 
me to bite off and chew) for summary here, but he 
reaches a similar conclusion to the preceding: 

“…[A] spinning disk is in a state of a complex 
deformation which renders its plane non-Euclidean. 
It is described by Lobachevsky’s geometry with 
negative curvature; sometimes it is referred to as a 
hyperbolic geometry … [T]he congruence in the 
co-rotating frame is satisfied in a more subtle way 
taking account of the fact that time in rotating 
systems is not single-valued.  Its most essential 
features are that the sum of the angles of a triangle 
is less than 2π, and the ratio of the length of a circle 
to its radius is greater than 2π …  

“The relativistic kinematics of accelerated 
objects cannot be separated from the dynamics.  A 
change in motion of particles constituting an object, 
changes the structure of their fields and thereby the 
shape of the object after acceleration … The size of 
an accelerated object cannot be uniquely 
determined … because the object generally cannot 
even be assigned a constant proper length.  The 
concept of deformation in relativistic mechanics is 
more subtle than in classical physics.  Its two 
intimately linked characteristics – geometric shape 
and physical structure – are not rigidly correlated. 

“… A uniformly rotating ring, while retaining 
its circumference length L = 2πR, is physically 
deformed (circumferentially stretched at fixed R), 
which becomes evident in the co-rotating [reference 
frame] … [I]n a rotational boost, an object 
undergoes physical deformation lasting 
permanently after the boost and becoming one of 
the characteristics of its spinning state … [T]he 
dynamical aspect of the Lobachevsky’s geometry in 
a rotating system is manifest in the increase of the 
system’s rest mass.  This is associated with an 
additional energy input necessary for boosting such 
a system, apart from the energy going into increase 
of relativistic mass of its constituting particles.” 
(https://arxiv.org/pdf/0712.3891.pdf) 

If all of this seems confusing, then welcome to 
the club.  From these explanations, what I surmise 

is that, since the rotating disk experiences 
acceleration (centripetal), it cannot be considered as 
an inertial reference frame and subject to the laws 
of special relativity.  The mysterious relativistic 
phenomena of length contraction and time dilation 
seem somehow to play off one another to maintain 
the shape of the rotating disk.  The resolution of the 
paradox appears to require delving into the much 
more complex realm of general relativity (and 
hyperbolic geometry), although for a sufficiently 
large disk, perhaps the rotating periphery could at 
least approximately fit into the inertial reference 
frame requirement for special relativity, being the 
motion for at least a comparatively short distance 
should be close to linearly translational.  However, 
although I will make no attempt to examine the 
interplay between relativistic length contraction 
and time dilation, I do note Fayngold’s statement 
that “[T]he dynamical aspect of … a rotating 
system is manifest in the increase of the system’s 
rest mass.”  It is this phenomenon, relativistic 
increase in mass of a rotating disk, and its effect 
upon angular momentum that I will endeavor upon 
which to shed at least a dim light. 
 
3. RELATIVISTIC MASS AND ANGULAR 

MOMENTUM 
 
Before diving into the relativistic angular 

momentum for a disk whose perimeter is rotating 
with a tangential speed (nearly) equal to that of 
light, I first examine a simpler case. 

 
3.1 ROTATING ROD 
 
Assume a thin rod of mass M and length R 

rotating about an axis through one of its ends such 
that the other end at R rotates with a tangential 
speed (nearly) equal to that of light.  Assuming 
constant angular speed 𝜔, the tangential speed at 
any position r ≤ R will just be 𝑣 = 𝜔𝑟, i.e., directly 
proportional to r.  Therefore, over any incremental 
length dr from 𝑟*	𝑡𝑜	𝑟., the non-relativistic mass is 

𝑀	𝑑𝑟
𝑅

23

24
= 	
𝑀
𝑅

𝑟. − 𝑟* 	 

where M/R represents the linear density. 
For convenience, assume that M, R, 𝜔 and v 

can all be expressed in units such that each acquires 
a value of unity (e.g., c could be measured in units 
of light-sec/sec).  Using the Lorentz factor 
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1

1 − #
$

%
, which simplifies to 1

1 − 𝑟%
 with 

the unitized values (𝑐 = 1; 	𝜔 = 1 → 𝑣 = 𝑟), the 
relativistic mass for increment dr becomes (with the 
unitized values) 

𝑑𝑟
1 − 𝑟%

23

24
= sin*; 𝑟. − sin*; 𝑟* 

via integration formula #201 from the CDC 
Standard Mathematical Tables, 27th Edition, W. 
Beyer, ed., CRC Press, Inc., Boca Raton, FL 
(1986): 

𝑑𝑥
1 − 𝑥%

= sin*; 𝑥 

The angular momentum 𝐿	 = 	𝐼𝜔, which 
reduces to L = I for 𝜔 = 1, where I is the moment 
of inertia.  For the incremental length dr, with our 
unitized values, both the moment of inertia and the 
angular momentum can be expressed as follows for 
the non-relativistically rotating rod: 

𝐿 𝑟 = 𝐼 𝑟 = 𝑟%𝑑𝑟 =
𝑟.?	 − 	𝑟*?

3

23

24
 

For the relativistic angular momentum, the 
relativistic moment of inertia employs the formula 
for relativistic mass, yielding 

𝐿 𝑟 = 𝐼 𝑟 =
𝑟%𝑑𝑟
1 − 𝑟%

23

24

=
1
2

sin*; 𝑟. − 𝑟. 1 − 𝑟.%

− sin*; 𝑟* − 𝑟* 1 − 𝑟*%  
via integration formula #214 from the CDC Tables: 

𝑥%𝑑𝑥
1 − 𝑥%

=
1
2
sin*; 𝑥 − 𝑥 1 − 𝑥%  

Employing an EXCEL® spreadsheet to perform 
these integrations for radial increments of 0.01, 
results are obtained for both the non-relativistic and 
relativistic mass and angular momentum of the rod 
as shown in Figure 2.  As expected, the non-
relativistic mass increases linearly with radius, 
while the non-relativistic angular momentum rises 
more than linearly until reaching the value of 1/3 at 
r = 1.0.  This corresponds exactly to the angular 
momentum for the rod, 𝐿 = BCD

?
𝜔 = ;

?
 with the 

unitized values.  For the rod rotating such that its 
end at R (nearly) attains light speed, the relativistic 
mass increases more than linearly with radius, 
reaching a maximum of 1.57 (= 𝜋

2, the solution 
to the corresponding integral for 0 ≤ 𝑟 ≤ 1).  This 
is 4.7 times greater than the non-relativistic mass.  

Correspondingly, the relativistic angular 
momentum also increases at an even greater more 
than linear rate with radius, reaching a maximum of 
0.785	(= 𝜋

4, the solution to the corresponding 
integral for 0 ≤ 𝑟 ≤ 1).  This is 2.4 times greater 
than the non-relativistic angular momentum. 

 

 
Figure 2.  Mass and Angular Momentum for Rod 

 
3.2. ROTATING DISK 

 
Assume a thin disk of mass M and length R 

rotating about an axis through its center such that 
the periphery at R rotates with a tangential speed 
(nearly) equal to that of light.  Assuming constant 
angular speed 𝜔, the tangential speed at any 
position r ≤ R will just be 𝑣 = 𝜔𝑟, i.e., directly 
proportional to r.  Therefore, over any incremental 
annulus dr from 𝑟*	𝑡𝑜	𝑟., the non-relativistic mass 
is 

𝑀 2𝜋𝑟 𝑑𝑟
𝜋𝑅%

23

24
= 	

𝑀
𝑅%

𝑟.% − 𝑟*% 	 

where 𝑀 𝜋𝑅% represents the areal density. 
For convenience, assume once more that M, R, 

𝜔 and v can all be expressed in units such that each 
acquires a value of unity. With the Lorentz factor 
1

1 − 𝑟%
 via the unitized values, the relativistic 

mass for annular increment dr becomes (with the 
unitized values) 

2𝑟	𝑑𝑟
1 − 𝑟%

23

24
= 2( 1 − 𝑟*% − 1 − 𝑟.%) 

via integration formula #204 from the CDC Tables: 
	𝑥	𝑑𝑥
1 − 𝑥%

= − 1 − 𝑥% 

Angular momentum 𝐿	 = 	𝐼𝜔, which reduces to 
L = I for 𝜔 = 1, where I is the moment of inertia.  
For the annular increment dr, with our unitized 
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values, both the moment of inertia and the angular 
momentum can be expressed as follows for the non-
relativistically rotating disk:2 

𝐿 𝑟 = 𝐼 𝑟 = (2𝑟)𝑟%𝑑𝑟
23

24

= 2 𝑟?𝑑𝑟 =
𝑟.K	 − 	𝑟*K

2

23

24
 

For the relativistic angular momentum, the 
relativistic moment of inertia employs the formula 
for relativistic mass, yielding 

𝐿 𝑟 = 𝐼 𝑟 =
2𝑟?𝑑𝑟
1 − 𝑟%

23

24

=
2
3

1 − 𝑟*%	 𝑟*% + 2

− 1 − 𝑟.%	 𝑟.% + 2  
via integration formula #220 from the CDC Tables: 

𝑥?𝑑𝑥
1 − 𝑥%

=
−1
3

1 − 𝑥%	 𝑥% + 2  

Employing again an EXCEL® spreadsheet to 
perform these integrations for radial increments of 
0.01, results are obtained for both the non-
relativistic and relativistic mass and angular 
momentum of the disk as shown in Figure 3.  As 
expected, the non-relativistic mass increases more 
than linearly with radius, while the non-relativistic 
angular momentum rises more than linearly until 
reaching the value of 1/2 at r = 1.0.  This 
corresponds exactly to the angular momentum for 
the disk, 𝐿 = BCD

%
𝜔 = ;

%
 with the unitized values.  

For the disk rotating such that its periphery at R 
(nearly) attains light speed, the relativistic mass 
increases at an even greater more than linear rate 
with radius, reaching a maximum of 2.00 (the 
solution to the corresponding integral for 0 ≤ 𝑟 ≤
1).  This is 4.0 times greater than the non-
relativistic mass.  Correspondingly, the relativistic 
angular momentum also increases at an even 
greater more than linear rate with radius, reaching a 
maximum of K

?
= 1.33 (the solution to the 

corresponding integral for 0 ≤ 𝑟 ≤ 1).  This is 2.7 
times greater than the non-relativistic angular 
momentum. 
 

																																																								
2  With unitizing, the density = ;

N
 and the annular area = 

2𝜋𝑟𝑑𝑟, whose product is 2𝑟𝑑𝑟. 

  
Figure 3.  Mass and Angular Momentum for Disk 

 
4. OBSERVATIONS 
 

While I feel unable to draw any conclusions 
from my examination, I can at least make some 
observations in hope that they will serve as food for 
thought for the reader.  The behavior of a 
relativistically rotating disk as discussed in the 
Ehrenfest Paradox, at least in terms of changes in 
size, geometry and maybe even speed, is beyond 
my area of expertise.  I refer the reader to the 
summaries provided in Section 2 and their 
references.  What I did attempt to tackle is the effect 
on mass as the disk attains (nearly) the speed of 
light tangentially at its periphery, assuming the 
formulas for relativistic mass increase can be 
applied to what is not strictly an inertial reference 
frame (although it may be approximately so for 
perhaps the rotating periphery since the motion for 
at least a comparatively short distance should be 
close to linearly translational).  As a precursor to 
the rotating disk, I first examined a simple rotating 
rod, pivoted at one end.  The results, shown in 
Figure 2, indicate that the relativistic mass, 
compared to the non-relativistic mass, increases by 
as much as a factor of 4.7 at the periphery.   The 
corresponding relativistic angular momentum 
increases by a factor of 2.4 at the periphery. 

For the rotating disk, the relativistic mass at the 
periphery is 4.0 times that of the non-relativistic 
mass, while the relativistic angular momentum is 
2.7 times that of its non-relativistic counterpart.  For 
non-relativistic rotation, the ratio of the angular 
momenta between the disk and the rod is 
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1.5,	derivable from their moments of inertia given 
equal mass, radii and rotational speeds: 

𝐿QRST
𝐿2UQ

=
𝑀𝜔𝑅% 2
𝑀𝜔𝑅% 3

=
3
2

 

For relativistic motion, the ratio is greater: 
𝐿QRST
𝐿2UQ

=
1.33
𝜋 4

= 1.7 

This ratio of relativistic masses is: 
𝑀QRST

𝑀2UQ
=
2.00
𝜋 2

= 1.3 

Thus, the disk, when rotated with a tangential speed 
(nearly) that of light at its periphery, shows both a 
greater mass increase and greater angular 
momentum increase vs. the rod, rotated about one 
end such that the other end attains (nearly) 
tangential light speed. 

Does all this mean that mass increase at 
relativistic speed is an actual phenomenon that 
would occur in the relativistically rotating disk?  Or 
could it masquerade for some other effect that 
manifests itself as if there was a mass increase?  
Would the mass increase, if actual, occur by 
increasing the density of the rod or disk as one 
moves farther along the radii, assuming they 
preserve their original shapes and geometry?  Or 
could it be that the density remains the same and the 
original shapes and geometry change to 
accommodate more mass?  Or might it be some 
combination of both effects?  Clearly answering 
questions about the behavior of a rotating disk with 
(nearly) tangential light speed at its periphery is 
very difficult, and even experts have to resort to 
fairly complex theories (hyperbolic geometry) and 
general relativity to fit this into the relativistic 
world of Einstein. 


