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Abstract 

We investigate in this paper the property of Lienard type differential equations to have identical 

exact solutions. We establish the conditions of existence of identical exact solutions and exhibit 

some examples to illustrate the theory. 
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Introduction 

The Lienard equations of type  

0)(  xhx                                                                                                           (1) 

where the overdot means a derivative with respect to time, and )(xh is a nonlinear 

function of ,x  have been, for a long time intensively investigated in the literature 

to secure periodic solutions. When ,)( 2

0 xxh  where 0  is a constant, the equation 

(1) is known as the linear harmonic oscillator equation in physics. The equations 

of type (1) have been mainly investigated in physics to describe conservative 

nonlinear oscillators. A celebrated equation of the form (1) is the cubic Duffing 

equation 

03  xxx                                                                                                      (2) 

where   and   are arbitrary constants. A vast literature exists for this equation 

[1-4]. The equation (2) has gained a high importance in physics since it has been 

used to describe many phenomena that could not be explained by the linear 

harmonic oscillator in dynamics. The solution of   the equation (2) is well known 

in literature as the Jacobi elliptic functions. In [2] the authors used the generalized 

Sundman transformation theory to find the periodic solutions of the cubic Duffing 

equation (2). However, it has been shown recently in several papers [5-7] that the 
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cubic Duffing equation (2) can have general non-oscillatory solutions. Another 

famous equation that belongs to the general class of Lienard type equation (1) is 

the pendulum equation [4, 8-10] 

 0sin  xx                                                                                                      (3) 

The equation (3) has been widely investigated in the literature from mathematical 

and physical point of view. For a long time only the periodic solution has been 

calculated in the literature for the pendulum equation (3). However, the authors 

in [9] were recently able to exhibit non-oscillatory solution for this equation. The 

above shows the great importance of the Lienard equations of type (1) in 

mathematics and physics. Another general class of differential equations may read  

0)()( 2  xxxux                                                                                                (4) 

where )(xu  and )(x are arbitrary functions of .x  This general class of equations 

is known in the literature as the quadratic Lienard type equation [11-14]. Different 

approaches have been used to investigate in the literature the general class of the 

quadratic Lienard type equations (4). The equation (4) is investigated in [11] from 

Lie point symmetry method. In [14] the authors investigated a generalized 

equation of the form (4) using symmetry method as well as generalized Sundman 

transformation theory. A celebrated equation that belongs to the class of equations 

(4) is the Mathews-Lakshmanan equation [15] exhibiting harmonic periodic 

solution but with amplitude dependent frequency. The equation was presented by 

the authors [15] as a unique oscillator of quadratic Lienard type exhibiting this 

behavior. However, in [12,13] the authors recently showed the existence of a class 

of quadratic Lienard type equations which may exhibit the harmonic periodic 

solution behavior with amplitude dependent frequency using the generalized 

Sundman transformation. Several examples of equation of this class have been 

shown to exhibit this behavior [13, 16]. In other papers [17, 18] it is also shown 

the existence of such quadratic Lienard type equations exhibiting harmonic 

periodic solutions. In a recent paper [19] the authors have shown for the first time 

the existence of a singular quadratic Lienard type equation that exhibits the linear 

harmonic oscillator equation solution but with an amplitude of oscillations equal 

to unity. More recently, Monsia and coworkers have shown in [20] that the 

reduced quadratic Lienard type equation 

0
)(

)(' 2  x
xg

xg
x                                                                                                    (5) 
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known also as quadratically damped Lienard equation can exhibit the linear 

harmonic oscillator solution with arbitrary amplitude of oscillations   when the 

nonlinear function 2

1

22 )()(


 xxg   , where .0  One can see from the above 

the existence of differential equations with identical solutions. In [19] this 

property is shown for the Emarkov-Pinney equation and a singular quadratic 

Lienard type equation, which exhibit identical periodic solution. It is remarkable 

to notice that the Emarkov-Pinney equation belongs to the class of Lienard type 

equations (1). In view of the above, one can ask whether there are conditions under 

which the Lienard equation (1) and the quadratic Lienard type equation (4) have 

identical solutions. In this paper we predict the existence of such conditions. In 

this regard, we establish these conditions (section 2) and give some examples to 

illustrate this property of differential equations to have identical exact solutions 

(section 3). Finally a conclusion is carried out for this work. 

2. Conditions of existence of identical exact solutions 

Let us consider the theory of differential equations introduced by Monsia and 

coworkers [20-23] to establish the conditions of existence of identical exact 

solutions between the Lienard equation (1) and the quadratic Lienard type 

equation (2). Accordingly one may consider the general class of mixed Lienard 

type equations 

 0
)(

)('

)(

)()('

)(

)(

)(

)('
2

2

2

212     x
xg

xf
abx

xg

xfxf
axx

xg

xf
ax

xg

xg
x                                  (6)                                                                              

associated to the first integral  

 bxxafxxg   )()(                                                                                                (7)  

where prime means differentiation with respect to the argument, ,a  b  and   are 

arbitrary parameters, and )(xf and 0)( xg  are arbitrary functions of .x  As can be 

seen the mixed Lienard type equation (6) can be reduced to the dissipative Lienard 

type equation  

0)()(')(')( 221     xxfxfaxxabfxxxfax                                                       (8)                                             

when  .1)( xg The dissipative term in the equation (8) can be also canceled taking 

0   to obtain [23] 

0)(')()('2  xabfxfxfax                                                                                (9) 
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which becomes [23] 

0)()('2  xfxfax                                                                                            (10) 

when .0b  The equation (10) is of the form (1) when ).()(')( 2 xfxfaxh   In this 

situation the exact and general solution of the equation (10) is given by the 

differential relation 

dt
xaf

dx


)(
                                                                                                       (11) 

where ,0)( xf  and .0a  

On the other hand, substituting ,0  into the equation (6) yields the quadratic 

Lienard type equations 

0
)(

)('

)(

)()('

)(

)('
22

22 
xg

xf
ab

xg

xfxf
ax

xg

xg
x                                                                (12) 

which reduces to the quadratically damped Lienard type equation [23]

0
)(

)(' 2  x
xg

xg
x                                                                                                      (13)   

when .0a   In this context the exact and general solution of the equation (13) is 

given by the differential form 

dtdx
b

xg


)(
                                                                                                       (14) 

where .0b  The equation (13) can be identified to the Lienard type form (4) when 

,
)(

)('
)(

xg

xg
xu  and ,0)( x for simplicity reason. In this respect, comparing the 

differential forms (11) and (14) yields the sufficient conditions for the ordinary 

Lienard equation (1) and the quadratic Lienard type equation (4) to have identical 

exact and general solutions, as 
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)(

1)(

xafb

xg
                                                                                                    (15) 

that is  

a

b
xgxf )()(                                                                                                    (16) 

where ,0a  and .0b  In this context the equations (1) and (4) take respectively 

the definitive form 

0
)(

)('
3


xg

xg
x                                                                                                        (17) 

and  

0
)(

)(' 2  x
xg

xg
x                                                                                                      (18) 

where ,0)( xg  is an arbitrary function of .x  The equation (17) represents a 

general class of Lienard equations while the equation (18) represents a general 

class of quadratic Lienard type equations. In this sense these equations are quite 

different but have the same solution given by the quadrature defined by 

 dxxgKtb )()(                                                                                              (19) 

where K  is a constant of integration. In this situation the following theorem has 

been shown. 

Theorem 

Let 0)( x . If 
)(

)('
)(

3

2

xg

xg
bxh  , and 

)(

)('
)(

xg

xg
xu  , then the equations (1) and (4) 

become respectively (17) and (18), and have identical exact solutions.  

Now some illustrative examples can be given in the following section. 
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3- Examples of equations 

3.1     2
1

22)(


 xxg   

Recently, in [20] the authors investigated the quadratically damped oscillator 

equation 

 02

22



 x

x

x
x 


                                                                                                (20)  

and found that it has the harmonic and isochronous periodic solution 

    1sin)( ktbtx                                                                                             (21) 

where 0> , and 
1k  are arbitrary parameters. The equation (20) is obtained by 

substituting   2
1

22)(


 xxg   into the reduced quadratic Lienard type equation 

(18). Now, substituting   2
1

22)(


 xxg   into (17) yields, as can be expected, the 

equation of the linear harmonic oscillator 

 02  xbx                                                                                                           (22) 

of the well-known solution  

     bttx sin)(                                                                                               (23) 

which is identical to the solution (21) where the amplitude is taken as  , and 

1bk . Therefore the equations (20) and (22) have the same harmonic and 

isochronous periodic solution. 

3.2  











2
cos

1
)(

xa

b
xg  

In [9] the pendulum equation 

 0sin
4

2

 x
a

x                                                                                                     (24) 

has been investigated by Adjaï and coworkers, to show for the first time that the 

pendulum equation can exhibit non-oscillatory behavior. The solution obtained in 

[9] is 
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 












 2

21tan4)(
Kt

a

etx                                                                                   (25) 

where 2K  is an a constant of integration. The equation (24) can be obtained from 

(17) by putting  











2
cos

)(
x

a

b
xg , where 


n

x


22
 and 0a . In this situation the 

equation (18) takes the form 

 0
2

tan
2

2


xx

x


                                                                                                    (26) 

which has the formula (25) as solution. 

3.3 2

2

)(

x

exg    

In this case the quadratically damped Lienard type equation (18) takes the form 

  02  xxx                                                                                                          (27) 

A vast literature exists [24-26] on the equation (27). Using the equation (19) one 

can write 

   3
2

2

Ktbdxe

x

                                                                                               (28) 

where 3K  is an integration constant. The evaluation of the integral in (28) leads to 

[27] 

   3
2

2
2

2

1
Ktbxerfi 














                                                                                (29) 

from which, knowing that [27] 
i

izerf
zerfi

)(
)(  , one can get the solution 

 








 

4

1 2
2)( Ktiberfitx


                                                                           (30)                                                 

As can be seen the solution (30) is in agreement with the result given in [25]. Now 

by application of 2

2

)(

x

exg  , the nonlinear Lienard type equation (17) reduces to 

    0
22  xexbx                                                                                                  (31) 
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which has , as expected, the formula (30) as solution. It is interesting to notice that 

the equation (27), in fact, the equation (5) is a special case of the quadratic Lienard 

type equation 

   0
)(

)(
)('

)(

)('
)(22

2 















xp

dxxpe
xx

xp

xp
x

x
                                                   (32) 

where   and   are arbitrary parameters, and )(xp  and )(x  are arbitrary functions 

of x  introduced recently in the literature by Akande et al. [13]. It suffices to set 

0   , 1  and 2

2

1
)( xx  , to recover the equation (27) so that the solution 

(30) can be obtained by using the corresponding generalized Sundman 

transformation [13]. In this way the equation (27) is the nonlocal transformation 

of the second-order linear differential equation 

 0)('' y                                                                                                            (33) 

admitting the general solution 

     cy )(                                                                                                         (34) 

where c  is an arbitrary constant. The solution of the equation (27) becomes  

  ctx )(                                                                                                            (35) 

where   is given by  

   


deKt

c





2

2

2
4                                                                                                (36)  

and 
4K  is a constant of integration. In this way one can secure 

 








 

4

1 22
Kticerf

c
i


                                                                                 (37) 

from which one can get  

 








 

4

1 2
2)( Kticerfitx


                                                                               (38) 

The solution (30) and (38) are identical for .cb    

3.4   2)(

x

exg   
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In this case the Lienard equation (17) takes the form 

  0
2

2

 xe
b

x                                                                                                        (39) 

The equation (39) is a Bratu type equation [28, 29] and has been widely used in 

mathematics to test the efficiency and reliability of analytical approximate 

methods [28]. Using the equation (19), one may obtain 

  5
2 Ktbdxe

x

                                                                                                 (40) 

which gives the solution 

 







 5

2
2)( Kt

b
ntx                                                                                              (41) 

where 5K  is a constant of integration. In this regard the equation (18) becomes 

 0
2

2


x

x


                                                                                                            (42) 

and admits the formula (41) as exact  and general solution. 

3.5   
x

xg
1

)(   

Substituting 
x

xg
1

)(  , into the equation (17) leads to 

  02  xbx                                                                                                          (43) 

with well-known solution  

    6)(
Ktb

etx


                                                                                                      (44) 

where 6K  is an arbitrary parameter. In this context the reduced quadratic Lienard 

type equation 

 0
2


x

x
x


                                                                                                             (45) 

has the expression (44) as exact and general solution. According to Mickens [30] 

the equation (45) is a truly nonlinear conservative oscillator but it cannot have 

periodic solutions. 
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Conclusion 

We studied in this work the existence of identical solutions between the ordinary 

and quadratic Lienard type equations. The conditions of existence have been 

established and examples of equations are given to illustrate the theory. Thus, the 

global knowledge of one equation can be obtained by knowing the solution of the 

other. 
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