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Evaluating the Alignment of Astronomical Linear Polarization Data, introductory software

Richard Shurtleff *

Abstract

This article is a Mathematica notebook that is meant to serve as a template. User-supplied astronomical observations of transverse
vectors on the sky can be evaluated, their alignment judged by the so-called Hub test. The test can be applied to any set of transverse
vectors on a spherical surface, but the language here applies to linear polarization directions of electromagnetic radiation from
astronomical sources. This article presents a simulation, analyzing artificial data as an illustration of the process. The analysis
produces a numerical value quantifying the alignment and its significance. A visual representation of the alignment is developed,

mapping regions of convergence and divergence on the Celestial sphere.
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UPDATES:

(1) The formula for “probMAXO0” on page 6 of the ViXra article 2101.0073v1 is fixed in version 3.
(2) The date and time for the most recent running of this notebook follows.

Print["The date and time that this statement was evaluated: ", Now]

The date and time that this statement was evaluated: Tue23Feb202113:30:01 GMT-5.

0. Preface

This notebook is intended to be used as a template. In order to use the notebook, it must be recognized and interpreted by Wolfram
Mathematica’s proprietary software. Since this file is published as a pdf, it must be somehow translated into the Mathematica
computer language. You can simply copy the text here keystroke-by-keystroke into an active Mathematica notebook. A 1ink? to the

Mathematica notebook is provided in the references.

Replace the simulated data in Sec. 3 and run the notebook. One needs the location of the sources on the sky and a position angle at

each source.

Transverse vectors on the sky can be observed for many situations, linear polarization, major/minor axes, jets and others. These

observed asymmetries may be analyzed for their mutual alignment.

The work is based on an article! “Indirect polarization alignment with points on the sky, the Hub Test”. This notebook was created

using Wolfram Mathematica?, Version Number: 12.1 which is running on Microsoft Windows(64-bit).
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1. Introduction

Given a collection of astronomical sources with linearly polarized electromagnetic emissions, one may ask whether the polarization

directions align.

The Hub test answers the question of alignment indirectly. Instead of attempting to find direct correlations of the polarization

directions of a number of sources, an alternative process is applied.

The basic idea is illustrated in the figures below. The Celestial sphere is pictured on the left and on the right is the plane tangent to the
sphere at the source S. The linear polarization direction ¥ lies in the tangent plane and determines the purple great circle on the
sphere. A point A on the sphere and the location S of the source determine a second great circle, the blue circle drawn on the sphere at
the left. Clearly, H and S must be distinct points on the sphere. The angle 1, with 0° < < 90°, measures the “alignment of the

polarization direction with the point H.” Perfect alignment occurs when n = 0° and the two great circles form a single circle.

The basic concept includes “avoidance”, as well as alignment. Avoidance is high when the two directions v, and ¥y differ by a large
angle, . —» 90°. Perpendicular great circles at S, n = 90°, would indicate the maximum avoidance of the polarization direction

and the point on the sphere.
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Figure 1. Left: The source S and an arbitrary point H plotted on the Celestial Sphere. The great circle determined by S and H is drawn
in Blue. The polarization direction of electromagnetic radiation from S points along a second great circle that is drawn in Purple. The
angle i separates the great circles where they meet at S'. The angle 7 is the alignment angle. Right: The 2-dimensional plane tangent

to the sphere at S.

With many sources S;, i = 1, ..., N, there are N alignment angles n;y for the point H. To quantify the alignment of the N sources with

the point H, calculate the arithmetic average alignment angle at H,
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_ 1

nH) = X M - (O]
The alignment angle 77(H) is a function of position H on the sphere. The polarization directions are best aligned with the hub point
Hi, where the alignment angle is a minimum 7,,;,,. The polarization directions most avoid the hub point Hyaxwhere the function 7(H)

takes its maximum value 7. For a visual aid, see the map generated near the end of the notebook.

The Hub test is based on the idea that the polarization directions are well-aligned with each other when they are well-aligned with

some point H;,. The point Hmay is also distinguished by the collection of polarization directions; it is the most avoided point.

The hub test calculates 7, and Fmax for a given collection of polarized sources. The smaller the value of 7, the better aligned the

sources are. The larger the value of i, the more significant their avoidance of Hmax.

For more on the Hub test, see the article!.

2. Preliminary

We work on a sphere in 3 dimensional Euclidean space. See the figures in the Introduction. The sphere is called the “Celestial
sphere” or simply the “sphere”. The center of the sphere is the origin of a 3D Cartesian coordinate system with coordinates (x,
¥,2). The direction of the positive z -axis is associated with “North”. Right ascension, RA or @, and declination, dec or 6, are
measured as usual with the direction of the positive x-axis along (RA,dec) =(0°,0°) and 6 = 90° in the direction from the origin
(0,0,0) to (0,0,1).

From a point-of-view located outside the sphere, as in the figure in the Introduction, one pictures a source S plotted on the
sphere so that local North is upward and local East is to the right. A “position angle” at the point S on the sphere is measured in
the 2D plane tangent to the sphere at S. The position angle @ is measured clockwise from local North with East to the right.

Definitions:

(a,0) Right Ascension RA and declination dec of a point on the sphere. Sometimes we use radians, sometimes degrees.
er(a,0) radial unit vector in a Cartesian coordinate system from the Origin to the point on the sphere with (RA,dec) =
(a,6), with a,din radians

eN(a,0) unit vector along local North at the point (a,0) on the sphere, with a,é in radians

eE(a,0) unit vector along local East at the point (a,6) on the sphere, with a,6 in radians

QFROMr(7) RA for the point on the sphere determined by radial unit vector 7, result in radians
OFROMr(r)  dec for the point on the sphere determined by radial unit vector 7, result in radians



4 | 20201211StarterKitForHubTest4.nb

In[2]:=

Out[5]=

In[6]:=

In[12]:=

er[a_, 6_] :=er[a, 8] = {Cos[a] Cos[&], Sin[a] Cos[&], Sin[6]} (» a,8 in radians x)
eN[a_, 6_] :=eN[a, 6] = {-Cos[a] Sin[&6], -Sin[a] Sin[&], Cos[&]}
eE[a_, 6_] :=eE[a, 6] = {-Sin[a], Cos[a], O}
"Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN
= 1, eN.eE = 9,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: ",
{0}==Union[Flatten[simplify[{er[a, 6].er[a, 6] -1, er[a, 6] .eN[a, 6], er[a, 6] .eE[a, 6],
eN[a, 6] .eN[a, 6] -1, eN[a, 6] .eE[a, 6], eE[a, 6] .eE[a, 6] -1, Cross[er[a, 6], eE[a, 6]] -
eN[a, 6], Cross[eE[a, &], eN[a, 5]] - er[a, 6], Cross[eN[a, 6], er[a, 8]] - eE[a, 61}1]]}
{Check er.er = 1, er.eN = 0, er.eE = 0, eN.eN
=1, eN.eE = 0,eE.eE = 1, erXeE = eN, eEXeN = er, eNXer = eE: , True}

Get (@,0) in radians from radial vector r, with -7t < @ <+7T and '2—" <6< *2—"

ri[2]]

ri[1]]
rif2]]

ri[1]]
ri[2]]

rl[1]]
rif2]1]

ri[1]]

aFROMP [1_] :=N[ArcTan[Abs[ ”] /3 (PI[2]11 2@8&&r[[1]] > ©)

oFROMP [_] :=N[7r—ArcTan[Abs[ ]]] /3 (F[[2]]1 208&&r[[1]] <©)
aFROMr[r_] :=N[—7r+Ar‘cTan[Abs[ ]” /3 (P[[2]1]1 <@8&&r[[1]] <O)

aFROMr[r_] :=N[—ArcTan[Abs[ ]” /3 (PL[21]1 <@8&&r[[1]] > @)

aFROMr[r_1] :

aFROMr[r_] : -21 /3 (P[[2]]1 <@&&r[[1]] = 0)

ri[3]]
Vrl[1]172+r[[2]]"2

SFROMP[r_] :=N[ArcTan[ ]] /3 (VFIIITT 2+ r[[2]1~2 >0)

SFROMr[r_] :=Sign[r[[3]1]1] zl/; («/r‘[[l]]"2+r‘[[2]]"2 == )

3. Input and Settings
This section is where you would enter your data for analysis. You can input source locations in various ways using the functions in

Section 2 above.

Be careful of units. The angles a, d, ¢ are all expected to be in radians.

Definitions:

gridSpacing separation in degrees between grid points on a constant latitude circle and separation of constant latitude circles.

There is no bunching at the poles.

pRegion estimated radius of the region containing the sources, choose from pRegion = {90° (whole sphere), 48°, 24°,
12°,5°, 0° (point-like)}.
nSrc number of sources in the region

aSrc Right Ascension (RA) at the sources, in radians
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oSrc declinations (dec) at the sources, in radians
rSrc radial unit vectors in Cartesian coordinates from origin to sources S;
Yn the polarization position angles for the EM radiation from the sources, in radians

dnContourPlot separation of successive contour lines on the map in Sec. 7, in degrees

mapDirectory folder on the computer where the map is to be saved

Settings

nf4:= gridSpacing = 2. (*, in degrees. This is a setting.x);
Print["The grid points are separated by ",
gridSpacing, "° arcs along latitude and longitude."]

The grid points are separated by 2.° arcs along latitude and longitude.

nre:= regionRadiusChoices = {90, 48, 24, 12, 5, 0}; (*Do not change this statementx)
regionChoice = 3; (*This is a setting. The choice 24° is 3rd in the list. *)
rgnRadius = regionRadiusChoices[ [regionChoice]];
Print["The region radius controls the constants c; and a; for statistics in Sec. 4."]
Print["The region radius p is set at ", rgnRadius, "°."]

The region radius controls the constants c; and a; for statistics in Sec. 4.

The region radius p is set at 24°.
n21= nSrc = 16; (*The number of sources. This is a setting.x)
2= dnContourPlot = 4 ; (*, in degrees. This is a setting.x)

3= mapDirectory =
"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-OMRE50J\\SendXXX_CJP_CEJPetc\\SendViXra\\
20200715A1ignmentMethod\\20200715A1ignmentMMAnotebooks\\StarterkKit";
(*This is a setting.x)

Inputs

niz4j= (*The locations of the sources S;. Here (RA,dec) are the inputs and Cartesian
coordinates are calculated. Alternatively, you can input rSrc and calculate aSrc,

6Src with the functions aFROMr and SFROMr in Sec. 1.x)

aSrc = {1.0245, 0.2994, 0.8584, 0.4293, 0.7828, 0.7407, 1.1216, 0.5534,
0.7863, 1.0897, 0.9064, 0.7216, 0.3302, 0.3788, 1.1390, 0.5709}; (*Inputx)

8Src = {0.8400, 0.6266, 0.2472, 0.2780, ©.3821, 0.3826, 0.5953, 0.9090, 0.6663,
0.6634, 0.4188, 0.6961, 0.5614, 0.7652, 0.8050, 0.2800}; (*Inputsx)

rSrc = Table[er[ aSrc[[i]], 6Src[[i]] 1, {i, nSrc}]; (xcalculated from Input.=x)

ne7i= (*The polarization position angles for the
EM radiation from the sources. This is an input.=x)
yn = {2.2816, 1.3406, 2.6725, 1.9480, 1.7352, 2.2421, 0.1986, 2.1445,
2.3088, 2.0109, 1.6127, 0.3118, 1.6390, 2.3304, 2.4428, 1.8222};

4. Significance



6 | 20201211StarterKitForHubTest4.nb

In[28]:=

Out[29]=

In[30]:=

In[31]:=

When 5% or fewer results with random data are better then a result with observed data, the observed result is called “significant” by
definition or by convention.

When 1% or fewer random results are better, then a result is called “very significant” by definition or by convention.
To determine the probability distributions and related formulas, we made many runs with random data and fit the results. There were

2000 runs for each combination of N sources in regions of radii p, with N= {8,16,32,64,128,181,256,512} and with radii p =
{0°,5°,12°,24°,48°,90°}. That makes (2000)(8)(6) = 96000 runs. For more details see the article!.

Definitions:

probMINO, probMAX0 probability distributions for alignment (MIN) and avoidance (MAX), functions of 1, 19, o

probMIN, probMAX same as above except these are functions of 7 and N, using 179(N,c1,al) and 0o(N,c2,a2) to get no and o
signiMINO, signiMA XOsignificance as a function of (1, 19, o)

signiMIN, signiMAX significance as a function of (1,N) using 179(N,c1,al) and o(N,c2,a2) to get np and o
norm a constant used to normalize the distribution (the integral of probability must be 1)
n alignment angle

no “mean”, a parameter with a value near the peak of the probability distribution

o “half-width”, a parameter with a value near the distribution’s half-width

cIMIN, alMIN,... parameters needed to find 770 and o from the number of sources N.
cIMINplusMinus, ... standard error (plus/minus) in parameters found in fitting random data

nOMIN, n0OMAX functions for finding the mean 10

oMIN, cMAX functions for half-width o

o

(» y = (u&)*)
(» dy = dn *)

o
(* The normalization factor "norm" is needed for the probability density =x)

-1
1 v

norm = [ ———— NIntegrate| (1+ e* (y‘l))'l ez, {y, o, }]| ;

(27) 1/2
norm (xConstant needed for Eq. (1) and (11) in the article'.x)
1.22029

norm (n-ne-o) \ -1
probMINO[n_, 1@ _, o_] := (1+ ' . ]

o (271')1/2

_Li(n-ne 2 m -1
e z( o ) (*A Gaussian modified by an S-function (1+e4 N ) ox)

signiMIN@[n_, n@_, o_] := NIntegrate[probMINO[nl1, n0@, o], {nl, -, n}]

Next, check that the normalization constant does not change from the alignment (MIN) case to the avoidance (MAX) case:
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-1

1 i
normMAX = | ————— NIntegrate[(1+ e™* ‘y"l))'1 ez, {y, ~o, o}]|| ;
(2 n)l/Z
Print["The normalization constant for probMIN and probMAX are equal: ",
norm, " ?=? ", normMAX, " ", @ == normMAX - norm]

The normalization constant for probMIN and probMAX are equal: 1.22029 ?=? 1.22029 True

2 o

norm
(1+e

proobMAXO0[n_, n@_, o_] := s
o2mY

_a4 (n—na*a))-l _1(&)1
o e
signiMAXe[n_, n@_, o_] := NIntegrate[probMAX0[nl, no, o], {nl, n, «}]

The significance signiMIN@[n, n@, o] is the integral of probMIN@, i.e. signiMIN@ = ﬂoPMIN (n) dn.

The significance signiMAX@[n, n@, o] is the integral of probMAX@, i.e. signiMAXe@ = J:PMAX (n) dn.

The formulas for mean 7 = f + ’5711 and half-width o = 4ch32 estimate 17y and o by functions of the number N of sources.
These formulas depend on the size of the region (radius p) by the choice of parameters ¢; and a;, i = 1,2. The following values for the

parameters ¢; and @; are based on random runs. For each combination of N = {8,16,32,64,128,181,256,512} and p =
{0°,5°,12°,24°,48°,90°}, there were 2000 random runs completed.

A notation conflict between this notebook and the article! should be noted. We doubled the exponent “a” so N4/2 appears in the
article, whereas in the random runs and here we see N. Thus @ ~ 1/2 here and in the random run fits, but the paper has aaicie ~ 1.

That explains the “/2” in the following arrays.

non meq na1"  Mean mgon
90 ©0.9423 1.0046 /2 1.061 0.954/2

48 0.9505 1.0156 /2 1.166 ©.9956 /2
pciaiMIN = 24 ©.9235 1.0069 /2 1.127 ©.964 /2 ;
12 0.8912 1.0054 /2 1.238 1.021/2
5 0.8363 1.0083 /2 1.076 0.940 /2
@ 0.5031 1.0153 /2 1.522 1.053/2

non meq w1 Mean magn
90 ©0.9441 1.0055/2 1.000 0.931/2

48 ©.9572 1.0165/2 1.090 0.958 /2
pciaiMAX = 24 ©.927 1.0068 /2 1.101 0.964 /2;
12 0.9049 1.0090 /2 1.228 1.018/2
5 ©.8424 1.0062/2 1.168 0.992/2
@ 0.4982 1.0093 /2 1.543 1.060 /2
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"p" "c1" "al"  "c2" "a2"
90 ©0.0050 0.0036/2 0.026 0.016/2
48 ©0.0079 0.0057 /2 0.016 0.0095 /2
e~ pAciaiMIN = 24 ©.0024 0.0018 /2 0.022 0.013 /2 ;
12 0.0034 0.0026 /2 0.039 0.021/2
5 ©.0035 0.0028 /2 0.030 0.019 /2
@ ©0.0059 0.0080/2 0.052 0.024 /2

Ilpll Ilc1ll "al“ llc2Il llazll
90 0.0061 0.0044 /2 0.038 0.025/2

48 ©0.0063 0.0045/2 0.026 0.016 /2
- pACiaiMAX = 24 ©.011 0.0079 /2 0.019 0.011/2;
12 0.0069 0.0052 /2 0.039 0.022/2
5 ©.0038 0.0031/2 0.022 0.013 /2
@ 0.0058 0.0080 /2 0.057 0.025/2

If you have trouble translating the arrays from the pdf version into a viable Mathematica notebook, the following cells are equivalent.
To activate a cell, remove the remark brackets (* and *).

o= (*ociaiMIN={{"p","c1","a1","c2","a2"},
{90,0.9423",0.5023",1.061",0.477" }, {48,0.9505,0.5078" ,1.166" ,0.4978" },
{24,0.9235°,0.50345",1.127,0.482 }, {12,0.8912",0.5027 ,1.238>,0.5105" },
{5,0.83637,0.5044",1.076,0.47" }, {0,0.5031",0.50765 ,1.522 ,0.5265 } } %)

nat= (xpciaiMAX={{"p","c1","a1","c2","a2"},
{90,0.9441°,0.50275",1.,0.4655" }, {48,0.9572,0.50825,1.09",0.479" },
{24,0.927°,0.5034",1.101°,0.482" }, {12,0.9049" ,0.5045 ,1.228,0.509" },
{5,0.8424",0.5031",1.168",0.496 "}, {0,0.4982° ,0.50465 ,1.543",0.53" } } )

ni421= (*pAciaiMIN={{"p","c1","al","c2","a2"},
{90,0.005° ,0.0018" ,0.026" ,0.008" }, {48,0.0079" ,0.00285" ,0.016" ,0.00475" },
{24,0.0024" ,0.0009" ,0.022" ,0.0065" },{12,0.0034°,0.0013" ,0.039",0.0105" },
{5,0.0035" ,0.0014 ,0.03",0.0095" }, {0,0.0059" ,0.004" ,0.052" ,0.012" } } )

nas- (xpAciaiMAX={{"p","c1","al","c2","a2"},
{90,0.0061" ,0.0022",0.038",0.0125" }, {48,0.0063" ,0.00225,0.026" ,0.008" },
{24,0.011°,0.00395",0.019",0.0055" }, {12,0.0069" ,0.0026" ,0.039",0.011" },
{5,0.0038",0.00155" ,0.022",0.0065" }, {0,0.0058" ,0.004" ,0.057" ,0.0125" } } %)

3= (*Change the region radius, if necessary, in Section 3 Inputs and Settings. x)
ip = regionChoice + 1; (* Parameters cj, aj, 1 = 1,2. *)
Print["These constants are for sources confined to regions with radii p = ",
pciaiMIN[ [ip, 1], "°."]
{c1MIN, alMIN, c2MIN, a2MIN} = Table[pciaiMIN[[ip, j11, {J, 2, 5}1;
{c1MAX, alMAX, c2MAX, a2MAX} = Table[pciaiMAX[[ip, j11, {J, 2, 5}1;
Clear[ip]

These constants are for sources confined to regions with radii p = 24°.
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n3ei= (*Change the region radius, if necessary, in Section 3 Inputs and Settings. x)
ip = regionChoice + 1; (* * uncertainty for the parameters c; and a;, i = 1,2. x)
Print["These uncertainties are for sources confined to regions with radii p = ",
pciaiMAX[ [ip, 111, "°."]

{c1MINplusMinus, alMINplusMinus, c2MINplusMinus, a2MINplusMinus} =
Table[pAciaiMIN[ [ip, §11, {j, 2, 5}1;
{c1MAXplusMinus, alMAXplusMinus, c2MAXplusMinus, a2MAXplusMinus} =
Table[pAciaiMAX[ [ip, j11, {j, 2, 5}1;
Clear[
ip]

These uncertainties are for sources confined to regions with radii p = 24°.

7t cl
4= NOMIN[nSrc_, c1_, al_] := — -
4 nSrc*
c2
OoMIN[nSrc_, c2_, a2 ] := ——
4 nSrc??
7 cl
1= nOMAX[nSrc_, cl1_, al_] := — +
4  nSrc*
c2
oMAX[nSrc_, c2_, a2_] 1= ——
4 nSrc??

The following probability distributions and significances make use of the above formulas for mean 7y and half-width o. They are

functions of the alignment angle 1 and the number of sources N.

nse = probMIN[n_, nSrc_] := probMINO[ 1, n@MIN[nSrc, cIMIN, alMIN], oMIN[nSrc, c2MIN, a2MIN] ]
nise= SigniMIN[n_, nSrc_] := signiMIN@[n, nOMIN [nSrc, c1IMIN, alMIN], oMIN[nSrc, c2MIN, a2MIN]]

noj= probMAX[n_, nSrc_] := probMAXO[ n, n@MAX [nSrc, c1MAX, alMAX], oMAX[nSrc, c2MAX, a2MAX] ]
signiMAX[n_, nSrc_] := signiMAX@[n, nOMAX[nSrc, c1MAX, alMAX], oMAX[nSrc, c2MAX, a2MAX]]

5. Grid

We avoid bunching at the poles by taking into account the diminishing radii of constant latitude circles as the latitude
approaches the poles. Successive grid points along any latitude or along any longitude make an arc that subtends the same
central angle d6.

We grid one hemisphere at a time, then they are combined.

Definitions:

gridSpacing separation in degrees between grid points on a constant latitude circle and separation of constant latitude circles.

Set by the user in Sec. 2.

de grid spacing in radians

apointH,épointH RA and dec of the grid points /;

grid see listing below for “grid” table entries

nGrid number of grid points H; ,j = 1,2, ..., nGrid

rGrid radial unit vectors from origin to grid points, in 3D Cartesian coordinates

aGrid RAs for grid points
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6Grid decs for grid points

Tables:

grid, gridN and gridS
1. sequential point # 2.RAindex  3.decindex 4.RA(rad) 5.dec(rad) 6. Cartesian coordinates of the grid point

in621= (*When gridSpacing = 2°, we get a 2°x2° grid.x)
Print["The grid spacing has been chosen in Sec. 3 to be gridSpacing =

, gridspacing, "°."]

2.7
de =

gridSpacing; (xConvert gridSpacing to radiansx)

The grid spacing has been chosen in Sec. 3 to be gridSpacing = 2.°.

In[64]:=
(*The Northern Grid "gridN". x)
gridN={}; idN=1;

T
For‘[éj =0., 6j< P &j ++, SpointH = 6j de;

For‘[ ai=0., ai< Ceiling[z‘:;—7r (Cos[spointH] +@.01) ] , @i++, apointH = aide/ (Cos[spointH] +0.01);
e

AppendTo[gridN, {idN, ai, &j, apointH, SpointH, er[apointH, &pointH]}];
idN=1idN +1

/]

ine6:= (*The Southern Grid "gridS". x)
gridS={}; idS=1;

. . 7t
For‘[éj =1., 6j< 3

, 6j++, SpointH = -6jde;
e

(xPrint["{6j,6pointH} = ",{8],6pointH}];«)
2.7
For‘[ ai=0., ai< Ceiling[z (Cos[spointH] +@.01) ] » ai++, apointH = aide/ (Cos[spointH] +0.01);
(+xPrint["{ai,apointH} = ",{ai,apointH}];«)
AppendTo[grids, {idS, ai, &j, apointH, SpointH, er[apointH, &pointH]}];
idS=1idS +1

/]

ineel= grid={}; j=1;
For[jN=1, jN<Length[gridN], jN++, AppendTo[grid,
{3, gridN[[jN, 2]], gridN[[jN, 3]], gridN[[]jN, 4]], gridN[[jN, 5]], gridN[[iN, 6]]}];
j=3+1]
For[jS =1, jS < Length[gridS], jS++, AppendTo|[grid,
{3, grids[[3js, 2]], grids[[js, 3]], grids[[js, 4]], grids[[jS, 5]], grids[[js, 6]]}];
j=3+1]
nGrid = Length[grid];
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aGrid = Table[aFROMr[grid[[j, 6]] 1, {j, Length[grid]}];
6Grid = Table[S6FROMr[grid[[j, 6]1] 1, {J, Length[grid]}];

rGrid

Print["There are

Table[grid[[j, 6]]1 , {J, Length[grid]}];

", nGrid, " points on the grid. "]

There are 10518 points on the grid.

6. Analysis

Definitions:

viSrc
jnBarHj
Introduction.
sortjnBarHj
jnBarMin
nBarMin
jnBarMax
nBarMax
signBarMin

unit vectors along the polarization directions in the tangent planes of the sources

{.;m(H)}, where j is the index for grid point /; and 7(H) is the average alignment angle at ;. See Eq. (1) in the

{j,m(H)}, rearranged by value of 77(H), with smallest angles 7(H) first.
{j,(H)}, the j and 77 for the smallest value of 7(H) , best alignment

the smallest value of J(H) , measures alignment of the polarization directions
{j,(H)}, the j and 77 for the largest value of 7j(H) , most avoided

the largest value of 77(H) , measures avoidance

significance of the smallest alignment angle

sigRangenBarMin using the plus/minus values on the parameters ¢; and a;, the table collects corresponding values of the significance

sigSmallpBarMin the smallest of the values in sigRangenBarMin

sigBignBarMin
signBarMax

the largest of the values in sigRangenBarMin

significance of the largest alignment angle (i.e. avoidance)

sigRangenBarMax using the plus/minus values on the parameters ¢; and a;, the table collects corresponding values of the significance

sigSmallyBarMax the smallest of the values in sigRangenBarMax

sigBignBarMax  the largest of the values in sigRangenBarMax

aHminDegrees ~ RA of the point H,;,where 77(H) is the smallest

0HminDegrees dec of the point H,;,where 77(H) is the smallest

aHmaxDegrees  RA of the point Hnaxwhere 77(H) is the largest

0HmaxDegrees  dec of the point Hmaxwhere 77(H) is the largest

(*Analysis using Eq (5) in the article® to get niu, cos(n) = |W.Vy|,

then {j,ﬁ(Hj)}, which are sorted to get the extreme valuesx)
vySrc = Table[Cos[ yn[[i]] ] eN[ aSrc[[i]], &Src[[i]] ] +
sin[yn[[i]] ] eE[ aSrc[[i]], &Src[[i]] 1, {i, nSrc}];
jnBarHj = Table[{j, (1/nSrc) Sum[ArcCos| Abs|[ rGrid[[j]].vySrc[[i]] /
((rGrid[[j1] - (rGrid[[j]1].rSrc[[i]]) rSrc[[i]]).(rGrid[[j]1] - (rGrid[[j1].

rSrc[[i]]) rSrc[[i]]))*?] - @.@eee01 | , {i, nsrc}]}, {J, nGrid}];

sortjnBarHj = Sort[jnBarHj, #1[[2]] < #2[[2]] &]; jnBarMin = sortjnBarHj[[1]];
nBarMin = jnBarMin[[2]];
jnBarMax = sortjnBarHj[[-1]1];
nBarMax = jnBarMax[[2]] ;
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In[81]:=

In[82]:=

In[88]:=

(*Alternate analysis using Eq (7) in the article®! to get niy, cos(n) = | Asxy  Asxu | - *)

(¥xnSxyn = Table[ Sin[¢n[[n]]]leN[aSrc[[n]],8Src[[n]]]-
Cos[yn[[n]]]leE[aSrc[[n]],&5rc[[n]]], {n,nSrc}];

nSanj[j_]:=nSanj[j]=Tab1e[ Cross[ rSrc[[n]],rGrid[[j]] ]/

(v ((cross[ rsrc[[n]],rGrid[[j]] 1).(Cross[ rSrc[[n]],rGrid[[j1] 1))) {n,

nSrc}];
nnHj[j_]1:=nnHj[j]=Table[ ArcCos[ Abs[ nSxyn[[n]].nSxHnj[j1[[n]] ] -
0.000001 1], {n,nSrc}];

nBarHj [j_]:=nBarHj[j]=Sum[nnHj[j]1[[n]],{n,nSrc}]/nSrc
jnBarHj=Table[{j,nBarHj[j]1},{],Length[grid]}];
sortjnBarHj=Sort[jnBarHj,#1[[2]]1<#2[[2]]1&];
jnBarMin=sortjnBarHj[[1]];
nBarMin=jnBarMin[[2]]
jnBarMax=sortjnBarHj[[-1]];
nBarMax=jnBarMax[[2]] )

(xSignificance of the alignment of the polarization directions with hub point Hpi,.*)
signBarMin = signiMIN[nBarMin, nSrc];
sigRangenBarMin = Sort[Partition[Flatten[Table][
{signiMIN@ [nBarMin, nOMIN[nSrc, c1MIN + y1l cIMINplusMinus, alMIN + al alMINplusMinus],
oMIN[nSrc, c2MIN + y2 c2MINplusMinus, a2MIN + a2 a2MINplusMinus]], ¥1, al, ¥2, a2},
{»1, -1, 1}, {01, -1, 1}, {¥2, -1, 1}, {a2, -1, 1}] 1,51 1;
{sigRangenBarMin[[1]], sigRangenBarMin[[-1]]};
sigSmallnBarMin = sigRangenBarMin[[1, 1]];
sigBignBarMin = sigRangenBarMin[[-1, 1]];
Print["The best value for the significance of alignment is sig. = ", signBarMin,

". Using the uncertainties +/- of the cj,a;, the lowest and highest values are ",

sigSmallnBarMin, " and ", sigBignBarMin , " giving the range from sig. = ",
sigSmallnBarMin, " to ", sigBignBarMin, " . "]

The best value for the significance of alignment is sig. = 0.0111662
. Using the uncertainties +/- of the cj,a;, the lowest and highest values are
0.00832443 and 0.0146188 giving the range from sig. = 0.00832443 to 0.0146188 .

(*Significance of the polarization directions' avoidance of the hub point Hpax.*)
signBarMax = signiMAX[nBarMax, nSrc];
sigRangenBarMax = Sort[Partition[Flatten[Table[
{signiMAXe@ [nBarMax, n@MAX[nSrc, c1MAX + y1l c1IMAXplusMinus, alMAX + al alMAXplusMinus],
oMAX[nSrc, c2MAX + y2 c2MAXplusMinus, a2MAX + a2 a2MAXplusMinus]], ¥1, al, ¥2, a2},
{»1, -1, 1}, {o1, -1, 1}, {¥2, -1, 1}, {a2, -1, 1}] 1,51 1;
{sigRangenBarMax[[1]], sigRangenBarMax[[-1]]};
sigSmallnBarMax = sigRangenBarMax[[1, 1]];
sigBignBarMax = sigRangenBarMax[[-1, 1]];
Print["The best value for the significance of avoidance is sig. = , signBarMax,
". Using the uncertainties +/- of the cj,aj, the lowest and highest values are ",
sigSmallnBarMax, " and ", sigBignBarMax , " giving the range from sig. = ",
sigSmallnBarMax, " to ", sigBignBarMax, " . "]

The best value for the significance of avoidance is sig. = 0.00636211
. Using the uncertainties +/- of the cj,a;, the lowest and highest values are
0.00397639 and 0.00975809 giving the range from sig. = 0.00397639 to ©0.00975809 .
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nio4)= {jnBarMin, jnBarMax} ; (» {1. grid#, 2. alignment angle n} at Min and Max n .=)
aHminDegrees@ = grid[[ jnBarMin[[1]] ]|][[4]] (36@/ (27));
SHminDegrees® =grid[[ jnBarMin[[1]] ]][[5]] (360/ (27));
If[ (180 < aHminDegrees® < 361) , aHminDegrees = aHminDegreese - 180;
SHminDegrees = -SHminDegrees® , aHminDegrees = aHminDegreeso;
SHminDegrees =6HminDegree50];
oHmaxDegrees® = grid [ [ jnBarMax[[1]] ]][[4]] (36@/ (27));
sHmaxDegrees® = grid|[[ jnBarMax[[1]] ]][[51] (36@/ (27));
If[ (180 < aHmaxDegrees® < 361) , aHmaxDegrees = aHmaxDegreeso - 180;
6HmaxDegrees = -SHmaxDegrees® , aHmaxDegrees = aHmaxDegreeso;
6HmaxDegrees = 6HmaxDegreeso] ;
Print["The alignment hub Hy;, is located at (RA,dec) = ", {aHminDegrees, SHminDegrees },
" and at ", {aHminDegrees - 180, -SHminDegrees }, " , in degrees"|
Print["The avoidance hub H,,x is located at (RA,dec) = ", {aHmaxDegrees, SHmaxDegrees },

and at ", {aHmaxDegrees - 180, -SHmaxDegrees }, " , in degrees"]

The alignment hub Hpi, is located at (RA,dec) =
{106.408, -20.} and at {-73.5915, 20.} , in degrees

The avoidance hub H,.,x is located at (RA,dec) =
{9.93072, -22.} and at {-170.069, 22.} , in degrees

7. Plot of the alignment function 77(H)

Definitions

ajojnBarHjTable {RA, dec;, (H)} at each grid point H = H;, in degrees

nBarHjSmooth interpolation of @jdjnBarHjTable yields 7(H) as a smooth function of the (RA,dec) of H
xynBarAitoffTable {x, y, (X,y)} , where X,y are Aitoff coordinates and 77(x,y) is the alignment angle
dnContourPlot separation of successive contour lines, in degrees

listCP list contour plot of 77(H), from xynBarAitoffTable

xyAitoffSources {x,y} Aitoff coordinates for the sources’ locations on the sphere

mapOfnBar contour plot listCP of the alignment angle 77(H) , with source locations and labels

aH(a,0) , xH(e,0) , yH(e,0) are functions needed when making a 2-D map of the Celestial sphere. The origin xH, yH is centered on

a =06 =0. Notice the naming conflict: «H(a,0) is an Aitoff parameter which, in general, differs from the Right Ascension « .
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in103)= (*The following table ajéjnBarHjTable is interpolated below
to yield a smooth function of the alignment angle over the sphere.x)
(» Table Entries: 1. RA at jth grid point (degrees) 2. dec at jth grid
point (degrees) 3. alignment angle nBarRgnkj at jth grid point (degrees) x)
ajéjnBarHjTable = ( ajéjnBarHjTable® = {};
For[j =1, j <Length[jnBarHj], j++,
AppendTo[ ajéjnBarHjTablee, {grid[[]j, 4]] (360./ (2. 7)), grid[[], 5]] * (360./ (2. 7)),
jnBarHj[[3, 2]] » (368./ (2. 7))}] ; If[ 3602 grid[[], 4]]» (360./ (2. )) >354.,
AppendTo[ ajéjnBarHjTablee, {grid[[j, 4]]* (360./ (2. n)) - 360.,
grid[[], 5]] = (36@./ (2. 7)), jnBarHj[[], 2]] = (360./ (2. 7)) }]| ] ;
If[6.> grid[[j, 4]] » (360./ (2. 7)) 2@., AppendTo[ ajsjnBarHjTableo,
{grid[[], 4]] * (360./ (2. 7)) + 360, grid[[], 5]] » (360./ (2. 7)),
jnBarHj[[3, 2]] » (360./ (2. 7)) }] ] I
ajéjnBarHjTableo) ;

in(104:= nBarHjSmooth = Interpolation [ajéjnBarHjTable]
(*The smooth alignment angle function for the region.x)

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

. . D {{-5.92, .}, {-88., 88.
ourios- InterpolatingFunction| /\/ Ot iy s 88 |

The following Aitoff Plot formulas® were be found in, for example, Wikipedia contributors. “Aitoff projection.” Wikipedia, The
Free Encyclopedia. Wikipedia, The Free Encyclopedia, 25 May. 2017. Web. 3 Jan. 2018.

inp10s)= aH[a_, 6_] :=aH[a, 6] =ArcCos[Cos[ ((2. ) /360.) 6] Cos[ ((2. ) /360.) a/2.]]
(*angles a and & are in degreesx)
xH[a_, 6_] :=xH[a, 8] = (2. Cos[((2.)/360.) 6] Sin[((2. ) /360.) a/2.]) /Sinc[aH[a, 6]]
yH[a_, 6_] :=yH[a, 6] = Sin[((2.x) /360.) 6] /Sinc[aH[a, &]]

ni08)= XynBarAitoffTable = Partition[Flatten[Table[{xH[a - 180, -5], yH[a - 180, -5], nBarHjSmooth[a, 61},
{a, @, 360., 2.}, {5, -88., 88., 2.}]], 3];
(» The smooth alignment angle function nBarHjSmooth mapped onto a 2D
Aitoff projection of the sphere. *)

xyAitoffSources = Table[{xH[ aSrc[[n]] (360/ (2 7)), 6Src[[n]] (360/ (27x)) 1,
YH[ aSrc[[n]] (360/ (2x)), 6Src[[n]] (360/ (27)) 1}, {n, nSrc}];
(*The Aitoff coordinates for the sources' locations.x)
xyAitoffOppositeSources =
Table[{xH[ If[@<aSrc[[n]] (360/ (27)) < +180, aSrc[[n]] (360/ (2x)) - 180,
If[@>aSrc[[n]] (360/ (2x)) >-180, aSrc[[n]] (360/ (2x)) +18@]], -&Src[[n]] (360/ (27)) |,
YH[ If[@<aSrc[[n]] (360/ (2 7)) < +180, aSrc[[n]] (360/ (27)) - 180,
If[@>aSrc[[n]] (360/ (27)) >-180, aSrc[[n]] (36@/ (27)) +180]],
-8Src[[n]] (368/ (27)) ]}, {n, nSrc}];
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in111:= (* Contour plot of the alignment function nBarHjSmooth. =x)
1istCP = ListContourPlot [Union[xynBarAitoffTable (*,
{{xH[aHminDegrees, sSHminDegrees ] ,yH|aHminDegrees, SHminDegrees | ,nBarMin« (360./ (2.7))-1.0}},
{{xH[aHmaxDegrees, SHmaxDegrees] ,yH[aHmaxDegrees, SHmaxDegrees],
nBarMaxx (360./ (2.7) ) +1.0} } %) ] , AspectRatio-»1/2,
Contours - Table[n, {n, Floor[jnBarMin[[2]]  (36@./ (2. 7)) ] +1,
Ceiling[jnBarMax[[2]] * (36@./ (2. 7)) | - 1, dnContourPlot}],
ColorFunction - "TemperatureMap", PlotRange » {{-7, 7}, {-3, 3}}, Axes -> False, Frame » False] H

in1121= (*Construct the map of 7 (H) .%*)
mapOfnBar =
Show [ {1istCP, Table[ParametricPlot[{xH[a, 61, yH[a, 6]},
{6, -90, 90}, PlotStyle » {Black, Thickness[0.002]}, (*Mesh-{11,5,0}
(%{23,11,0} %) ,MeshStyle-Thick, ) PlotPoints » 60|, {a, -180, 180, 30} ]|, Table|
ParametricPlot[{xH[a, 6], yH[a, 8]}, {a, -180, 180}, PlotStyle » {Black, Thickness[0.002] },

(*Mesh-{11,5,0} (x{23,11,0} ) ,MeshStyle-Thick, ) PlotPoints » 6], {5, -60, 60, 30} ],

Graphics[{PointSize[0.007], Text [StyleForm["N", FontSize -> 10, FontWeight -> "Plain"],
{0, 1.85}], (*Sources S:x)Purple, Point[ xyAitoffSources |,
(xOpposite from sources, -S:x)Magenta, Point[xyAitoffOppositeSources],
Black, Text[StyleForm["Max", FontSize » 8, FontWeight -> "Bold"],

| 15

{xH[ - 180, @], yH[O, -60]}], {Arrow[BezierCurve[{{xH[ - 180, @], yH[@, -70]}, {-2.3, -2.0},

{xH[aHmaxDegrees - 180, -S5HmaxDegrees], yH[aHmaxDegrees - 180, -SHmaxDegrees]}}] ] },
Text [StyleForm["Min", FontSize -8, FontWeight -> "Bold"], {xH[ 180, @], yH[@, -60]}],
{Arrow[Beziercurve[{{xH[ 180, @], yH[O, -70]}, {2.3, -2.0},

{xH[aHminDegrees, sHminDegrees]|, yH|[aHminDegrees, sHminDegrees]}}]]},
Text [StyleForm["Min", FontSize -8, FontWeight -> "Bold"], {xH[ -180, @], yH[@, 60]}],
{Arrow[Beziercurve[{{xH[ -180, @], YH[®, 70]}, {-2.3, 2.0},

{xH[aHminDegrees - 180, -&HminDegrees|, yH[aHminDegrees - 180, -sHminDegrees]}}]]},
Text [StyleForm|"Max", FontSize -8, FontWeight -> "Bold"], {xH[ 186, @], YH[®, 60]}] ,
{Arrow[BezierCurve[{{xH[ 180, @], YH[O, 701}, {2.3, 2.0}, {xH[aHmaxDegrees, sHmaxDegrees],

yH[aHmaxDegrees, SHmaxDegrees]}}]]} }1}, Imagesize - 432];



16 | 20201211StarterKitForHubTest4.nb

in(113:= mapOfnBar
Print["Figure 2: The alignment angle function 77 (H), Eq. (1).
The map is centered on (RA,dec) = (©°,0°). Source dots are Purple ",
Purple, ", and the dots opposite the sources are Magenta ", Magenta, " ]
Print["Notes: The map is symmetric across diameters, i.e.
diametrically opposite points -H and H have the same alignment angle."]
Print["The contour lines are separated by ", dnContourPlot,
"°, This choice can be reset in Sec. 3."]
Print["The best alignment angle (min) is fnin = ", jnBarMin[[2]] (360./ (2. 7)), "°."]
Print["The best avoidance angle (max) is fnax = ", jnBarMax[[2]] (360./ (2. 7)), "°."]
Print["The alignment hubs Hp;i, and -H,;, are located at (RA,dec) = ",
{aHminDegrees, SHminDegrees }, " and at ",
{aHminDegrees - 180, - §HminDegrees }, " , in degrees."]
Print["The avoidance hubs H,,x and -H,,x are located at (RA,dec) = ",
{aHmaxDegrees, SHmaxDegrees }, " and at ",
{aHmaxDegrees - 189, - SHmaxDegrees }, " , in degrees."]
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Figure 2: The alignment angle function 77 (H), Eq. (1).
The map is centered on (RA,dec) = (0°,0°). Source dots are Purple
W, 2nd the dots opposite the sources are Magenta [ .

Notes: The map is symmetric across diameters, i.e.
diametrically opposite points -H and H have the same alignment angle.

The contour lines are separated by 4°. This choice can be reset in Sec. 3.
The best alignment angle (min) is 7j,i, = 21.8882°.
The best avoidance angle (max) is 7jyax = 68.769°.

The alignment hubs Hpi, and -H,i, are located at (RA,dec) =
{106.408, -20.} and at {-73.5915, 20.} , in degrees.

The avoidance hubs Hp.x and -H,.x are located at (RA,dec)
{9.93072, -22.} and at {-170.069, 22.} , in degrees.
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2= Print ["The number of sources: N = ", nSrc]
Print["The min alignment angle is npmin = ", jnBarMin[[2]] *(360./'(2.n)),
"° , which has a significance of sig. = ", signBarMin, ", plus/minus = + ",
sigBignBarMin - signBarMin, " and - ", signBarMin - sigSmallnBarMin,
" , giving a range from sig. = ", sigSmallnBarMin, " to ", sigBignBarMin, " .
Print["The max avoidance angle is nmax = ", jnBarMax[[2]]  (36@./ (2. 7)),
"° , which has a significance of sig. = ", signBarMax, ", plus/minus = + ",
sigBignBarMax - signBarMax, " and - "

,» signBarMax - sigSmallnBarMax,
" , giving a range from sig. = ", sigSmallnBarMax, " to ", sigBignBarMax, " ."]

The number of sources: N = 16

The min alignment angle is nmin = 21.8882
° , which has a significance of sig. = 0.0111662, plus/minus = + 0.0034526
and - 0.00284176 , giving a range from sig. = 0.00832443 to 0.0146188 .

The max avoidance angle is nmax = 68.769
° , which has a significance of sig. = 0.00636211, plus/minus = + ©.00339597
and - 0.00238572 , giving a range from sig. = 0.00397639 to 0.00975809 .

inf124]= (*Export the map "mapOfnBar" as a pdf. The export location can be reset in Sec. 3.%)
(*To activate, remove the remark brackets " (*" and "x)". %)
(+SetDirectory [mapDirectory] ;
Export [ "mapForStarterKit.pdf",Show [mapOfnBar, ImageSize-432],"PDF",ImageSize-{480,Automatic}]«)

References

0. R. Shurtleff, the viable Mathematica notebook is available, for a limited time, at the following URL.:
https://www.dropbox.com/s/31{8jak2e73re3¢/20201211StarterKitForHubTest4.nb?dI=0  (2021)

1. R. Shurtleff, “Indirect polarization alignment with points on the sky, the Hub Test” , https://vixra.org/abs/2011.0026 (2020).

2. Wolfram Research, Inc., Mathematica, Version 12.1, Champaign, IL (2020).

3. Wikipedia contributors. “Aitoff projection.” Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 25 May. 2017.

Web. 3 Jan. 2018.

Appendix

The map of the alignment angle 7(H) above sections the sphere into four regions, two of alignment (blue) and two of avoidance (red).
The hubs H,,;, and Hmax are far from the sources. It follows that the polarization directions should align with the direction toward or

away from H,;, and there should be few sources with polarization directions toward or away from Hpay.

The following plot confirms those expectations. The plot shows the occupancy of polarization directions ¢ . A dot is placed at # = 1
where the source has a PPA . Clearly there is a bunching of sources near y = 130°, which is the angle from local North, i.e. South
and East. A glance at the 7(H) map shows that H,,;;,, is southeast of the sources. Likewise the gap between ¢ = 20° to 75° corre-

sponds to an avoidance of the northeast, i.e. the direction of Hmax from the sources.
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. 360.
In[125]:= ListPlot[Table[{wn[[l]] (;———), 1}, {i, nSrc}],

PlotLabel -» "A gap from 20° to 75° and a bunching at 130°",
AxesLabel » {"y", None}, Axes » {True, False}, PlotRange -» { {0, 180}, {0, 2}}]
Print["Caption: The gap and bunching of the polarization directions corresponds
to the directions of divergence and convergence, respectively, of the
great circles determined by the polarization directions of the sources."]
Print["In Fig. 2, divergence regions (red) appear Northeast (PA = 45°) and
Southwest from the source region; the sources are purple dots in Fig. 2."]
Print["Convergence regions (blue) appear Southeast (PA =
135°) and Northwest from the source region."]

A gap from 20° to 75° and a bunching at 130°
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Caption: The gap and bunching of the polarization directions
corresponds to the directions of divergence and convergence, respectively,
of the great circles determined by the polarization directions of the sources.

In Fig. 2, divergence regions (red) appear Northeast (PA = 45°)
and Southwest from the source region; the sources are purple dots in Fig. 2.

Convergence regions (blue) appear Southeast (PA = 135°) and Northwest from the source region.



