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This paper shows that there exists in “Classicaltidaian Mechanics” a relationship between the
curvature of space and the density of energy sinbdlathat of “General Relativity”. It is as if the
General Theory of Relativity has replaced, in tlaktionship of Newtonian Mechanics, the scalar
quantities (space curvature and Energy densitythbiy equivalent tensorgrom this point of view,
the Theory of General Relativity can be consideag@n extension of Newton's classical mechanics,
an extension from Euclidean flat space-time to edrspace-time of Riemann

[. INTRODUCTION

In General Theory of Relativity [1], [2], [3], the

Einstein's equations relate the geometry of spave-t

curvature (expressed by the Einstein tensor) viieh t
distribution of matter within it (expressed by the
stress—energy tensor).
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where
G,y is the Einstein tensor, it depends on the
coordinates,

Despite the resolution of Einstein's equation feryv
particular cases, the General Relativity remainsrg
difficult theory to assimilate and Newton's mecleani
is considered as borderline case of this theory.

The objective of this paper is not to present a new
theory, nor to find new solutions to Einstein's

equations but to show that there exists in Newton's
mechanics a relation between the scalar curvature
in Euclidean flat space-timand the density of energy
similar to that of the General Relativity with its

equivalent tensorsin the curved space-time of Riemann

Ty is the stress—energy tensor, it depends on the gingtein was probably inspired by this relation in

mass-energy distribution,
G is the Newtonian constant of gravitation anid
the celerity of light in vacuum

The coefficientgf—f is called the “Einstein
gravitational constant”

Classical Mechanics to establish the equation ofsi
Theory, this is important for the physicists to know
this and then to understand that the theory of @tne
Relativity can be considered as an extension of
Newton's Classical Mechanic : an extension from
Euclidean flat space-time to curved space-time of

The tensors in Einstein's equation are symmetric of Riemann

dimension 4x4. So we have ten different equations t
solve. The terms of the tensky, are the entries of
the problem. The goal is to find the relation betwe

the coordinates which describes the system andhwhic

could be found in each term of the tensqwwGThe
search for exact solutions to the equation is ftbeze
an extremely complicated exercise,

The Solving Einstein's equation is only possible in
very simple cases like:

- A spherical distribution of static mass-energys tisi
the Schwarzschild metric that results in the
calculation of the horizon of the black hole or
Schwarzschild radius [4], [5].

- Weak field and low velocity approximation, the ten
components of Einstein's equation reduce to aesingl
equation which is the Poisson equation of
Newtonian gravity [6]

[I. DESCRIPTION

Consider a point massm » which is not subject to
any external force. According to the Newton's first
law, its motion is then uniform rectilinear and its
velocity is equal to @ »
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Figure 1: uniform rectilinear motion

If this point mass «n » passes near a masa= with
M > m, it starts to turn aroundMo> under the effect
of gravitational force (Newton's law of attractioiits
trajectory is quasi-circular with radiusRe.
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Figure 2: uniform circular motion

First Remark:

The mass #M» seems to curve the linear space of
the mass an» but not in the meaning of space-time
curvature of General Relativity.

The force exerted by the massMw> on «m» is,
according to Newton's law of attraction,
mM
F=Go7 (1)
According to the Newton's second law of motion, we
can write

F =my
therefore

M
y=G6G-

(2)
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which is equal at the same time to the centripetal
acceleration of the uniform circular motion

Y =% (4)
hence

v? M
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Multiplying and dividing the second term By

1_ 4G M ;

R v2 4mR? 0

1 . . :
R - curvature of the circular trajectory of radius
« R » (according to the definition of curvature).

TR fictitious areal density of M It is as if this

mass M is distributed (by its effect or its
gravitational field) over the surfadatR? of the
sphere of radius R » where the massm »
moves.
Equation (7) is a good example to understand this
relationship of proportionality between curvature o

space and density of mass (or density of energy, se
below equatiori 8).

Indeed, when the radiusR«> decrease® both the

1 . "
curvatureﬁ of a smaller circle and the fictitious areal

. M
density of mass—
4R

and in the same ratig

on a smaller sphere increase

* According to(5), the radius «R »

(8)

decreases when the velocity of rotatiomwsx of
the mass an» increases

GM

R

v =
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We will demonstrate now that the relatiof) between
the curvature of space and the density of the risass
independent of the variation of the velocity=
because the radiusR«o> depends on >,

Demonstration
Multiply the velocity «v » of «m » around the same
mass <M » by a factor @ »

vV—oav

Which corresponds, according to equati@), to a
radius «R », divided by «@™»

R —
The equatiori7)

becomes
1 41t M
R ~ (av)?
o (av) A1 ( )2
_ 4G a*M
~ a?v? AmR?

a?

R
() 41rG 2<M>
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The curvature a? (%) and the density of mass

M .
a? (4ﬂR2) have been multiplied bya?, the

proportionality factor?—za remained the same as
before multiplying the velocity by & ».



Second Remark:

When the velocity ¥ » is multiplied by a factor a »,
the curvature and the mass density will be muépli
by «a?», the proportionality factor?—f between
these two quantities remains the same; it is
independent of the variationa » of the velocity w».

We can therefore choose a reference veloaity «

Which value should we choose fopg ?

It makes more sense to choose as a referencetyeloci
«wy» for a mass in uniform circular motion the
maximum velocity it can have on its orbit.

The reference velocity is given by the equation

GM

Vo =
0 Ro

(10)

Its maximum value corresponds to the maximum

escape velocity ¥,,. » [7]. « V5. » is calculated
according to the principle of energy conservation:

kinetic energy + potential energy = 0

1 ) GmM
7 M Vesc — R—o =
,ZGM
UESC = R (ll)
0
Taking into account equatigi0)
Vesc = \/Z_vo (12)
therfore
(Vesc)
(vo)max = % (13)
We replacew,» by its value in(7) we obtain:
l _ 8nG (14)
R (Vesc)imax 4mR?

What becomes of this equation (14) with the
Restreinte Relativity ?

According to Restreint Relativity [8] and [9]
(15)
(16)

(Vesc)max = €
EM = MCZ
Equation (16) allows us to write:

Em

c2

M = (17)

where «c» represents the celerity of light, arff,,»
the energy associated with the miks

By replacing(Vesc)max @nd M by their value in the
equation(14)we obtain:

1 8nG EM

- = 1
R c* 4mR? (18)
where :
% = curvature of the circular trajectory of radius
«R»
4i’;2 = areal energy density of M This energyE), is
distributed over the surfacerR? of the sphere
of radius «R » where the massm » moves.
Third Remark:

Equation (18) shows a relationship between
curvature and energy density similar to the equatio
of General Relativity19)

8TG

GFV = FT’“W (19)
where
G,, = Einstein tensor, it represents tloarvature of
space-time

T,, = Energy-impulse tensor it represents the total
energy density (mass and energy)

Let's continue our analysis to find the meaning of
«Rg ». From(11)and(15), we deduce

2GM 2GM
RO = =

TR =0)
«Ry» is the minimum radius of the orbit that
corresponds to the maximum escape velocity»«
Below this value the escape velocity becomes greate
than «c », and since it is impossible, the mass =
can never escape and the mass x becomes a black
hole. «Ry » is the Schwarzschild radius in General
Relativity [10]. For the sun, = 2.948 km. This
means that if we concentrate the mass of the san in
sphere with a radius less tharRg», it becomes a
black hole for everything that passes at a distéegs

than «Rg » from it.

Fourth Remark:

c
vz
the equation of General Relativity correspondshie t

The value of the reference velocity = —= chosen in



maximum escape velocity or to the orbit whose mdiu theory for the other fundamental forces like the

is equal to Schwarzschild radius

Fifth Remark:
If the inertial masst" in "my" of equation(2) were

[1]
S . mM
not equal to the gravitational mass™ in "G R—Z" of

equation(1), we would not have had equati¢®) to
compare it to equatio¥) and then establish equation
(7) or (18). This may explain why Einstein said that
Newton’s principle of equivalence between inertial
mass and gravitational mass was the starting pofnt
the famous theory of General Relativity.

2]

[3]

Sixth Remark: [4]
The principle of equivalence cannot be applied to
electric force, because we have a mass on one side
and a charge on the other side:
140
41 R?
where " is the charge of massen" and "Q" is the
charge of masseM", therefore, we cannot simplify to
have an equation similar to equati¢®), i.e.

F=my= (21) [5]

[6]

=12 22)

" 4me R?
to then compare it to the equatiéf) and establish an
equation for the electric charge equivalent to dpra
(18), that is to say:

[7]

X 1 0 [8]

R ev? anR?
The conclusion is thatve cannot have a relation
between a “charge density tensor” and the “space
curvature tensor” equivalent to relation of Einstein’s
General Relativity.

(23)

[9]

[l. CONCLUSION

This paper is a new approach in the understanding
of the General Theory of Relativity. It shows the
origin of its equations in Newton's mechanics and i
enables a better understanding of this relationship
between the curvature of space and the density of
energy without going through the non-intuitive
tensorial equation of this theory. This paper also
shows the importance of the principle of equivaéenc
"gravitational mass and inertial mass" in the
establishment of the equation of this theory. It
demonstrates the impossibility to having an eqeival

electric force.
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