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Abstract We present the algebraic structures behind the approaches used to
work with pairwise comparison matrices and, in general, the representation
of preferences. We obtain a general definition of consistency and a universal
decomposition in the space of PCMs, which allow us to define a consistency
index. Also Arrow’s theorem, which is presented in a general form, is relevant.

All the presented results can be seen in the main formulations of PCMs,
i.e. multiplicative, additive and fuzzy approach, by the fact that each of them
is a particular interpretation of the more general algebraic structure needed
to deal with these theories.
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1 Introduction and motivation

As shown in [20], Riesz spaces can be used as general framework in the context
of pairwise comparison matrices (PCMs, shortly); in fact, it is possible to
present at once all approaches and to describe properties in this context. It
is undoubtedly the importance of ordered vector spaces in economic analysis,
since there is a natural ordering for which “more is better”, i.e. preferences
are monotonic in the order. Therefore Riesz spaces seem to be the natural
framework to deal with multi-criteria methods, too.

Riesz spaces have been studied and widely applied in economics and in
several other branches (see e.g. ([1,2,4,21]).

In this article we investigate the actual mathematical properties behind
the most common tools used in the study of pairwise comparison matrices.
Pairwise comparison matrices (PCMs) are a way in which one can express
preferences: the element ai,j indicates the preference of the element i compared
with j (see e.g. [25]).

They are used in the Analytic Hierarchy Process (AHP) introduced by
Saaty in [28], and successfully applied to many Multi-Criteria Decision Making
problems.

Inspired by [20], this work wants to enlighten which kind of algebraic struc-
tures are strictly essential to:

– express preferences in the field of PCMs;
– define properties, e.g. consistency, consistency index, weak consistency;
– obtain fundamental theorems, such as Arrow’s Theorem.

The paper is structured as follows. In Section 2 we recall the mathematical
definitions used in the paper. In Section 3 we focus on consistency in the field
of PCMs. By results of Subsection 3, in Section 3.1 we formalize a consistency
index. In Section 4 we exhibit Arrow’s theorem in the field of PCMs with
the minimum amount of properties to require to the algebraic structure which
describes preferences. In the conclusions we recapitulate the obtained results
and expose our final considerations.

2 Algebraic structures for preferences

A partially ordered set G = (G,≤) is a set G equipped with a partial order ≤,
that is a reflexive, antisymmetric and transitive relation.

Definition 1 A partially ordered vector space G = (G,+, ·,≤) is a real vector
space with an order relation ≤ that is compatible with the algebraic structure
of G, that is

(1.1) x ≤ y implies x+ z ≤ y + z for each x, y, z ∈ G;
(1.2) x ≤ y implies αx ≤ αy for every x, y ∈ G and α ≥ 0.
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In a partially ordered vector space G, the set {x ∈ G : x ≥ 0} is a convex
cone, called the positive cone or the non-negative cone of G, denoted by G+.
Any vector of G+ is said to be positive.

For every x ∈ G, the positive part x+, the negative part x−, and the
absolute value |x| are defined by x+ = x∨0, x− = (−x)∨0, and |x| = x++x−,
respectively.

Definition 2 A partially ordered vector space G = (G,+, ·,≤) is a Riesz
space (or vector lattice) if the partial order is a lattice order, i.e. every two
elements have a unique supremum and a unique infimum.

Many familiar spaces are Riesz spaces, as the following examples show.

Examples 1 The Euclidean space Rn is a Riesz space under the usual order-
ing, where

x = (x1, . . . , xn) ≤ y = (y1, . . . , yn)

whenever xi ≤ yi for each i = 1, 2, . . . , n.
The supremum and infimum of two vectors x and y are given by

x ∨ y = (max{x1, y1}, . . . ,max{xn, yn})

and

x ∧ y = (min{x1, y1}, . . . ,min{xn, yn}),

respectively.
Alo-groups, presented in [11], are examples of Riesz spaces. An Alo-group

is a totally ordered lattice group, and hence also an ℓ-group, and by Freuden-
thal’s theorem (see [21, Theorem 40.2]) every ℓ-group can be embedded into
a Riesz space. Let us recall that any archimedean abelian linearly ordered
group is isomorphic to a subgroup of R, as Hölder proved. By this, the results
contained in this paper generalize the ones contained in [11] i.e. we gener-
alize the additive, the multiplicative and the fuzzy approach (see [5,27,24],
respectively).

Let G be a Riesz space. For every n ∈ N, Gn is a Riesz space where the
ordering is defined coordinate-wise. In particular, the set of square matrices
of order n with entries in a Riesz space is a Riesz space, being isomorphic to
Gn2

.
Both the vector space C(X) of all continuous real functions and the vector

space Cb(X) of all bounded continuous real functions on the topological space
X are Riesz spaces, when the ordering is defined pointwise.

The space of piecewise linear functions on an interval of the real line, with
the usual pointwise ordering, is a Riesz space.

The vector space Lp(µ) (0 ≤ p ≤ ∞) is a Riesz space under the almost
everywhere pointwise ordering, i.e., f ≤ g in Lp(µ) if f(x) ≤ g(x) µ-almost
everywhere.

The vector spaces ℓp (0 < p ≤ ∞) are Riesz spaces under the usual point-
wise ordering.
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Definition 3 A Riesz space is said to be order complete (or Dedekind com-
plete) if every nonempty subset that is order bounded from above has a supre-
mum, or equivalently if every nonempty subset that is order bounded from
below has an infimum.

Definition 4 A vector space X is the direct sum of two subspaces Y and Z

if every x ∈ X has a unique decomposition of the form x = y+z, where y ∈ Y

and z ∈ Z.

3 Pairwise comparison matrices and consistency

Let G = (G,+) be an abelian group, and Mn be the set of all n× n-matrices
A = (ai,j), whose entries belong to G. Observe that, if we endow Mn with
an operation ⊕, defined by A ⊕ B = (ai,j + bi,j)i,j , where A = (ai,j)i,j and
B = (bi,j)i,j , then (Mn,⊕) is an abelian group. If G is a vector space over a
field K, then we can define a product by α⊙A = (αai,j)i,j , α ∈ K.

An n× n-matrix A = (ai,j)i,j is said to be skew-symmetric if aj,i = −ai,j
for every i, j = 1, 2, . . . , n, or equivalently if AT = ⊖A, where AT = (aj,i)i,j
and ⊖A = (−ai,j)i,j denote the transpose and the negative matrix of A, re-
spectively. Note that, in any skew-symmetric matrix, it is

aii = 0 for every i ∈ {1, 2, . . . , n}. (3.1)

From now on, when it is not otherwise explicitly specified, A = (ai,j)i,j denotes
a skew-symmetric matrix and G = (G,+) denotes any abelian group.

We say that A is consistent if

ai,k = ai,j + aj,k for all i, j, k ∈ {1, 2, . . . , n}. (3.2)

We say that A is totally inconsistent if
n∑

j=1

ai,j = 0 for each i ∈ {1, 2, . . . , n}.

A vector v = (v1, v2, . . . , vn) ∈ Gn is said to be coherent for a matrix A if
vi − vj = ai,j for every i, j ∈ {1, 2, . . . , n}.

Remark 1 Observe that the sum of any two consistent matrices A = (ai,j)i,j
and B = (bi,j)i,j is still consistent. Indeed, if A and B satisfy condition (3.2),
then for every i, j, k ∈ {1, 2, . . . , n} we have

ai,k + bi,k = ai,j + bi,j + aj,k + bj,k,

getting the consistency of A ⊕ B. Analogously it is possible to see that, if G
is a vector space over a field K, A = (ai,j)i,j is consistent and α ∈ K, then
α⊙A = (αai,j)i,j is also consistent.

Moreover, if A = (ai,j)i,j and B = (bi,j)i,j are totally inconsistent, then

n∑

j=1

(ai,j + bi,j) =

n∑

j=1

ai,j +

n∑

j=1

bi,j = 0
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for each i ∈ {1, 2, . . . , n}. Hence, the sum of any two totally inconsistent
matrices is still totally inconsistent. Similarly, if G is a vector space over K

and α ∈ K, then, from the equality

n∑

j=1

(αai,j) = α

n∑

j=1

ai,j , i ∈ {1, 2, . . . , n},

we deduce that α⊙A is totally inconsistent whenever A is totally inconsistent
and α ∈ K.

Therefore, the sets of all consistent matrices and of all totally inconsistent
matrices are two subgroups of Mn, and two subspaces of Mn when Mn is a
vector space of K.

Now we see some examples and fundamental properties of consistent matrices
and coherent vectors, extending to our setting [11, Propositions 5.3 and 5.4]
and [12, Propositions 13 and 14].

Proposition 1 Let A = (ai,j)i,j. The following results hold.
1.1) Any two vectors v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn), coherent

for A, differ by a constant c ∈ G, that is wi−vi = c for every i ∈ {1, 2, . . . , n}.
1.2) If v = (v1, v2, . . . , vn) is a coherent vector for A, then A is consistent.

1.3) If A is consistent, then each column vector a(h) =




a1,h
a2,h
· · ·
an,h


, h ∈ {1,

2, . . . , n}, is coherent for A.
1.4) A matrix A is consistent if and only if there is at least a coherent

vector for it.
1.5) A matrix A is consistent if and only if at least one of their column

vectors is coherent for it.

1.6) If G is a real vector space and α1, α2, . . . , αn ∈ R,
n∑

r=1

αr = 1, then the

vector v = (v1, v2, . . . , vn) of the affine combinations vi =
n∑

r=1

αr ai,r, i ∈ {1,

2, . . . , n}, is coherent for A. Moreover, if G is a vector space over the field Q

of the rational numbers, then the vector w = (w1, w2, . . . , wn) of the means

wi =
1

n

n∑

r=1

ai,r, i ∈ {1, 2, . . . , n}, is coherent for A.

Proof 1.1) Let v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) be such that
vi − vj = wi − wj = ai,j for each i, j ∈ {1, 2, . . . , n}. Then

wi − vi = wj − vj for all i, j ∈ {1, 2, . . . , n}. (3.3)

If we denote by c the common value in (3.3), then we get wi − vi = c for any
i ∈ {1, 2, . . . , n}. This proves 1.1).
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1.2) Let v = (v1, v2, . . . , vn) be as in the hypothesis. For every i, j, k ∈
{1, 2, . . . , n}, it is

vi − vj = −(vj − vi), vi − vk = (vi − vj) + (vj − vk). (3.4)

Thus, if ai,j = vi − vj , i, j ∈ {1, 2, . . . , n}, then from (3.4) we deduce that the
matrix A = (ai,j) is consistent. So, 1.2) is proved.

1.3) Fix arbitrarily h ∈ {1, 2, . . . , n}. Since A is consistent, for every i,
j ∈ {1, 2, . . . , n} we get ai,h = ai,j + aj,h, and hence ai,h − aj,h = ai,j . Thus,
1.3) is proved.

1.4) and 1.5) follow from 1.2) and 1.3).
1.6) Let α1, α2, . . . , αn be as in the hypothesis. As A is consistent, we get

vi − vj =

n∑

r=1

αr(ai,r − aj,r) =

n∑

r=1

αr(ai,r + ar,j) =

=
( n∑

r=1

αr

)
ai,j = ai,j , (3.5)

getting the consistency of v.
The proof of the last assertion is analogous to that of the previous one, by

replacing αr with
1

n
for each r ∈ {1, 2, . . . , n}.

Now we give an example of a totally inconsistent matrix.

Example 1 Given A = (ai,j)i,j , for every i, j, k ∈ {1, 2, . . . , n}, set

e
(A)
i,j,k = ai,j + aj,k + ak,i, (3.6)

and for each i, j ∈ {1, 2, . . . , n} put

e
(A)
i,j =

n∑

k=1

e
(A)
i,j,k. (3.7)

Let E(A) = (e
(A)
i,j )i,j .

We prove that E(A) is skew-symmetric.
Since A is skew-symmetric, for any i, j ∈ {1, 2, . . . , n} it is

e
(A)
i,j + e

(A)
j,i =

n∑

k=1

(ai,j + aj,k + ak,i + aj,i + ai,k + ak,j) = (3.8)

= n(ai,j + aj,i) +

n∑

k=1

(aj,k + ak,j) +

n∑

k=1

(ak,i + ai,k) = 0.

Thus, E(A) is skew-symmetric.
Now we prove that E(A) is totally inconsistent, extending [9, Proposi-

tion 11] to the context of arbitrary abelian groups. Choose arbitrarily i ∈
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{1, 2, . . . , n}. Thanks to the skew-symmetry of A and taking into account (3.1),
for each i ∈ {1, 2, . . . , n} we have

n∑

j=1

e
(A)
i,j =

n∑

j=1

n∑

k=1

(ai,j + aj,k + ak,i) =

= n

n∑

j=1

ai,j +
n∑

j=1

n∑

k=1

aj,k + n

n∑

k=1

ak,i =

= n

n∑

j=1

ai,j +
∑

j=k

aj,k +
∑

j<k

aj,k +
∑

j>k

aj,k + n

n∑

k=1

ak,i = (3.9)

= n

n∑

j=1

ai,j +
n∑

j=1

aj,j +
∑

j<k

aj,k +
∑

j<k

ak,j + n

n∑

j=1

aj,i

(by exchanging k with j)

= n

n∑

j=1

(ai,j + aj,i) +
∑

j<k

(aj,k + ak,j) = 0,

getting the total inconsistency of E(A).

The next step is to prove that every skew-symmetric matrix A can be
decomposed into the direct sum of a consistent and a totally inconsistent
matrix, extending [9, Propositions 12 and 13]. To this aim, we first give some
lemmas.

Lemma 1 Let Ã = (n⊙A)⊖E(A) = (ãi,j)i,j = (nai,j − e
(A)
i,j )i,j, where E(A)

is as in (3.7). Then Ã is consistent.

Proof First of all, we claim that Ã is skew-symmetric. Indeed, since A and
E(A) are skew-symmetric, for every i, j ∈ {1, 2, . . . , n} it is

naj,i − e
(A)
j,i = −nai,j + e

(A)
i,j = −(nai,j − e

(A)
i,j ).

Now we prove that Ã is consistent. Choose arbitrarily i, j, k ∈ {1, 2, . . . , n}.
Taking into account the skew-symmetry of A, we get

ãi,j + ãj,k + ãk,i = nai,j − e
(A)
i,j + naj,k − e

(A)
j,k + nak,i − e

(A)
k,i =

= nai,j −
n∑

h=1

e
(A)
i,j,h + naj,k −

n∑

h=1

e
(A)
j,k,h + nak,i −

n∑

h=1

e
(A)
k,i,h =

= nai,j + naj,k + nak,i +

−
n∑

h=1

(ai,j + aj,h + ah,i + aj,k + ak,h + ah,j + ak,i + ai,h + ah,k)

= nai,j + naj,k + nak,i − nai,j − naj,k − nak,i +

−
n∑

h=1

(aj,h + ah,j)−
n∑

h=1

(ah,i + ai,h)−
n∑

h=1

(ak,h + ah,k) = 0,
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that is the consistency of Ã.

Lemma 2 Let B = (bi,j)i,j, C = (ci,j)i,j, D = (di,j)i,j, D = B⊕C, where B

is totally inconsistent and C is consistent, and let E(D) be as in (3.7). Then,
E(D) = n⊙B.

Proof For every i, j, k ∈ {1, 2, . . . , n}, we have di,j = bi,j + ci,j , and since C

is consistent, we obtain

di,j + dj,k + dk,i = bi,j + bj,k + bk,i + ci,j + cj,k + ck,i =

= bi,j + bj,k + bk,i. (3.10)

From (3.10), taking into account the skew-symmetry and the total inconsis-
tency of B, we deduce

e
(D)
i,j =

n∑

k=1

(di,j + dj,k + dk,i) =
n∑

k=1

(bi,j + bj,k + bk,i) =

=
n∑

k=1

bi,j +
n∑

k=1

bj,k +
n∑

k=1

bk,i = n bi,j +
n∑

k=1

bj,k −
n∑

k=1

bi,k = n bi,j ,

that is the assertion.

Now we are ready to prove the result on existence and uniqueness of a decom-
position of a skew-symmetric matrix into the direct sum of a consistent and a
totally inconsistent matrix.

Theorem 2 Let G be a vector space over the field Q and A be a skew-
symmetric matrix. Then there is a totally inconsistent matrix B0 and a con-
sistent matrix C0 such that A = B0 ⊕ C0.

Moreover, if B1 is any totally inconsistent matrix and C1 is any consistent
matrix such that A = B1 ⊕ C1, then B1 = B0 and C1 = C0.

Proof Let E(A) be as in (3.7), B0 =
1

n
⊙ E(A),

C0 = A⊖B0 = A⊖
( 1

n
⊙ E(A)

)
=

1

n
⊙ ( (n⊙A)⊖ E(A)). (3.11)

It is not difficult to check that B0 is totally inconsistent, since E(A) is, and
that C0 is consistent, since (n⊙A)⊖ E(A) is.

Moreover, if B1 and C1 are as in the hypothesis, then, thanks to Lemma
2, we get E(A) = n ⊙ B1, and so B0 = B1. From this and (3.11) we deduce
that C1 = A⊖B1 = A⊖B0 = C0. This ends the proof.
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3.1 Consistency index

Let A = (ai,j)i,j be a skew-symmetric matrix, non necessarily consistent. We
can estimate the quantity

e
(A)
i,j,k = ai,j + aj,k + ak,i (3.12)

as i, j, k vary in {1, 2, . . . , n}, taking into account that the expression in (3.12)
is equal to 0 for every choice of i, j and k if and only if A is consistent. The
consistency index of a matrix A will indicate, in a certain sense, “how much
A is far from a consistent matrix”. In this section, we prove some fundamen-
tal properties of the consistency index (see also [7,8,19] for related axiomatic
properties and for different kinds of consistency indices existing in the litera-
ture).

We begin with proving that e
(A)
i,j,k is permutation invariant up to the sign,

extending [16, Proposition 21] to the setting of arbitrary abelian groups.

Proposition 2 Let i, j, k ∈ {1, . . . , n}, and let σ : {i, j, k} → {i, j, k} be any
permutation. Then, either

e
(A)
σ(i),σ(j),σ(k) = e

(A)
i,j,k (3.13)

or

e
(A)
σ(i),σ(j),σ(k) = −e

(A)
i,j,k. (3.14)

Moreover, if at least two elements among i, j, k are equal, then e
(A)
i,j,k = 0.

Proof First of all, observe that the equality in (3.13) is obvious when σ is the
identity, and is readily seen when σ(i) = j, σ(j) = k and σ(k) = i or σ(i) = k,
σ(j) = i and σ(k) = j. When σ(i) = i, σ(j) = k and σ(k) = j, taking into
account the skew-symmetry of A, we get

e
(A)
σ(i),σ(j),σ(k) = e

(A)
i,k,j = ai,k + ak,j + aj,i = −ai,j − aj,k − ak,i = −e

(A)
i,j,k.(3.15)

From (3.15) it follows that (3.14) holds also when σ(i) = k, σ(j) = j and
σ(k) = i or σ(i) = j, σ(j) = i and σ(k) = k.

Now, suppose that the set {i, j, k} has at least two equal elements. Without
loss of generality, we can assume that i = j, since the other cases are analogous.
By the skew-symmetry of A, we have

e
(A)
i,j,k = e

(A)
i,i,k = ai,i + ai,k + ak,i = 0.

This completes the proof.

Now, in order to define the consistency index, we will estimate the “size” of

the quantities e
(A)
i,j,k. To this aim, we endow G = (G,+) with an “extended

norm”.
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Definition 5 (see [23, Definition 8.3]) Let G = (G,+) be a vector space over
a normed field (K, | · |), and let (Y,≤) be a partially ordered vector space. We
say that a function ‖ · ‖ : G → Y is a cone norm over K, on G, with respect
to Y , if it satisfies the following properties:

5.1) ‖x‖ ≥ 0 for each x ∈ G, and ‖x‖ = 0 if and only if x = 0;
5.2) ‖αx‖ = |α| ‖x‖ for every x ∈ G and α ∈ K;
5.3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ whenever x, y ∈ G.

In this case, we say that G = (G,+, ‖ · ‖) is a cone normed space over K,
with respect to Y .

For example, we observe that any usual norm (with respect to R) on a normed
space G is a cone norm on G. Another example of cone norm is the absolute
value in any Riesz space G, defined by |x| = x ∨ (−x) for each x ∈ G. In this
case, we have G = Y .

Let G be a Dedekind complete Riesz space, endowed with a strong order
unit e, that is an element e such that e ≥ 0, e 6= 0 and for every x ∈ G there
is a positive real number β with |x| ≤ β e. An example of “real” norm is the
Minkowski functional ‖ · ‖e associated with the interval

[−e, e] = {x ∈ G : −e ≤ x ≤ e},

defined by

‖x‖e = min{β ∈ R, β ≥ 0 : |x| ≤ β e}. (3.16)

The norm in (3.16) has the property that

‖x‖ ≤ ‖y‖ whenever x, y ∈ G and 0 ≤ x ≤ y (3.17)

(see also [6, §4], [22, Proposition 1.2.13]). In this case, Y = R.

From now on, we suppose that G = (G,+, ‖ · ‖) is a cone normed space.
Now we define the consistency index for matrices.
If A = (ai,j)i,j is a 3×3-matrix, then we define the consistency index IC(A)

of A by

IC(A) = ‖e
(A)
1,2,3‖. (3.18)

Note that, since A is skew-symmetric, IC(A) indicates how “far” A is from a
consistent matrix. Indeed, by Proposition 2, we get

{e
(A)
i,j,k : i, j, k ∈ {1, 2, 3}} = {e

(A)
1,2,3,−e

(A)
1,2,3, 0},

and hence

{‖e
(A)
i,j,k‖ : i, j, k ∈ {1, 2, 3}} = {‖e

(A)
1,2,3‖, 0}

since, by 5.2), ‖ − x‖ = ‖x‖ for each x ∈ G.
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Now, let A = (ai,j)i,j be an n× n-matrix, with n ≥ 4. Set Tn = {(i, j, k) ∈
{1, 2, . . . , n}3 : i < j < k}, and let ♯(Tn) denote the cardinality of Tn. Observe
that

♯(Tn) =
n!

3!(n− 3)!
=

n(n− 1)(n− 2)

6
.

Let us define the consistency index IC(A) of A by

IC(A) =

∑

(i,j,k)∈Tn

∥∥∥e(A)
i,j,k

∥∥∥

♯(Tn)
. (3.19)

Observe that, when n = 3, it is possible to give an analogous definition as in
(3.19), which turns out to be equivalent to that given in (3.18), since ♯(T3) = 1.

Note that, by Proposition 2, we get

{‖e
(A)
i,j,k‖ : (i, j, k) ∈ {1, 2, . . . , n}3} = {‖e

(A)
i,j,k‖ : (i, j, k) ∈ Tn} ∪ {0}.

Moreover, from equalities (3.13) and (3.14) of Proposition 2 we deduce the
following result, which extends [13, Proposition 15] to the cone normed space
setting.

Theorem 3 Let A = (ai,j)i,j, σ : {1, 2, . . . , n} → {1, 2, . . . , n} be a permuta-
tion, and A(σ) = (aσ(i),σ(j))i,j.

Then, IC(A
σ) = IC(A).

Furthermore, if G is a real vector space, we have the next result, extending
[13, Proposition 17] to our context.

Theorem 4 Let G = (G,+, ‖ · ‖) be a cone normed space over R. Let A =
(ai,j)i,j, α ∈ R, and α⊙A = (αai,j)i,j.

Then, IC(α⊙A) = |α| IC(A).

Proof Choose arbitrarily α ∈ R. For each (i, j, k) ∈ Tn we have

e
(α⊙A)
i,j,k = αai,j + αaj,k + αak,i =

= α (ai,j + aj,k + ak,i) = α e
(A)
i,j,k. (3.20)

Taking in (3.20) the norms, and taking into account 5.2), we get

‖e
(α⊙A)
i,j,k ‖ = |α| ‖e

(A)
i,j,k‖.

The assertion follows from the arbitrariness of the triple (i, j, k) in Tn and the
definition of consistency index.

Remark 2 Observe that, when the norm ‖ · ‖ fulfils (3.17), the consistency
index satisfies a “monotonicity-type” property with respect to a fixed single
entry, as the involved matrix is farther than a consistent matrix.

To see this, let A = (ai,j)i,j be a consistent matrix, and ap,q ∈ G be a
fixed entry of A, such that p 6= q. Let bp,q 6= ap,q, bq,p = −bp,q, and set
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B = (bi,j)i,j , where bi,j = ai,j whenever (i, j) 6= (p, q) and (i, j) 6= (q, p). For
any r ∈ {1, 2, . . . , n} with r 6= p and r 6= q, we get ap,r + ar,q = ap,q 6= bp,q,
so that ap,r + ar,q + bq,p 6= 0. This implies, by the definition of the consistency
index, that IC(B) > 0 = IC(A).

Now, let (Λ,-) be a partially ordered set, (p, q) ∈ {1, 2, . . . , n} be a fixed

pair as above, and suppose that b
(λ)
p,q , b

(λ)
q,p , λ ∈ Λ, are two families of elements

of G with 0 ≤ b
(λ1)
p,q ≤ b

(λ2)
p,q whenever λ1 - λ2, and b

(λ)
q,p = −b

(λ)
p,q for all λ ∈ Λ.

Without loss of generality, we can suppose p < q. Set B(λ) = (b
(λ)
i,j )i,j , where

b
(λ)
i,j = ai,j whenever (i, j) 6= (p, q) and (i, j) 6= (q, p). (3.21)

Let us consider the triples of the type eB
(λ)

i,j,k , where (i, j, k) ∈ Tn. If p 6= i or

q 6= k, then we get 0 ≤ eB
(λ1)

i,j,k ≤ eB
(λ2)

i,j,k whenever λ1 - λ2. If p = i and q = k,

then 0 ≥ eB
(λ1)

i,j,k ≥ eB
(λ2)

i,j,k , that is 0 ≤ −eB
(λ1)

i,j,k ≤ −eB
(λ2)

i,j,k , whenever λ1 - λ2.
Thanks to (3.17), in the first case we obtain

‖eB
(λ1)

i,j,k ‖ ≤ ‖eB
(λ2)

i,j,k ‖ whenever λ1 - λ2, (3.22)

and in the second case, taking into account 5.2) and (3.17), we get

‖eB
(λ1)

i,j,k ‖ = ‖ − eB
(λ1)

i,j,k ‖ ≤ ‖ − eB
(λ2)

i,j,k ‖ = ‖eB
(λ2)

i,j,k ‖ whenever λ1 - λ2.(3.23)

From (3.21), (3.22) and (3.23) we deduce that, if λ1 - λ2, then IC(B
(λ1)) ≤

IC(B
(λ2)). Thus, our “monotonicity” property with respect to a fixed single

entry is proved. This extends [13, Proposition 19] to our context.

4 Social preferences and Arrow’s conditions

Let G = (G,≤) be any partially ordered set. Given any two elements a, b ∈ G,
we say that b ≥ a if a ≤ b, and that a < b or b > a if a ≤ b and a 6= b.
Let q be any positive integer. Given any two elements a = (a1, a2, . . . , aq),
b = (b1, b2, . . . , bq) ∈ Gq, we say that a ≤ b or b ≥ a (resp. a < b or b > a)
if ai ≤ bi (resp. ai < bi) for every i ∈ {1, 2, . . . , q}.

LetG = (G,+) be an abelian group. Given two elements a = (a1, a2, . . . , aq),
b = (b1, b2, . . . , bq) ∈ Gq, we put a+ b = (a1 + b1, a2 + b2, . . . , aq + bq),
a− b = (a1 − b1, a2 − b2, . . . , aq − bq).

A set G = (G,+,≤) is called a partially ordered abelian group if (G,+) is an
abelian group, (G,≤) is a partially ordered set and a ≤ b implies a+ c ≤ b+ c

whenever a, b, c ∈ G. Observe that, in this case, we get

a+ b > 0 whenever a > 0 and b ≥ 0. (4.1)

Indeed, let a > 0 and b ≥ 0. Since G is a partially ordered abelian group, it is
a+ b ≥ 0. Suppose, by contradiction, that a+ b = 0. Then a = −b, and hence
a ≤ 0, because b ≥ 0. This is impossible, since a > 0 by hypothesis.
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Let q ≥ 2 be a positive integer. A function φ : Gq → G is said to be
increasing (resp. strictly increasing) if φ(a) ≤ φ(b) whenever a ≤ b (resp.
φ(a) < φ(b) whenever a < b). A function φ : Gq → G is idempotent if
φ(a, a, . . . , a) = a for each a ∈ G. A strictly increasing and idempotent func-
tion φ : Gq → G is called an averaging functional. It is not difficult to check
that, if G is a real vector space, then every convex combination

φ(a1, a2, . . . , aq) =

q∑

i=1

αi ai, (4.2)

with αi ∈ R, αi > 0 for all i ∈ {1, 2, . . . , q} and

q∑

i=1

αi = 1, is an averaging

functional (in particular, note that strict monotonicity follows from (4.1)). As
a particular case, if G is a vector space over Q, then the mean

φ(a1, a2, . . . , aq) =
1

q

q∑

i=1

ai

is an averaging functional.
In the literature, besides consistency of PCMs, the property of weak con-

sistency for skew-symmetric matrices is investigated. Observe that every con-
sistency matrix is also weak consistent, but the converse is not true in general.
Moreover, note that weak consistency is sometimes easier to check than con-
sistency (see also [14]). We extend the concepts of ordinal evaluation vector
and weak consistency to partially ordered sets.

Definition 6 Let S be the set of all skew-symmetric n × n-matrices, A =
(ai,j)i,j ∈ S, and v = (v1, v2, . . . , vn) ∈ Gn.

We say that v is an ordinal evaluation vector for A if the following impli-
cations hold for every i, j ∈ {1, 2, . . . , n}:

6.1) [ai,j > 0] =⇒ [vi > vj ];
6.2) [ai,j = 0] =⇒ [vi = vj ].

Remark 3 Observe that condition 6.1) is equivalent to
6.3) [ai,j < 0] =⇒ [vi < vj ].
Indeed, suppose that ai,j < 0. Then, by the skew-symmetry of A, we get

aj,i = −ai,j > 0. By 6.1), we have vj > vi, that is vi < vj . Thus, 6.1) implies
6.3). The proof of the converse implication is analogous.

Definition 7 A matrix A = (ai,j)i,j ∈ S is said to be weakly consistent if for
every i, j ∈ {1, 2, . . . , n},

[ai,j > 0] =⇒ [ai,k > aj,k for all k ∈ {1, 2, . . . , n}], and
[ai,j = 0] =⇒ [ai,k = aj,k for any k ∈ {1, 2, . . . , n}].

Now we see some basic properties of weak consistency, extending [14, Theorems
4.1 and 4.2] to the partially ordered space setting.
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Proposition 3 3.1) If A is consistent, then A is weakly consistent.

3.2) If A is weakly consistent, then every column vector a(h) =




a1,h
a2,h
· · ·
an,h


,

h ∈ {1, 2, . . . , n}, is an ordinal evaluation vector for A.
3.3) If φ : Gn → G is a strictly increasing function, then the vector

w = (w1, w2, . . . , wn) defined by

wi = φ(ai,1, ai,2, . . . , ai,n), i ∈ {1, 2, . . . , n}

is an ordinal evaluation vector for A.

Proof 3.1) If A is consistent, then for every i, j, k ∈ {1, 2, . . . , n} it is ai,j +
aj,k = ai,k, and hence ai,j = ai,k − aj,k. Thus, if ai,j > 0 (resp. ai,j = 0),
then ai,k > aj,k (resp. ai,k = aj,k). By the arbitrariness of k, we get that A is
weakly consistent.

3.2) It is a direct consequence of the definitions of weak consistency and
ordinal evaluation vector.

3.3) Choose arbitrarily i, j ∈ {1, 2, . . . , n}. By the definition of weak
consistency, if ai,j > 0, then ai,k > aj,k for each k ∈ {1, 2, . . . , n}. Since φ is
strictly increasing, then

φ(ai,1, ai,2, . . . , ai,n) > φ(aj,1, aj,2, . . . , aj,n).

Analogously it is possible to check that, if ai,j = 0, then

φ(ai,1, ai,2, . . . , ai,n) = φ(aj,1, aj,2, . . . , aj,n),

getting the assertion.

Remark 4 Note that, in general, weak consistency does not imply consistency,
and the sum of two weakly consistent matrices is not weakly consistent (see
e.g. [14, Example 4.1], [17, Remark 3]).

The next step is to formulate Arrow’s conditions in the partially ordered space
setting, and extend earlier results of [15] and [17].

Let S be as in Definition 6, and ∅ 6= T ⊂ Sm. A profile is an element of
T . A procedure on T for aggregating and/or synthesizing the preferences of a
profile in one matrix is any function Φ : T0 → S, where ∅ 6= T0 ⊂ T .

For every (A1, A2, . . . , Am) ∈ Sm and (i, j) ∈ {1, 2, . . . , n}2, set ai,j =
(a1i,j , a

2
i,j , . . . , a

m
i,j).

Definition 8 We say that a procedure Φ on T satisfies the condition of un-
restricted domain (in short, condition U∗) if T0 = T .

A procedure Φ fulfils pairwise unanimity (condition P ∗) if for every pro-
file (A1, A2, . . . , Am) ∈ T0, with As = (asi,j)i,j , s ∈ {1, 2, . . . ,m}, we get
that, if asi,j > 0 for each s ∈ {1, 2, . . . ,m}, then ãi,j > 0, where ãi,j =

(Φ(A1, A2, . . . , Am))i,j , (i, j) ∈ {1, 2, . . . , n}2.
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A procedure Φ satisfies the condition of independence from irrelevant al-
ternatives (condition I∗) if for each nonempty set Y ⊂ {1, 2, . . . , n} and
for any two profiles (A1, A2, . . . , Am) = ((a1i,j)i,j , (a

2
i,j)i,j , . . . , (a

m
i,j)i,j), (B1,

B2, . . . , Bm) = ((b1i,j)i,j , (b
2
i,j)i,j , . . . , (b

m
i,j)i,j),

such that

A(Y )
s = (asi,j)(i,j)∈Y 2 , B(Y )

s = (bsi,j)(i,j)∈Y 2 , s ∈ {1, 2, . . . ,m}, (4.3)

it is (Φ(A1, A2, . . . , Am))(Y ) = (Φ(B1, B2, . . . , Bm))(Y ).
A procedure Φ satisfies the condition of nondictatorship (condition D∗)

if there is no element d ∈ {1, 2, . . . ,m} such that Φ(A1, A2, . . . , Am) = Ad

whenever Ai 6= Aj for at least two different i, j ∈ {1, 2, . . . , n}.

We extend to the setting of partially ordered spaces and averaging functionals
[17, Proposition 10] and [15, Theorem 1].

Proposition 4 Let T = T0 = Sm, ϕ : Gm → G be an averaging functional
and Φ : Sm → S be a procedure defined, for each (A1, A2, . . . , Am) ∈ T , by

(Φ(A1, A2, . . . , Am))i,j = ϕ(ai,j), (i, j) ∈ {1, 2, . . . , n}2. (4.4)

Then Φ satisfies U∗, P ∗ and I∗ on T . Moreover, if G is a partially ordered
real vector space and ϕ is a convex combination as in (4.2), then Φ satisfies
also D∗ on T .

Proof U∗) It is readily seen that condition U∗ is fulfilled, because Φ is defined
on the whole on T .

P ∗) Let (A1, A2, . . . , Am) ∈ T , As = (asi,j), s ∈ {1, 2, . . . ,m}, be such that

asi,j > 0 for each s ∈ {1, . . . ,m}, i, j ∈ {1, 2, . . . , n}. (4.5)

Since ϕ is strictly increasing, from (4.5) we obtain

ϕ(a1i,j , a
2
i,j , . . . , a

m
i,j) > 0 (4.6)

for any i, j ∈ {1, 2, . . . , n}. Hence, condition P ∗ is fulfilled.
I∗) Let (A1, A2, . . . , Am), (B1, B2, . . . , Bm) ∈ T be as in (4.3), namely such

that

A(Y )
s = (asi,j)(i,j)∈Y 2 = B(Y )

s = (bsi,j)(i,j)∈Y 2

for each s ∈ {1, 2, . . . ,m}. This means that

asi,j = bsi,j for any i, j ∈ Y and s ∈ {1, 2, . . . ,m}. (4.7)

From (4.7) it follows that

ϕ(asi,j , a
s
i,j , . . . , a

s
i,j) = ϕ(bsi,j , b

s
i,j , . . . , b

s
i,j) for any i, j ∈ Y.

Thus, I∗ is satisfied.
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The next step is to formulate Arrow’s conditions in the context of partially
ordered vector spaces and averaging functionals for a procedure, in order to
aggregate and/or syntesize the preferences of a profile in a vector, which ex-
presses, in a certain sense, the “order” of preferences, extending [17, Proposi-
tions 11-13].

Let ϕ : Gm → G be an averaging functional, and Φ : Sm → S is a procedure
defined, for each (A1, A2, . . . , Am) ∈ Sm, by

(Φ(A1, A2, . . . , Am))i,j = ϕ(ai,j), (i, j) ∈ {1, 2, . . . , n}2. (4.8)

We recall that, given an n× n-matrix A = (ai,j)i,j and r ∈ {1, 2, . . . , n}, then
a(r) = (ar,1, ar,2, . . . , ar,n) denotes the r-th row.

Now, let ϕ : Gm → G and φ : Gn → G be any two fixed averaging
functionals, let ∅ 6= T0 ⊂ T ⊂ S, and define ζ : T0 → Gn by setting, for each
A ∈ T0 and r ∈ {1, 2, . . . , n},

ζ(A) = (φ(a(1)), φ(a(2)), . . . , φ(a(n))) = (4.9)

= (φ(a1,1, a1,2, . . . , a1,n), φ(a2,1, a2,2, . . . , a2,n), . . . , φ(an,1, an,2, . . . , an,n)).

Let Ψ : T0 → Gn be defined by

Ψ(A1, A2, . . . , Am) = ζ(Φ(A1, A2, . . . , Am)), (A1, A2, . . . , Am) ∈ Sm,(4.10)

where Φ is as in (4.4).
Now we formulate Arrow’s conditions in our context.

Definition 9 A procedure Ψ on T satisfies the condition of unrestricted do-
main (in short, condition U∗∗) if T0 = T .

A procedure Ψ on T fulfils pairwise unanimity (condition P ∗∗) if for every
profile (A1, A2, . . . , Am) ∈ T0, with As = (asi,j)i,j , s ∈ {1, 2, . . . ,m}, we get
that, if i, j ∈ {1, 2, . . . , n} are such that asi,j > 0 for every s ∈ {1, 2, . . . ,m},
then (Ψ(A1, A2, . . . , Am))i > (Ψ(A1, A2, . . . , Am))j .

A procedure Φ satisfies the condition of independence from irrelevant al-
ternatives (condition I∗∗) if for each nonempty set Y ⊂ {1, 2, . . . , n} and
for any two profiles (A1, A2, . . . , Am) = ((a1i,j)i,j , (a

2
i,j)i,j , . . . , (a

m
i,j)i,j), (B1,

B2, . . . , Bm) = ((b1i,j)i,j , (b
2
i,j)i,j , . . . , (b

m
i,j)i,j), such that

A(Y )
s = (asi,j)(i,j)∈Y 2 = B(Y )

s = (bsi,j)(i,j)∈Y 2 , s ∈ {1, 2, . . . ,m}, (4.11)

it is

((Ψ(A1, A2, . . . , Am))(Y ))i > ((Ψ(A1, A2, . . . , Am))(Y ))j if and only if

((Ψ(B1, B2, . . . , Bm))(Y ))i > ((Ψ(B1, B2, . . . , Bm))(Y ))j

for any i, j ∈ Y .
A procedure Φ satisfies the condition of nondictatorship (condition D∗∗) if

there is no element d ∈ {1, 2, . . . ,m} such that

Ψ(A1, A2, . . . , Am) = Ψ(Ad, Ad, . . . , Ad)

whenever Ai 6= Aj for at least a pair (i, j) ∈ {1, 2, . . . , n}2 such that i 6= j.
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Now we prove the next result about Arrow’s conditions on Ψ in the setting of
partially ordered vector spaces and averaging functionals.

Theorem 5 Let C (resp. WC) ⊂ S be the set of all consistent (resp. weakly
consistent) n×n-matrices, ϕ : Gm → G, φ : Gn → G be averaging functionals,
and Ψ be the preference aggregation procedure in (4.10). Then,

5.1) the function Ψ , on Sm, (WC)m or Cm, satisfies condition U∗∗, and,
when G is a partially ordered real vector space and φ, ϕ are convex combina-
tions, also condition D∗∗;

5.2) the function Ψ , on (WC)m or Cm, satisfies condition P ∗∗;
5.3) the function Ψ , on Cm, satisfies condition I∗∗.

Proof 5.1) Since Ψ is defined on all elements of Sm without restrictions,
condition U∗∗ is fulfilled for any choice of T ⊂ S.

Moreover, observe that the convex combinations of vectors defined in (4.2)
are not identically equal to anyone of these vectors, and hence they satisfy
condition D∗∗.

5.2) Pick T = (WC)m. Let (A1, A2, . . . , Am) ∈ T , As = (asi,j), where
s ∈ {1, 2, . . . ,m}, and i, j ∈ {1, 2, . . . , n} be such that

asi,j > 0 for each s ∈ {1, . . . ,m}. (4.12)

Since, by hypothesis,As = (asi,j)i,j is weakly consistent for all s ∈ {1, 2, . . . ,m},
from (4.12) it follows that

asi,h > asj,h for all i, j, h ∈ {1, 2, . . . , n} and s ∈ {1, 2, . . . ,m}. (4.13)

Now, set B = (bi,j)i,j = (ϕ(a1i,j , a
2
i,j , . . . , a

m
i,j))i,j . Note that, thanks to (4.4),

we get B = Φ(A1, A2, . . . , Am). As ϕ is strictly increasing, from (4.13) we
obtain

bi,h = ϕ(a1i,h, a
2
i,h, . . . , a

m
i,h) > ϕ(a1j,h, a

2
j,h, . . . , a

m
j,h) = bj,h (4.14)

for all i, j, h ∈ {1, 2, . . . , n}. Now, let

ζ(B) = (φ(b1,1, b1,2, . . . , b1,n), φ(b2,1, b2,2, . . . , b2,n), . . . , φ(bn,1, bn,2, . . . , bn,n)).

(4.15)

Since ϕ is strictly increasing, from (4.14) and (4.15) we deduce

(ζ(B))i = φ(bi,1, bi,2, . . . , bi,n) > φ(bj,1, bj,2, . . . , bj,n) = (ζ(B))j .

Therefore, condition P ∗∗ is satisfied.
By arguing analogously as above, it is possible to check that 5.2) holds

even if one takes Cm instead of (WC)m.
5.3) Pick T = Cm. For each Y ⊂ {1, 2, . . . , n} and every matrix A ∈ C, set

A(Y ) = (ai,j)(i,j)∈Y 2 . Let (A1, A2, . . . , Am), (B1, B2, . . . , Bm) ∈ T . Let Ã =

(ãi,j)(i,j)∈Y 2 = Φ(A1, A2, . . . , Am), B̃ = (̃bi,j)(i,j)∈Y 2 = Φ(B1, B2, . . . , Bm).

By hypothesis, we get Ã, B̃ ∈ C ⊂ WC and hence, by Proposition 3, (ζ(Ã))i =
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φ(ãi,1, ãi,2, . . . , ãi,n) and (ζ(B̃))i = φ(̃bi,1, b̃i,2, . . . , b̃i,n) are ordinal evaluation

vectors for each i ∈ Y . Since A
(Y )
s = B

(Y )
s for every s ∈ {1, 2, . . .m}, then

(ζ(Ã))i = (ζ(B̃))i for all i ∈ Y , and hence for every i, j ∈ Y we get (ζ(Ã))i >

(ζ(Ã))j if and only if (ζ(B̃))i > (ζ(B̃))j . Thus, condition I∗∗ holds.

Remark 5 Observe that, in general, condition I∗∗ does not hold, when T =
(WC)m (see e.g. [17, Remark 3]).

5 Conclusions

We propose a generalization of algebraic structures used to work with PCMs.
This leads us to a comprehension of which properties we actually use or need
when we want to represent preferences, social choices and, in this particular
case, PCMs. All the presented results can be easily translated in the main
formulations of PCMs, i.e. multiplicative, additive and fuzzy approach, by the
fact that each of them is a particular interpretation of the more general and
essential algebraic structure needed to deal with this theory. We stress also
that the generality of the used structures allows us to immediately recognize
whether a formulation is enough powerful to express preferences and which
kind of properties and theorems can be achieved.
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