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Abstract 

Vertex cover problem is a famous combinatorial problem, which its complexity has been heavily studied. It is 

known that it is hard to approximate to within any constant factor better than 2. In this paper, based on the addition 

of new constraints to the combination of 3 semidefinite programming (SDP) relaxations, we introduce a new 

stronger SDP relaxation for vertex cover problem which solve it exactly on general graphs. In this manner and by 

solving one of the NP-complete problems in polynomial time, we conclude that P=NP.    

Keywords: Discrete Optimization, Vertex Cover Problem, Semi-definite Programming (SDP), Complexity Theory, 

NP-Complete Problems.  

1. Introduction 

In complexity theory, the abbreviation NP refers to "nondeterministic polynomial", where a problem 

is in NP if we can test whether a solution is correct in polynomial time. P and NP-complete problems are 

subsets of NP Problems. We can solve P problems in polynomial time while determining whether or not it 

is possible to solve NP-complete problems quickly (called the P vs. NP problem) is one of the principal 

unsolved problems in Mathematics and Computer science.  

Interestingly, many results in complexity theory and computational optimization assume solidly based 

on the hypothesis P≠NP [4]. Moreover, due to this hypothesis and intractability of NP-complete 

problems, these problems were often addressed by using heuristic methods and approximation algorithms 

and as the field progressed, it became apparent that different NP-complete optimization problems have 

different approximation factors. But what if P=NP?  

In this paper, we consider the vertex cover problem which is a famous NP-complete problem. It 

cannot be approximated within a factor of 1.36 [1], unless P=NP, while a 2‒approximation for it can be 

trivially obtained by taking all the vertices of a maximal matching in the graph. However, improving this 

simple 2‒approximation algorithm has been a quite hard task [3]. Here, we introduce a new semidefinite 

programming (SDP) relaxation for vertex cover problem which can solve it exactly on general graphs.  

The rest of the paper is structured as follows. Section 2 is about the vertex cover problem and 

introduces the basic ingredients of a new SDP relaxation (we called it 3SDP) for vertex cover problem. In 
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section 3, new theorems are introduced which conclude that the proposed 3SDP model produces the 

optimal solution of the vertex cover problem on general graphs. Finally, Section 4 concludes the paper. 

2. A 3SDP model for vertex cover problem  

In the mathematical discipline of graph theory, a vertex cover of a graph G=(V,E) is a set of vertices 

such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a 

minimum vertex cover is a typical example of an NP-complete optimization problem. Aside from its 

theoretical interest, the vertex cover problem arises in many practical applications. This fact has 

encouraged considerable effort in finding good approximation solutions.  

Despite many attempts to design approximation algorithms for vertex cover problem, the best-known 

approximation ratio is 2−o(1) and it is based on using SDP relaxation [2]. By assigning a unit vector 

vi∈ℝn+1 to each vertex i∈V, a well known SDP formulation of the vertex cover problem is as follows [2]: 

min
௦.௧.

෍
1 + 𝑣௢𝑣௜

2
௜∈௏

 

+𝑣௢𝑣௜ + 𝑣௢𝑣௝ − 𝑣௜𝑣௝ = 1   𝑖𝑗 ∈ 𝐸                   (1) 

+𝑣௜𝑣௝ + 𝑣௜𝑣௞ + 𝑣௝𝑣௞ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} (2′) 

+𝑣௜𝑣௝ − 𝑣௜𝑣௞ − 𝑣௝𝑣௞ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} (2′ᇱ) 

−𝑣௜𝑣௝ + 𝑣௜𝑣௞ − 𝑣௝𝑣௞ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} (2′′′) 

−𝑣௜𝑣௝ − 𝑣௜𝑣௞ + 𝑣௝𝑣௞ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} (2′ᇱᇱᇱ) 

𝑣௜𝑣௜ = 1                                    𝑖 ∈ 𝑉 ∪ {𝑜}    (3) 

𝑣௜𝑣௝ ∈ {−1, +1}                      𝑖, 𝑗 ∈ 𝑉 ∪ {𝑜} (4) 

By relaxing the constraints (4) as -1≤ vivj ≤1 and using interior-point methods, we can solve the SDP 

relaxation in polynomial time. In an integral solution of this SDP relaxation, a vertex cover is composed 

of the vertices that their corresponding vectors are picked coincide with the vector vo; i.e. {i∈V | vovi=1}. 

But in general though, an optimal solution of this SDP formulation will not be integral.  

However, we can strengthen this SDP relaxation by considering 3 such SDP formulations, together. 

To do this, we assign 3 unit vectors 𝑣௜
௟∈ℝ3(n+1) (l=1,2,3) to each vertex i∈V and in addition to the triangle 

inequalities (2), we add new constraints which we called them 120-degree and bisector equalities. The 

resulted SDP relaxation which we called it 3SDP, is as follows: 

(3𝑆𝐷𝑃) min
௦.௧.

1

3
෍ ෍

1 + 𝑣௢
௟ 𝑣௜

௟

2
௜∈௏

ଷ

௟ୀଵ

 

+𝑣௢
௟ 𝑣௜

௟ + 𝑣௢
௟ 𝑣௝

௟ − 𝑣௜
௟𝑣௝

௟ = 1              𝑖𝑗 ∈ 𝐸 ,   𝑙 = 1,2,3 (5) 



+𝑣௜
௟𝑣௝

௟ + 𝑣௜
௟𝑣௞

௟ + 𝑣௝
௟𝑣௞

௟ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} ,   𝑙 = 1,2,3 (6′) 

+𝑣௜
௟𝑣௝

௟ − 𝑣௜
௟𝑣௞

௟ − 𝑣௝
௟𝑣௞

௟ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} ,   𝑙 = 1,2,3 (6ᇱᇱ) 

−𝑣௜
௟𝑣௝

௟ + 𝑣௜
௟𝑣௞

௟ − 𝑣௝
௟𝑣௞

௟ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} ,   𝑙 = 1,2,3 (6′′′) 

−𝑣௜
௟𝑣௝

௟ − 𝑣௜
௟𝑣௞

௟ + 𝑣௝
௟𝑣௞

௟ ≥ −1 𝑖, 𝑗, 𝑘 ∈ 𝑉 ∪ {𝑜} ,   𝑙 = 1,2,3 (6ᇱᇱᇱᇱ) 

𝑣௜
௣

𝑣௜
௤

=
−1

2
                     𝑖 ∈ 𝑉 ∪ {𝑜} ,    1 ≤ 𝑝 ≠ 𝑞 ≤ 3 (7) 

𝑣௢
௟ 𝑣௜

௣
− 𝑣௢

௟ 𝑣௜
௤

= 0               𝑖 ∈ 𝑉 ,    1 ≤ 𝑙 ≠ 𝑝 ≠ 𝑞 ≤ 3 (8′) 

𝑣௜
௟𝑣௢

௣
− 𝑣௜

௟𝑣௢
௤

= 0                𝑖 ∈ 𝑉 ,    1 ≤ 𝑙 ≠ 𝑝 ≠ 𝑞 ≤ 3 (8′′) 

 𝑣௜
௟𝑣௜

௟ = 1                                     𝑖 ∈ 𝑉 ∪ {𝑜} ,   𝑙 = 1,2,3 (9) 

−1 ≤ 𝑣௜
௟𝑣௝

௟ ≤ +1                   𝑖, 𝑗 ∈ 𝑉 ∪ {𝑜} ,   𝑙 = 1,2,3 (10) 

Note that, in addition to the standard constraints of the last SDP formulation for each of the SDP 

combinations (SDPl l=1,2,3), this 3SDP relaxation has: i) Constraints (7) as 120-degree equalities which 

cause that the angles 𝑣௢
௣

 𝑣௢
௤෣  and 𝑣௞

௣
 𝑣௞

௤෣  are 120o  𝑘 ∈ 𝑉, 1 ≤ 𝑝 ≠ 𝑞 ≤ 3, and ii) Constraints (8) as bisector 

equalities which cause that 𝑣௢
௟  to be on the bisector hyperplane of the vectors 𝑣௜

௣ and 𝑣௜
௤, and likewise, 𝑣௜

௟ 

to be on the bisector hyperplane of the vectors 𝑣௢
௣ and 𝑣௢

௤   1 ≤ 𝑙 ≠ 𝑝 ≠ 𝑞 ≤ 3.  

Here again, in an integral solution of the 3SDP relaxation, a vertex cover is composed of the vertices 

that their corresponding vectors are picked coincide with the vectors 𝑣௢
௟  ; i.e. {i | 𝑣௢

௟ 𝑣௜
௟ = 1  𝑙 = 1,2,3}. 

But, it is interesting that an optimal solution of vertex cover problem can be produced by solving two 

such 3SDP models. To show this fact, it is sufficient to concentrate our attention on coplanarity and 

perpendicularity properties of the optimal vectors of the proposed 3SDP model, which we will prove them 

in the next section. 

3. Coplanarity or perpendicularity property of optimal vectors of 3SDP model 

Theorem 1. Suppose that there are 3 vectors V1, V2, V3∈ℝn which satisfy 120-degree condition; i.e. 

𝑉ଵ𝑉ଶ
෣ = 𝑉ଶ𝑉ଷ

෣ = 𝑉ଷ𝑉ଵ
෣ = 120o. Then, these vectors are coplanar. 

Proof. We know that two arbitrary vectors are always coplanar. Then, we can assume that the vectors 

V2 and V3 in coordinates 𝑉ଶ = ቂ
ି√ଷ

ଶ

ିଵ

ଶ
0 ⋯ 0ቃ

௧

and 𝑉ଷ = ቂ√ଷ

ଶ

ିଵ

ଶ
0 ⋯ 0ቃ

௧

 have been fixed 

on the x1x2 plane, where 𝑉ଵ = [𝑎ଵ … 𝑎௡]௧. Then, it is sufficient to show that 𝑎ଶ > 0, 

𝑎ଵ = 𝑎ଷ = … = 𝑎௡ = 0.  

We have V1V2=V1V3= 
ିଵ

ଶ
‖𝑉ଵ‖. Hence, 

ି√ଷ

ଶ
𝑎ଵ −

ଵ

ଶ
𝑎ଶ =

√ଷ

ଶ
𝑎ଵ −

ଵ

ଶ
𝑎ଶ , and therefore 𝑎ଵ = 0.  

Moreover, based on the length of a vector and the law of cosine on triangles we have: 

ฮ𝑉ଵ𝑉ଷ
ሬሬሬሬሬሬሬሬ⃗ ฮ

ଶ
=

3

4
+ (𝑎ଶ +

1

2
)ଶ + 𝑎ଷ

ଶ + ⋯ + 𝑎𝑛
2 



ฮ𝑉ଵ𝑉ଷ
ሬሬሬሬሬሬሬሬ⃗ ฮ

ଶ
= ൫𝑎ଶ

ଶ + ⋯ + 𝑎𝑛
2൯ + (1) − 2 ቆට𝑎ଶ

ଶ + ⋯ + 𝑎𝑛
2ቇ (1) cos൫𝑉ଵ𝑉ଷ

෣൯ 

Therefore, cos൫𝑉ଵ𝑉ଷ
෣൯ =

ି௔మ

ଶቆට௔మ
మା⋯+𝑎𝑛

2ቇ

=? ିଵ

ଶ
  iff 𝑎ଶ > 0, 𝑎ଵ = 𝑎ଷ = … = 𝑎௡ = 0 ■ 

Corollary 1. Let V1, V2, V3∈ℝn satisfy a 120-degree condition, where ‖𝑉௜‖ = 1 (i=1,2,3). Then we 

have 𝑉௟ = −൫𝑉௣ + 𝑉௤൯     1 ≤ 𝑙 ≠ 𝑝 ≠ 𝑞 ≤ 3. 

Theorem 2. Suppose that there are 6 vectors V1, V2, V3, U1, U2, U3∈ℝn which satisfy 120-degree and 

bisector conditions; i.e. 𝑉ଵ𝑉ଶ
෣ = 𝑉ଶ𝑉ଷ

෣ = 𝑉ଷ𝑉ଵ
෣ = 𝑈ଵ𝑈ଶ

෣ = 𝑈ଶ𝑈ଷ
෣ = 𝑈ଷ𝑈ଵ

෣ = 120o, Vl is on the bisector 

hyperplane of Up and Uq , and likewise Ul is on the bisector hyperplane of Vp and Vq, 1 ≤ 𝑙 ≠ 𝑝 ≠ 𝑞 ≤ 3. 

Then, these six vectors are coplanar or UiVj=0 (1 ≤ 𝑖, 𝑗 ≤ 3). 

Proof. Based on Theorem 1, vectors V1, V2, V3 are coplanar and vectors U1, U2, U3 are coplanar, too. 

Then, we can assume that vectors V1, V2, V3 have been fixed on the x1x2 plane and in coordinates 

𝑉ଵ = [0 1 0 ⋯ 0]௧, 𝑉ଶ = ቂ
ି√ଷ

ଶ

ିଵ

ଶ
0 ⋯ 0ቃ

௧

and 𝑉ଷ = ቂ√ଷ

ଶ

ିଵ

ଶ
0 ⋯ 0ቃ

௧

, and vectors U1, 

U2, U3 are on another unknown plane and in coordinates 𝑈ଵ = [𝑎ଵ … 𝑎௡]௧, 𝑈ଶ = [𝑏ଵ … 𝑏௡]௧ and 

𝑈ଷ = [𝑐ଵ … 𝑐௡]௧, where 𝑡‖𝑈ଵ‖ = ‖𝑈ଶ‖ = ‖𝑈ଷ‖ = 1, t > 0, |𝑎ଶ|∈{0,1}. Then, it is sufficient to show 

that Ui= ±Vi (i=1,2,3) or UiVj=0 (1 ≤ 𝑖, 𝑗 ≤ 3).  

We have U1V2=U1V3. Hence, 
ି√ଷ

ଶ
𝑎ଵ −

ଵ

ଶ
𝑎ଶ =

√ଷ

ଶ
𝑎ଵ −

ଵ

ଶ
𝑎ଶ , and therefore 𝑎ଵ = 0. Moreover, 

U2V1=U2V3 and U3V1=U3V2. Hence, 𝑏ଶ =
√ଷ

ଶ
𝑏ଵ −

ଵ

ଶ
𝑏ଶ and 𝑐ଶ =

ି√ଷ

ଶ
𝑐ଵ −

ଵ

ଶ
𝑐ଶ. Therefore, 

௕మ

௕భ
=

√ଷ

ଷ
  and 

௖మ

௖భ
=

ି√ଷ

ଷ
 . Then, we can assume that 𝑏ଵ =

√ଷ

ଶ
𝑏 , 𝑏ଶ =

ଵ

ଶ
𝑏 and 𝑐ଵ =

ି√ଷ

ଶ
𝑐 , 𝑐ଶ =

ଵ

ଶ
𝑐 . 

We have U2V1=U3V1 and U2V3= tU1V3. Hence, b= c, and 
ଷ

ସ
𝑏 −

ଵ

ସ
𝑏 = −(

ଵ

ଶ
)𝑡𝑎ଶ. Therefore, 𝑏 = −𝑡𝑎ଶ. 

Note that the vectors U1, U2, U3 satisfy a 120-degree condition, where 𝑡‖𝑈ଵ‖ = ‖𝑈ଶ‖ = ‖𝑈ଷ‖ = 1, then 

we have U1= -t(U2+U3). Hence, ቊ
𝑎ଶ = −𝑡 ቀ

ଵ

ଶ
𝑏 +

ଵ

ଶ
𝑐ቁ = −𝑡𝑏 = 𝑡ଶ𝑎ଶ

𝑎௜ = −𝑡(𝑏௜ + 𝑐௜) 𝑖 = 3, … , 𝑛
  . Therefore, 𝑡 = 1, 𝑏 = 𝑐 = −𝑎ଶ.  

Now, if 𝑎ଶ = 0 then we have UiVj=0 (1 ≤ 𝑖, 𝑗 ≤ 3). Otherwise, if 𝑎ଶ ∈ {−1, +1} then due to 

‖𝑈ଵ‖ = 1 we have 𝑎ଷ = … = 𝑎௡ = 0. This concludes that, 𝑏௜ = −𝑐௜ i=3,…,n. Finally, b=±1, 

𝑈ଶ = ቂ±
√ଷ

ଶ
±

ଵ

ଶ
𝑏ଷ ⋯ 𝑏௡ቃ

௧

 and ‖𝑈ଶ‖ = 1. Hence, 𝑏ଷ = 𝑐ଷ = … = 𝑏௡ = 𝑐௡ = 0. This 

concludes that Ui= ±Vi (i=1,2,3) ■ 

Corollary 2. Six optimal vectors 𝑣௢
ଵ, 𝑣௢

ଶ, 𝑣௢
ଷ, 𝑣௜

ଵ, 𝑣௜
ଶ and 𝑣௜

ଷ of the 3SDP model satisfy coplanarity or 

perpendicularity property. Hence, we have 𝑣௢
௟ 𝑣௜

௟ ∈ {0, ±1}  (l=1,2,3).  



Moreover and based on the optimal solution of the 3SDP model and Corollary 2, the vertex set V is 

decomposed to 3 sets as follows: 

𝑉ଵ = ൛𝑖ห𝑣௢
௟ 𝑣௜

௟ = 1   𝑙 = 1,2,3ൟ,   𝑉 ଵ = ൛𝑖ห𝑣௢
௟ 𝑣௜

௟ = −1   𝑙 = 1,2,3ൟ,   𝑉௢ = ൛𝑖ห𝑣௢
௟ 𝑣௜

௟ = 0   𝑙 = 1,2,3ൟ,    

Corollary 3. By using constraints (6), called triangle inequalities, the subgraph G’ on vertex set 𝑉௢ 

has not any odd cycle and then solving the vertex cover problem on G’ is not hard. In other words, by 

solving 3SDP on G’ we have a decomposition 𝑉௢ = 𝑉௢,ଵ ∪ 𝑉௢,ିଵ, where |𝑉௢,ଵ| ≤
ଵ

ଶ
|𝑉௢| and 𝑉௢,௢ = ∅. 

Theorem 3. By solving 3SDP relaxation on vertex set V and then on vertex set Vo, an optimal 

solution of vertex cover is obtained as 𝑉ଵ ∪ 𝑉௢,ଵ. 

Proof. Let F(S) be the optimal value of solving the 3SDP model on vertex set S. Then, 

𝑍௩௘௥௧௘௫ ௖௢௩௘௥
∗ ≥ 𝐹(𝑉) = |𝑉ଵ| +

ଵ

ଶ
|𝑉௢| ≥ |𝑉ଵ| + |𝑉௢,ଵ|. Therefore, 𝑍௩௘௥௧௘௫ ௖௢௩௘௥

∗ = |𝑉ଵ| + |𝑉௢,ଵ| ■ 

Corollary 4. Due to the polynomial solvability of vertex cover problem on general graphs by the 

proposed 3SDP model, we have P = NP. 

4. Conclusions 

The P versus NP problem is one of the principal unsolved problems in complexity theory. In this 

paper, we present a new SDP relaxation for solving vertex cover problem, which indeed returns an 

optimal solution of the problem on general graphs in polynomial time. In this manner and by solving one 

of the NP-complete problems in polynomial time, we can conclude that P=NP.  

However, many results in complexity theory and computational optimization assume solidly based on 

the hypotheses P≠NP. But, now that we know P=NP, we should make fundamental modifications in many 

of the results discussed in literatures. 
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