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Abstract 
We apply our realist interpretation of quantum mechanics to an analysis of the mechanics of electron 

propagation through a crystal and derive a formula for the effective mass of an electron which differs by 

a factor 2 from Feynman’s. We think this solves his rather weird remark on the relation between the 

effective and free-space mass of an electron, which says the effective mass turns out to be 2 to 20 times 

the free-space mass of the electron. Our calculations imply the effective mass equals the free-space 

mass in the absence of a potential barrier between successive atoms in an lattice, which is what is to be 

expected. We also find Feynman’s use of the small angle approximation for the argument of the 

wavefunction (so as to simplify the energy formula) is unjustified: the order of magnitude of the kb 

factor in the energy formula is one rad (radian), so that is too large for an small angle approximation. 

This remarkable result is surprising but makes sense because the reduced energy formula has no 

maximum, which contradicts the empirical reality of the conduction band in conductors as well as in 

semiconductors.1  
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1 As for the title of this paper, we wrote a few which we jokingly numbered just like Feynman’s famous Lectures on 
Quantum Physics for the freshman and sophomore classes at Caltech (1963). Unlike some what might think, they 
are not a re-write. They amount to what we refer to as a realist interpretation of quantum physics. However, we 
do re-use some of the illustrations and, of course, the formulas are the formulas: we just interpret their meaning 
very differently. In fact, we actually give many of the quantum-mechanical equations a meaning beyond the math. 
To paraphrase Sabine Hossenfelder, we like to think we are one of the few who do not get ‘lost in the math.’ 

mailto:jeanlouisvanbelle@outlook.com
https://www.feynmanlectures.caltech.edu/
https://www.feynmanlectures.caltech.edu/
https://vixra.org/author/jean_louis_van_belle
https://www.amazon.com/Lost-Math-Beauty-Physics-Astray/dp/0465094252
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Electron Propagation in a Lattice 
Introduction 
Feynman’s lectures on how an electron – or an excitation or some other irregularity2 – might move 

through a one-, two- or three-dimensional array of atoms (a lattice, in other words3) yield sensible 

formulas – with a formula for the conduction band as the key result – but, even after multiple readings, 

still leave one rather bewildered. We do feel his treatment of the matter suffers from some imprecision 

in the concepts and, at times, rather chaotic heuristic arguments. In fact, despite Bill Gates’s praise of 

Feynman as “the best teacher” he never had4, Feynman’s treatment of the matter5 reminds us of John P. 

Ralston’s self-criticism: “Quantum mechanics is the only subject in physics where teachers traditionally 

present haywire axioms they don’t really believe, and regularly violate in research.”6 Let us try to do 

better by exploring possible definitions of the various concepts that are used, and also by injecting some 

realism in the description: what is that we are trying to talk about, exactly? 

The results of Feynman’s analysis can be summarized in one or two formulas, and so let us try to find 

out how we get these. We all know the formula for the energy band (which we will come back to in a 

moment) but the formula we want to understand – not in an approximate but in an exact way – is the 

formula for the (kinetic) energy of an electron as it is moves through the lattice: 

E = E𝑣 =
1

2
𝑚eff𝑣

2 =
𝑝𝑣

2
 

with 𝑚eff =
𝑝

𝑣
=
ℏ𝑘

𝑣
=

ℏ2

2Ab2
⟺ 𝑘 =

ℏ𝑣

2Ab2
 

The meff is the effective mass of the electron as it moves through the lattice. What other variables do we 

have here? The A and b are (given) parameters of the system (A is an amplitude, about which we will say 

more later, and b is the lattice spacing) so, yes, we basically need to explain meff, the (electron drift) 

velocity v and k, which is a wavenumber.7 So let us try to do just that. 

 
2 We deliberately avoid the use of terms like excitons or phonons for the time being – until we are ready to define 
them more precisely. We should note, however, that we will not be talking excitons or phonons in this paper: we 
will be discussing electron propagation only. 
3 The term crystal is usual added (crystal lattice) to emphasize we are talking a regular or repetitive atomic or 
molecular structure, as opposed to say, a nuclear lattice. We think the context is clear enough. To better frame the 
discussion, the reader should think of semiconductor material: silicon or germanium crystals. Silicon (and 
germanium) atoms have four valence electrons, which they share in a diamond-like cubic cell structure. To be 
precise, carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb) all belong to the so-called carbon group. 
4 https://www.gatesnotes.com/Education/The-Best-Teacher-I-Never-Had  
5 We refer to Feynman’s Lectures, Volume III, Chapter 13 and – to a much lesser extent – Chapter 14. We assume 
the reader is more or less familiar with them, if only because many modern textbooks basically copy Feynman’s 
treatment of the subject – even if it was written in the early 1960s. 
6 John P. Ralston, How To Understand Quantum Mechanics, 2017, p. 10-40. We cannot recommend the book 
because – to paraphrase Sabine Hossenfelder – Prof. Dr. Ralston quickly gets ‘lost in math’ too! 
7 The wavenumber is often referred to as spatial frequency (its dimension is radians per meter) but, to interpret 
this term, we think it is easier to just present its basic relation to the more familiar concept of momentum and 
wavelength: k = 2π/λ = 2πp/h = p/ħ. This is just the reduced form of the second of the two de Broglie relations, of 

https://en.wikipedia.org/wiki/Carbon_group
https://www.gatesnotes.com/Education/The-Best-Teacher-I-Never-Had
https://iopscience.iop.org/book/978-1-6817-4226-7
https://www.amazon.com/Lost-Math-Beauty-Physics-Astray/dp/0465094252
https://en.wikipedia.org/wiki/Wavenumber
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Feynman tells us that “meff has nothing to do with the real mass of an electron”, although in “commonly 

used metals and semiconductors it often happens to turn out to be the same general order of 

magnitude, about 0.1 to 30 times the free-space mass of the electron.”8 We do not agree with that. 

There must be some relation between the two mass concepts because, otherwise, the concept of a 

momentum (p = meff·v) and a wavenumber k = p/ħ would not make any sense and should, therefore, not 

be used. Mass and energy are related through Einstein’s mass-energy relation (m = E/c2) but, of course, 

that is only the case if we have all of the energy, or the right concept of energy – potential, kinetic, or 

both?9 – so let us discuss the energy concept here.  

We know the value of this (kinetic) energy of an electron is constrained to a band which is usually 

referred to as the conduction band.10 This band is defined by a minimum and a maximum energy level 

which Feynman writes as a function of some (average) energy level E0 and some energy difference A (or 

4A: we will discuss this 4-factor in a minute). The graph below (Figure 1) plots E as a function of the 

mentioned wave number k = p/ħ = meffv/ħ = ħv/2Ab2. Needless to say, v is the (classical) velocity of the 

electron in material: quantum physicists think of it as a group velocity of a wave packet, but we think it 

is the actual drift velocity of the pointlike electron.11 As for b and A, b is the linear distance between two 

atoms (or molecules) in the array and A is… A requires some more explaining so, yes, let us finish the 

introduction and start. 

 

Figure 1: The energy band E0 − 2A  E  E0 + 2A as a function of k = p/ħ = ħv/2Ab2  

 
course (h = pλ) which, in turn, is just the Planck-Einstein relation expressed in terms of (linear) momentum and 
wavelength. The first of the two de Broglie relations is the Planck-Einstein relation as we usually write it: h = E/f = 
E·T. It may or may not help the reader to think of the Planck-Einstein relation as expressing Planck’s quantum of 
action in two possible ways: (1) the product of energy and a cycle time (h = E·T) and (2) the product of momentum 
and a wavelength (h = p·λ). As such, the Planck-Einstein relation models nothing but a fundamental cycle in Nature.    
8 Feynman’s Lectures, Vol. III, p. 13-7. The original 1963 print edition talks about “real crystals” (instead of 
commonly used metals and semiconductors) and gives a range of “2 to 20 times the (free) electron mass.” 
9 We ask the question but do not answer it here because we want the reader to think about these questions 
without any prejudice for the time being. Indeed, we will be selling our ‘mass without mass’ model of an electron 
soon enough! 
10 We will not distinguish between conductors and semi-conductors here, although it is probably easiest to think of 
semiconductor material here! 
11 See our paper on de Broglie’s matter-wave. 

https://www.feynmanlectures.caltech.edu/III_13.html#Ch13-S3
https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
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The (i)A/ħ amplitude  
A and b (and ħ too, of course) are given constants, so the k = p/ħ = ħv/2Ab2 formula tells us k varies with 

the (electron) drift velocity v. What and how determines v? Feynman is totally vague about that. We 

should probably expect this drift velocity to vary with the voltage (potential difference) that is being 

applied, but let us think about this later. Also note we have a rather annoying 2 or 1/2 factor in the k = 

ħv/2Ab2 formula. We have seen these 2 or 1/2 factors before but the reason it pops up this time seems 

to be more mundane: the energy difference in a simple two-state system is usually defined as the 

difference between an E0 + A and E0 − A level. Hence, the energy difference is usually defined as twice A, 

whatever A might represent. But – Hey! – we have an E0 − 2A  E  E0 + 2A energy band here and, hence, 

an energy difference that is equal to four times that ubiquitous factor A. We are not sure why right now 

but we might find out later. So what is that factor A?  

Feynman does not say all that much about it but he generously comes up with some clues, at least. He 

defines it as part of iA/ħ, which is “the amplitude for the electron to jump from one atom to the next 

(per unit time).” He then simply states that: “There is not much more to be said about the various 

coefficients, such as the amplitude A, which appear in the theory. Generally they are very hard to 

calculate, so in practical cases very little is known theoretically about these parameters and for any 

particular real situation we can only take values determined experimentally.”12 It is, of course, a factor 

that must give us the actual probability of the electron going from here to there, but how exactly? The 

division by ħ just scales the energy and gives us a value expressed per unit time. To be precise, it gives us 

– as per the Planck-Einstein relation – an angular frequency:  

E = h·f = ħ·ω  ω = E/ħ. 

So this is to be written as ω = A/ħ in this particular case. It reminds us of the (inverse of the) cycle time 

between two quantum-mechanical states. In fact, that is just what it is: T = 1/f = 2π/ω = 2πħ/A = h/A. So 

here we may usefully remind the reader of Feynman’s illustration of two probabilities ‘sloshing back and 

forth’, as he famously phrased it, as a function of time: 

 

Figure 2: Probabilities sloshing back and forth13 

 
12 Feynman’s Lectures, Vol. III, p. 13-2 and 13-9. It is customary to include the imaginary unit (i) in the amplitude, 
but we think this is not justified: the Kij coefficients in the original Hamiltonian equations are real-valued numbers. 
Hence, you should think of this amplitude as a real-valued number: A/ħ. Note its physical dimension again: it is 
some number per second. See our paper on Feynman’s Time Machine, June 2020. 
13 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration too.  

https://www.researchgate.net/publication/342424980_Feynman's_Time_Machine
https://www.feynmanlectures.caltech.edu/III_09.html


5 
 

The graph measures time in radians, as opposed to seconds. Indeed, cycle times – in seconds, that is – 

are measured in units of h/A. It is a rather deep philosophical point which we could – but do not want to 

– enter into at this point of the narrative.14 The graph also triggers another obvious question: how do we 

know we are in state 1 at t = 0, π, 2π,… as measured in the relevant unit here, which is ħ/A? Or – what 

amounts to the same – how do we know we are in state 2 at t = π/2, 3π/2,…?  

[…] And? What is your answer? 

[…] The answer is this: we do not. That is the point of quantum mechanics: we do not know − not 

exactly, at least. Quantum mechanics models statistical indeterminacy: we do not know the initial 

conditions and, therefore, we do not know when or how our electron is going to move from one state to 

another. The graph models probabilities, not realities! Let us get back to the problem at hand. We only 

gave you that graph and the talk on f = A/h or T = A/h so you have a better idea of what that amplitude 

A/ħ actually is. So let us continue to try to say some more about that value A − some more than what 

the academic quantum physicists want to give us. What can it be?    

We may assume the electron lowers it energy when joining an atom (or a molecule15) so as to create an 

ion.16 To move from one atom to another, it must, therefore, go through a potential barrier. This is 

nothing mysterious: potential barriers – or their corollary: potential wells – should not be thought of as 

static fields: they vary in time. They result from various charges moving around and creating some joint 

or superposed field which varies in time. Hence, a particle breaking through a ‘potential wall’ or coming 

out of a potential ‘well’ is just using a temporary opening corresponding to a very classical trajectory in 

space and in time: think of it being in the right place at the right time – with one addition, perhaps: the 

direction of the (linear or angular) momentum needs to be right too. 

Now, because we are modeling regular motion here – something with a cycle time (period) or, what 

amounts to the same, a frequency – we know the electron must move from one atom (or lattice cell) to 

another at some point in time: otherwise we would not be able to calculate these probabilities! Now 

that we are mentioning the calculation of probabilities, how does that work, exactly? Yes. Let us explain 

that by returning to the example of the two-state system before going back to our semiconductor.  

We said we could not know for sure that the electron is in state 1 at t = 0, h/2A, h/A,...17 but the graph 

obviously assume we knew at point t = 0, at least! So how is that possible? I do not know. The most 

likely answer is that we had probably switched on some strong electric field for a while so as to polarize 

the ammonia molecule⎯and then we switched it off at t = 0. But, again, we do not know why but the 

graph assumes we do! And then all is up in the air. Anything might happen! All we know is that the cycle 

time is equal to πħ/A = h/2A. Hence, we may expect the electron18 will have swapped from state 1 to 

 
14 The reader might think we are joking, but we are not: our realist interpretation of quantum mechanics does 
think of matter-particles as material clocks: both time and distance can be measured in radians! 
15 It is usually an atom but molecular orbitals are theoretically possible too.  
16 As you know, we may also have electron holes, in which case the ion is positive instead of negative. 
17 We are measuring time in proper seconds now, rather than in units of ħ/A. We do so by effectively multiplying 0, 
π, 2π, etc. by ħ/A. For example, 2π becomes 2πħ/A = h/A. It is always useful to recheck the physical dimension: h 
(or ħ) is expressed in N·m·s, while A is an energy and, hence, is expressed in N·m. Hence, the division of h by A does 
yield seconds.  
18 The smart reader will know that – in the case of Feynman’s example of a two-state system (the maser) – we are 
actually not talking about an electron but about a nitrogen atom in a NH3 (ammonia) molecule flipping back and 
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state 2 and then back again in the time interval h/2A. That is a full cycle. If we are interested only in it 

swapping from one state to the other, we may consider that to be the cycle, perhaps, and then the cycle 

time will be πħ/2A = h/4A. The frequency of swapping is just the inverse of the cycle time, of course: f = 

1/T = 4A/h. Of course, academic quantum physicists will always write that as an angular frequency (ω = 

2πf = 4A/ħ) and, just to confuse the uninformed reader and introduce even more mysterious quantum-

mechanical language, they will call that the quantum-mechanical probability amplitude for the electron 

to swap states. As we will explain in a moment, the term amplitude is one of these terms which has 

several different but related meanings, so you should watch out! 

Let us go back to the conduction band of our semiconductor: that factor 4 is no longer so annoying 

because, yes, an amplitude that is equal to ω = A/ħ reads nicer than an amplitude that is equal to ω = 

4A/ħ. So the factor 4 is there – it refers to a quarter (1/4) of a cycle – but you can choose where you put 

it: in your definition of the potential barrier (which is the conduction band, in this particular case) or in 

the definition of the amplitude.19  

What about normalization? You may think this is normalized already, because it is real, and there is no 

reason to normalize reality, right?       We rescale or normalize sizes and distances only because we 

want to express them in some different unit, but what is the point here? An amplitude is something per 

unit time, so its value is equal to the angular frequency. So that is radians per second. Very real. And we 

will multiply it, of course, with time, so we get the kind of dimensionless number that we want for an 

argument in a wavefunction.20 So how can we relate this to the concept of probabilities or – to be 

precise – to probability densities? We need to take an absolute square somewhere, right? To be precise: 

we need to square the absolute value of a complex-valued amplitude or wavefunction, right? Right, but 

not here. It is, again, part of the utterly confusing language quantum physicists like to use to mystify 

things. As mentioned above, the concept of an amplitude may refer to related but very different things: 

1. A complex-valued wavefunction which, for all practical purposes, can always be written as the 

product of a spatial and time-dependent part. So that is something like this21 – that ubiquitous ‘trial 

solution’ for a set of ‘Hamiltonian equations’22:   

ψ(𝒙, 𝑡) = 𝑎 ∙ 𝑒  𝑖θ = 𝑎 ∙ 𝑒
𝑖(
E∙𝑡
ℏ
−
𝐩∙𝒙
ℏ
)
 

 
forth. It does not matter: we are talking something with polarity or some charge going back and forth through a 
potential barrier. 
19 Thanks for not telling us these things, Mr. Feynman: I guess it is part of you challenging your students by not 

telling them everything, right?       
20 Both the (E/ħ)·t and the (p/ħ)·x term in the argument of the wavefunction have no physical dimension: they are 
expressed in radians which, as we already briefly mentioned, may serve to both measure time as well as distance 
in our interpretation of matter-particles as physical clocks. 
21 Having a plus or a minus sign in the (complex-valued) exponential (e−iθ) is a mere matter of convention for most 
physicists. We think that is a grave mistake: the plus or minus sign is related to the two possible directions of spin 

of a particle. See our paper on Euler’s wavefunction and the double life of −1. We will also see the sign in front of 
the p·x/ħ term represents the direction of travel, which can be positive or negative. The plus or minus sign is, 
therefore, not random. That is also why we prefer to write p·x as a vector (dot) product. 
22 If you want to know what they are, read our paper on Feynman’s Time Machine. 

https://vixra.org/abs/1810.0339
https://www.researchgate.net/publication/342424980_Feynman's_Time_Machine
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2. The term amplitude may also refer to the (real-valued) coefficient in front of the complex 

exponential(s) in the wavefunction, so that is the a of the a·eiθ function.23  

3. The amplitude to go from one state to another, which is given by the fraction of (1) a cycle time (or 

half or a quarter of it) and (2) the time unit. So that is what we are talking about right here and right 

now.  

So, yes, all of these concepts are effectively very different – but we need them all. The complex-valued 

wavefunction describes a state and is used in a system of Hamiltonian equations which describes all 

possible states. The amplitude to go from one state to another is a related concept but its nature is very 

different: it is like a probability. Indeed, you should note that the concept of a probability (usually) also 

involves some fraction of a period or a time unit: if we say that the probability of being in either of two 

states is 1/2, then we mean to say that it is in this or that state either of the two states about half of the 

time. Also, if we would know that the electron is in one of two possible states, then the probability of it 

going into the other state would be calculated as a function of (1) the time that has elapsed already, and 

(2) the (normal or average) cycle time. So, yes, it would involve that amplitude to go from one state to 

another!    

Any case, we got sidetracked. Let us not worry about these concepts too much right now. We might 

come back to it. Let us continue to try to describe what might be happening in a semiconductor. 

The elementary wavefunction 
Planck’s quantum of action (h or, in its reduced form, ħ) models an elementary cycle in Nature. What is 

an elementary cycle? It can be anything: we think of an electron itself as an oscillating charge24, a 

photon, a ring current in a superconductor is an oscillation too, an atomic or molecular orbital obeys the 

same law, an oscillation in a two-state system, etcetera. Regardless of the specifics of the situation, the 

frequency of these oscillations is always given by the Planck-Einstein relation: E = h·f  f = 1/T = E/h. 

The specifics of the situation here may look very different: we are, effectively, not looking at some 

stationary system here. Our electron moves, in either of two directions depending on the potential 

difference that is being applied. However, all motion is relative and so we might consider using relativity 

theory to analyze what may or may not be going on in the frame of reference of the electron itself.  

Huh? Yes. Let us use a bit of relativity theory to analyze what may or may not be going on in the frame 

of reference of the electron itself.25 Let us consider the idea of a particle (it is our electron, of course) 

traveling in the positive x-direction at constant speed v. This idea implies a pointlike concept of position: 

we think the electron will be somewhere at some point in time. The somewhere in this expression does 

not mean that we think the particle itself is dimensionless or pointlike. In fact, we think it is not. In this 

 
23 The informed reader will cry foul here: that coefficient may be complex-valued, right? Right, but there is always 
a way to write it as real-valued coefficient by moving the imaginary bit over to the time-dependent part of the 
wavefunction. See our paper on the meaning of uncertainty and the geometry of the wavefunction.  
24 We refer to our interpretation of the Zitterbewegung theory of an electron here, which we believe to be true 
because it explains all of the properties of an electron: its energy (and, hence, its equivalent mass), its magnetic 
moment (including the small anomaly which, therefore, is not an anomaly at all), and, last but not least, its angular 
momentum (spin). 
25 Just be patient and hang in there. It will be alright. If not, start again.       

https://www.researchgate.net/publication/344821557_The_Meaning_of_Uncertainty_and_the_Geometry_of_the_Wavefunction
https://vixra.org/abs/2003.0094
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particular case, we think of the electron as orbiting around a nucleus26, so it takes up a rather large 

space. To be precise, the order of magnitude of the radius of this oscillation will be that of the Bohr 

radius of an atom, so that is about 150 times the electron’s Compton radius.27 Hence, the idea of 

position here only implies that we can think of some center of this oscillation, which we think of as being 

physical: a pointlike charge going round and round in a rather regular fashion (otherwise our idea of a 

cycle time and an orbital would not make no sense whatsoever). Hence, we have a quantization of space 

here but it is very different from, say, the quantization of space that results from applying the Planck-

Einstein relation to the idea of a free pointlike charge (i.e. the Zitterbewegung or ring current model of 

an electron). 

OK. We get this. Back to relativity. Back to the motion of our electron.28 Two extreme situations may be 

envisaged: v = 0 or v = c. However, let us consider the more general case inbetween. In our reference 

frame29, we will have a position – a mathematical point in space, that is30 – which is a function of time: 

x(t) = v·t. Let us now denote the position and time in the reference frame of the particle itself by x’ and 

t’. Of course, the position of the particle in its own reference frame will be equal to x’(t’) = 0 for all t’, 

and the position and time in the two reference frames will be related by Lorentz’s equations31: 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

=
𝑣𝑡 − 𝑣𝑡

√1 −
𝑣2

𝑐2

= 0 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

 

Hence, if we denote the energy and the momentum of the electron in our reference frame as Ev and p = 

m0v, then the argument of the (elementary) wavefunction a·ei can be re-written as follows32: 

 
26 It is an extra electron so we have a negative ion instead of a neutral atom. However, this does not fundamentally 
alter the analysis. As you know, we might also model electron holes, in which case the ion is positive. 
27 We say 150 because that is close enough to the 1/α  137 factor that relates the Bohr radius to the Compton 
radius of an electron. The reader may not be familiar with the idea of a Compton radius (as opposed to the 
Compton wavelength) but we refer him or her to the above-mentioned Zitterbewegung (ring current) model of an 
electron. 
28 We realize this may come across as an unnecessary digression, but we would not write it we think it was. So we 
leave it to the discretion of the reader to skip it or not. 
29 We conveniently choose our x-axis so it coincides with the direction of travel. This does not have any impact on 
the generality of the argument. 
30 We may, of course, also think of it as a position vector by relating this point to the chosen origin of the reference 
frame: a point can, effectively, only be defined in terms of other points. 
31 These are the Lorentz equations in their simplest form. We may refer the reader to any textbook here but, as 
usual, we like Feynman’s lecture on it (chapters 15, 16 and 17 of the first volume of Feynman’s Lectures on 
Physics). 
32 One can use either the general E = mc2 or – if we would want to make it look somewhat fancier – the pc = Ev/c 
relation. The reader can verify they amount to the same. 
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θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 =
1

ℏ
E0

(

 
𝑡

√1 −
𝑣2

𝑐2

−

𝑣𝑥
𝑐2

√1−
𝑣2

𝑐2)

 =
E0
ℏ
𝑡′ 

This is rather nice. We have just shown that the argument of the wavefunction is relativistically 

invariant: E0 is, obviously, the rest energy and, because p’ =  0 in the reference frame of the electron, the 

argument of the wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself. 

However, you will say: this has nothing to do with the wavefunction of our electron in the lattice, right? 

Wrong.  

Feynman’s wavefunction for the electron in the lattice 
We will not repeat Feynman’s analysis here33 but so he develops a system of Hamiltonian equations, and 

the challenge is to find the amplitude (or wavefunction) for the electron to be at some atom or position 

n. He writes these amplitudes as C1, C2,…, Cn-1, Cn, Cn+1,… (you get the idea, right?) but we might as well 

write them as ψ1, ψ2,…, ψn-1, ψn, ψn+1,… Fancier, no? And guess what? Feynman shows these Cn or ψn 

functions must look like this: 

𝑒
𝑖[𝑘𝑥𝑛−(

E
ℏ
)𝑡]
= 𝑒−𝑖(

E
ℏ
∙𝑡−
p
ℏ
∙𝑥𝑛) 

It is the same as the elementary wavefunction above. Not approximately, but exactly. The minus sign 

has got to do with the direction of travel, as Feynman readily acknowledges: “The wave can travel 

toward positive or negative x depending on the sign we have picked for k.” We fully agree but, unlike 

Feynman, we actually think that wave is the electron or, at the very least, describes its motion very 

accurately.  

Now, we should let that sink in some longer, so the reader should probably go for a coffee or smoke at 

this point in time, while we continue.  

So far, so good, but we still do not have that formula for k = p/ħ = meffv/ħ = ħv/2Ab2, right? Right. But we 

have a much better view on what is what now, and so we can see that there is no need to actually 

explain k: k is just the regular wave number, which we get from the second de Broglie relation.34 What 

we need to explain is that formula for the effective mass: 

𝑚eff =
𝑝

𝑣
=
ℏ𝑘

𝑣
=

ℏ2

2Ab2
 

Let us first try to read it. The dimensional analysis comes out alright: [
ℏ2

2Ab2
] =

N2∙m2∙s2

N∙m∙m2
= N

s2

m
= kg.  

It also makes sense that meff is inversely proportional to A: if the amplitude for an electron to go from 

one atom to another is large – because the electron is only very loosely bound to the ionic atom so the 

potential barrier is very low – then the effective mass of the electron will appear to be small. And vice 

versa, of course.  

 
33 In case you would be doubting, we are still referring to Chapter 13 in Volume III. 
34 See footnote 7 or, if you do not trust us yet, the discussion of the de Broglie relations in the Wikipedia article on 
the matter wave. 

https://www.feynmanlectures.caltech.edu/III_13.html
https://en.wikipedia.org/wiki/Matter_wave
https://en.wikipedia.org/wiki/Matter_wave
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But what about that b2 factor? It is there because xn = n·b35 and, when substituting that in the 

mentioned set of Hamiltonian equations, it gives us a formula for E and, therefore, for meff, which is the 

one we just wrote: meff = ħ2/2Ab2. To be precise, it gives us the formula which is shown in Figure 1: 

E = E0 − 2A·cos(kb) 

What’s E0? It is the average of the maximum and minimum value of E. […] We must be joking, right? No, 

we are not. The exact values of E and E0 will depend on some reference point for the energy (the zero of 

energy, really) but E0 itself is just the middle value between E0 + 2A and E0 − 2A. Think about it!  

So far, so good. Now how do we get that meff formula out of that energy formula? Feynman gets it 

through (1) the use of the small angle approximation for the cosine factor (cosθ  1 − θ2/2) and (2) 

choosing E0 − 2A as the zero of energy (or, what amounts to the same, defining E0 as E0 = 2A). The 

formula above then effectively reduces to: 

E = E0 − 2A·(1−k2b2/2) = E0 − 2A + Ak2b2 = Ak2b2 

Is that legitimate? Let us first think about the second assumption36: what is that energy E anyway? It is 

the extra energy which an electron gets as it moves through the lattice. The energy must, therefore, be 

kinetic (as opposed to potential), and we may effectively use the non-relativistic formula as an excellent 

approximation because we know those drift velocities are non-relativistic: we are talking like a 

millimeter per second, or even less. This may be surprising but it is what it is: the electric signal is 

lightning fast, but the electrons in the lattice themselves are covering very small distances only.37 Hence, 

E is effectively E = mv2/2 only, and we can now also understand Feynman’s choice of the zero of energy: 

when v = 0, E will be zero. The minimum value for E must, therefore, be zero too! Hence, this is not just 

some random assumption: it is part and parcel of the reality of what we are modeling here. 

OK. All of this is interesting, we hope (if only because we did not find such explanations in standard 

textbooks), so let us continue. We should, of course, note that we are still not sure whether or not we 

can apply that small angle approximation, but let us revisit that later. Let us first quickly re-check the 

logic of the E = meffv2/2 = Ak2b2 and p = ħk = meffv equations: 

𝑚eff𝑣 = ℏk ⟺
2A𝑘2b2

𝑣
= 𝑚eff𝑣 ⟺ A𝑘2b2 = E =

𝑚eff𝑣
2

2
  

The logic is OK but we still do not have that formula for meff because we do not have any formula for v 

either! So how can we get that? At this point, our realist interpretation of quantum mechanics differs 

again from Feynman’s. Feynman calculates the velocity v by applying the formula for the group velocity 

of a wave packet: 

 
35 The b is the (linear) distance between two successive atoms: xn+1 = xn + b and x0 is defined as x0 = 0. 
36 We will devote a whole separate section to the other assumption (small angle kb so we can approximate). The 
analysis should surprise you – we think it is the most interesting bit of all! – so please keep reading. 
37 You can google this, or check the Wikipedia article on drift velocities. If you want an analogy, think of the musical 
chairs game but with the chairs on a line and all players agreeing to kindly move to the next chair for the new 
arrival and – importantly – the last person on the last chair agreeing to leave the game to get a beer. The signal 
moves fast, from start to end, but the persons themselves move only from one chair to the next.   

https://en.wikipedia.org/wiki/Drift_velocity
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𝑣 =
𝑑ω

𝑑𝑘
=
𝑑(
E
ℏ
)

𝑑𝑘
=
𝑑(A𝑘2b2)

ℏ𝑑𝑘
=
2A𝑏2

ℏ
𝑘 

We do not know where Feynman sees that wave packet, or why he needs it.38 We do not see it. We see 

one wave, representing one particle. The only velocity that matters is the phase velocity, which is given 

by the simple ratio of ω and k: 

𝑣 =
ω

𝑘
=
A𝑘2b2

ℏ𝑘
=
A𝑏2

ℏ
𝑘 

The difference is a factor 2 or 1/2 again!39 It gives a difference in the formula for the effective mass, of 

course. My formula does not have that factor 2: 

𝑚eff =
p

𝑣
=
ℏ𝑘

𝑣
=
ℏ2𝑘

A𝑏2𝑘
=
ℏ2

A𝑏2
 

Hence, my calculation of the effective mass gives a value which is twice that of Feynman: 

𝑚eff =
p

𝑣
=
ℏ𝑘

𝑣
=

ℏ2𝑘

2A𝑏2𝑘
=

ℏ2

2A𝑏2
 

Who is right? We think we are, of course! Why? Because we are convinced of what we have been 

writing so far, of course – which adds up to about 70 papers now!40 However, Feynman himself seems to 

admit there is an issue here, because the original 1963 print edition of Feynman’s Lectures says this: 

“Don’t forget that meff has nothing to do with the real mass of an electron. It may be quite 

different − although in real crystals it often happens to turn out to be the same general order of 

magnitude, about 2 to 20 times the free-space mass of the electron.”41 

Why 2 to 20 times, exactly? Why not 1 to 10, or some other more logical number? In our realist 

interpretation of quantum physics, meff must be related to the free-space mass of the electron and it 

must, therefore, be equal to 1 to 10 times (or more) the free-space mass of the electron – which it is 

according to our phase velocity formula. Right?  

Maybe. Maybe not. Let us further explore the concept. 

The concept of the effective mass of an electron 
We casually introduced a lot of new ideas – a new interpretation of the quantum-mechanical model of 

conduction, basically – and we also conveniently simplified and made assumptions that were left 

unexplained. So perhaps it is time to recap. The assumptions are all quite reasonable assumptions – 

 
38 We are joking here, of course: Feynman has to see it because he has a linear conception of the matter-wave, just 
like de Broglie. See our paper on the matter-wave. 
39 We will not write about this here but, in most cases where we get this (a factor 1/2 or 2 in the calculations), it is 
because the energy concept is either kinetic or potential, but not both at the same time! Our oscillator model – the 
energy is the energy of a cycle in a two-dimensional oscillation – assumes kinetic and potential energy ‘slosh back 
and forth’ too. See our paper on the meaning of the wavefunction. 
40 See: https://vixra.org/author/jean_louis_van_belle. 
41 See footnote 8. We realize the reader may find this difficult to check, but we trust he or she will trust what we 
write here. 

https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
https://www.researchgate.net/publication/344821557_The_Meaning_of_Uncertainty_and_the_Geometry_of_the_Wavefunction
https://vixra.org/author/jean_louis_van_belle
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because they are the ones that are used (but left unexplained) by Feynman too. What about that energy 

concept, for example? In our (ring current) model of an electron, the energy is all of the energy – 

including the rest energy of the electron (we think of the rest mass of an electron as the inertia of the 

energy in the ring current and the electromagnetic field that sustains it). For the convenience of the 

reader, let us re-present the basic model, which we variously refer to as the Zitterbewegung, ring 

current or oscillator model of matter-particles (electrons and protons, basically42).  

We think of the (elementary) wavefunction r = ψ = a·eiθ as representing the physical position of a 

pointlike elementary charge – pointlike but not dimensionless43 – moving at the speed of light around 

the center of its motion in a space that is defined by the electron’s Compton radius a = ħ/mc. This radius 

– which effectively doubles up as the amplitude of the (elementary) wavefunction – can then be derived 

from (1) Einstein’s mass-energy equivalence relation, (2) the Planck-Einstein relation, and (3) the 

formula for a tangential velocity, as shown below: 

E = m𝑐2

E = ℏω
} ⇒ m𝑐2 = ℏω

𝑐 = 𝑎ω⟺ 𝑎 =
𝑐

ω
⟺ ω =

𝑐

𝑎

} ⇒ m𝑎2ω2 = ℏω⟹ m
𝑐2

ω2
ω2 = ℏ

𝑐

𝑎
⟺ 𝑎 =

ℏ

m𝑐
 

This derivation44 allows us to give a precise explanation of Prof. Dr. Patrick R. LeClair’s interpretation of 

the Compton wavelength as “the scale above which the particle can be localized in a particle-like 

sense”45, but we will limit ourselves here to an easy visualization of the model (Figure 3).46  

 

Figure 3: The ring current model of an electron 

 
42 It may sound outrageous in light of various CERN experiments but, while we do believe in some kind of strong 
force (with a entirely different geometry than the electromagnetic force), we do not believe in the quark 
hypothesis! 
43 The non-zero dimension of the elementary charge explains the small anomaly in the magnetic moment which is, 
therefore, not anomalous at all. For more details, see our paper on the electron model. 
44 It is a derivation one can also use to derive a theoretical radius for the proton (or for any elementary particle, 
really). It works perfectly well for the muon, for example. However, for the proton, an additional assumption in 
regard to the proton’s angular momentum and magnetic moment is needed to ensure it fits the experimentally 
established radius. We shared the derivation with Prof. Dr. Randolf Pohl and the PRad team but we did not receive 
any substantial comments so far, except for the PRad spokesman (Prof. Dr. Ashot Gasparan) confirming the 
Standard Model does not have any explanation for the proton radius from first principles and, therefore, 
encouraging us to continue our theoretical research. In contrast, Prof. Dr. Randolf Pohl suggested the concise 
calculations come across as numerological only. We hope he will change his mind on this! 
45 Prof. Dr. Patrick LeClair, Introduction to Modern Physics, Course Notes (PH253), 3 February 2019, p. 10. 
46 We refer, once again, to our paper on the matter-wave for an exploration of how all of this fits in with de 
Broglie’s intuitions. 

https://vixra.org/pdf/2003.0094v2.pdf
https://vixra.org/pdf/2003.0144v7.pdf
http://pleclair.ua.edu/PH253/Notes/compton.pdf
https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
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This Zitterbewegung (or ring current) electron may now move linearly and we may conveniently and 

without any loss on the generality of the argument choose our x-axis in our reference frame so it 

coincides with the direction of travel. We are then able to write its position along the direction of linear 

motion as a simple function of time itself: x(t) = v·t. This combination of a pointlike charge zittering 

around some center and the oscillation as a whole them moving linearly is visualized below47: the radius 

of the circulatory motion must effectively diminish as the electron gains speed.  

 

Figure 4: The Compton radius must decrease with increasing velocity 

We must, of course, immediately urge the reader to imagine the plane of oscillation to rotate or 

oscillate itself in line with our interpretation of the angular momentum vector ħ as a vector rather than 

a simple scalar quantity. Also, when thinking of the electron moving linearly in an electromagnetic field, 

its precessional motion will yield a very different trajectory than the helical motion which is illustrated 

above. However, this does not alter the basic idea: we must think of the trajectory of an electron as a 

superposition of various motions – circular, orbital, linear and other, more complicated, patterns of 

motion in an electromagnetic field that varies in space and in time, perhaps.  

However, we must keep things simple and so here we are considering the linear aspect only. So what is 

different here? Nothing much, perhaps. We put an electron in, and that is supposed to join the first 

atom, thereby lowering the joint energy of the system and, at the same time, ionizing it. In fact, we 

should probably be much more real and talk about silicon or germanium crystals jointly sharing their 

four valance electrons and, hence, we should probably be talking molecular rather than atomic orbitals 

here. But it is just a model, right? And so, yes, a lot is very different – very different – from our simple 

ring current model, but so we have to keep it as simple as possible and soldier on. So the illustration 

below (Figure 5) does capture the idea: the electron moves from one atom (or molecule or crystal cell) 

to the next, spends some time in an atomic or molecular orbital, and then moves on again. The signal 

travels fast, but the electron itself moves slowly – very slowly, it seems. 

 

Figure 5: The idea of a moving electric signal in an atomic lattice 

 
47 We thank Prof. Dr. Giorgio Vassallo and his publisher to let us re-use this diagram. It originally appeared in an 
article by Francesco Celani, Giorgio Vassallo and Antonino Di Tommaso (Maxwell’s equations and Occam’s Razor, 
November 2017). 

https://www.researchgate.net/profile/Giorgio_Vassallo
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Why is so slow? The linear motion of the electron is really a ‘stop-go, stop-go’ motion, and we can now 

understand that the drift velocity consists of two very different components: the velocity in-between 

the moves, and the time it spends at stop:  

(1) The (average) time it spends at each stop is determined by that amplitude A; and 

(2) The time it spends inbetween depends on the velocity inbetween and the distance in between. 

In short, that phase velocity which we calculated, makes sense48, but may apply to the ‘go’ part of the 

motion only:  

𝑣𝑝ℎ𝑎𝑠𝑒 =
ω

𝑘
=
A𝑘2b2

ℏ𝑘
=
A𝑏2

ℏ
𝑘 

The critical question, of course, remains open: what is k? Ever since de Broglie wrote down his 

equations, it is defined as k = p/ħ, and so that is what it is: the classical momentum of an electron. It 

would be equal to the free-space mass of an electron but, because we may not assume that the space 

between silicon or germanium crystals is, effectively, free space (it is filled with electromagnetic fields 

that vary in time and in space), we must write it as meff, so that’s the concept of effective mass. 

However, contrary to what Feynman writes about it – “meff has nothing to do with the real mass of an 

electron” – it must, of course, be defined in terms of the free-space mass of an electron.  

To be precise, the electron may travel more easily through the space inbetween, in which case the 

effective mass will be less than the free-space mass, or it may have to do some work against the 

electromagnetic fields, in which case the effective mass will exceed the free-space mass. Hence, while 

we were happy to write that the effective mass must be 1 to 10 times (or more) the free-space mass, we 

should correct ourselves. The text of the updated Lectures sounds good now:  

“In commonly used metals and semiconductors it often happens to turn out to be the same 

general order of magnitude, about 0.1 to 30 times the free-space mass of the electron.”49 

The small angle approximation for cos(kb) 
We are now, finally, ready to answer the last and final question: is it legit to use the small angle 

approximation for the cosine factor (cosθ  1 − θ2/2) in the E = E0 − 2A·cos(kb) formula so as to reduce it 

to E = E0 − 2A·(1−k2b2/2) = E0 − 2A + Ak2b2 = Ak2b2?  

It should be, right? Why? Because Feynman says so. Sure. But let us check it, OK? Feynman really just 

babbles away about this question50, but from what we write above, it is quite obvious this is an empirical 

question which we need to solve by looking at the order of magnitude of k = p/ħ and the lattice spacing 

b. So let us do that: 

 
48 Forget about Feynman’s group velocity. That is inspired by an erroneous interpretation of what the matter-wave 
actually is: it is not linear, and so there is no need to superpose a finite or infinite number of matter-waves with 
slightly different frequencies and wavenumbers. One frequency (ω) and one wavenumber (k) will do. 
49 See footnote 8. 
50 He basically tries to show different values of k can represent “the same physical situation”, which is a pretty 
disastrous strategy because then you have to choose one specific value to justify the small angle approximation, 
and so he does that by just “looking at what happens for small k – that is, when the variations of the amplitudes 
from one xn to the next are quite slow” and then, bam, the E = Ak2b2 is there, and we should just take it for 
granted!  
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1. Typical velocities in atomic or molecular orbitals are of the order αc, with α  0.0073.51 

Velocities go down as the inverse of the principal quantum number, so there is no inverse-

square law here.52 Hence, we have an order of magnitude equal for the v in the p = mv equation 

in the range of 106 m/s. 

2. The effective mass is in the range of the free-space mass of an electron, so that is 10−30 N·s2/m.53 

The momentum p must, therefore, be of the order of (106 m/s)·(10−30 N·s2/m) = 10−24 N·s. 

3. We now divide by ħ = 6.62607015×10−34 (an exact value since the revision of SI units last year54) 

to get the order of magnitude for k. Check it: it must be a number like 0.15×1010 per meter. Yes, 

keep track of the physical dimension (and meaning) of everything! Of course, that looks very 

large instead of very small, but it is a rather typical order of magnitude for these wave numbers 

and we still need to multiply with b, remember?    

4. The order of magnitude of the lattice spacing b is typically a few angstroms.55 To be precise, the 

so-called lattice constant is about 5.431×10−10 m for silicon and 5.658×10−10 for germanium. 

Hence, kb is a number of the order of… One!56 Huh? Yes: 1. Not exactly one, of course – more like 

something like 0.3 or 1.5 or something. But that is the order of magnitude, indeed!  

 
51 The velocity formula for Bohr orbitals is vn = αc/n, with n = 1, 2,… the principal quantum number (basically 
describing the energy level and the (rough) size of an orbital). Silicon has three shells, while germanium has four, 
so we may reasonably assume 1/n is going to be equal to 1/3 or 1/4.  
52 The velocity formula for Bohr orbitals is vn = αc/n, with n = 1, 2,… the principal quantum number (basically 
describing the energy level and the (rough) size of an orbital).  
53 Electron mass (in kg) is 9.1093837015(28)×10−31 kg. Of course, to get the dimensions write, we need to use 
Newton’s law to re-write mass as a measure of inertia, i.e. the equivalent of a force times an acceleration. 
54 In case you did not know or did not reflect about this 2019 revision of SI units, you should! I find it very 
interesting because it basically supports my interpretation of the Planck-Einstein relation as modeling all 
fundamental cycles in Nature! 
55 Feynman starts his lecture with noting this: “You would think that a low-energy electron would have great 
difficulty passing through a solid crystal. The atoms are packed together with their centers only a few angstroms 
apart, and the effective diameter of the atom for electron scattering is roughly an angstrom or so. That is, the 
atoms are large, relative to their spacing, so that you would expect the mean free path between collisions to be of 
the order of a few angstroms—which is practically nothing. You would expect the electron to bump into one atom 
or another almost immediately. Nevertheless, it is a ubiquitous phenomenon of nature that if the lattice is 
perfect, the electrons are able to travel through the crystal smoothly and easily—almost as if they were in a 
vacuum. This strange fact is what lets metals conduct electricity so easily; it has also permitted the development of 
many practical devices. It is, for instance, what makes it possible for a transistor to imitate the radio tube. In a 
radio tube electrons move freely through a vacuum, while in the transistor they move freely through a crystal 
lattice.” [The italics are mine.] Of course, now you know he is writing a bit of nonsense here: it is not the electron 
that is traveling smoothly, easily or freely: it is the electrical signal, and – no ! – that is not to be equated with the 
quantum-mechanical amplitude. The quantum-mechanical amplitude is just a mathematical concept: it 
does not travel through the lattice in any physical sense ! In fact, it does not even travel through the lattice in a 
logical sense: the quantum-mechanical amplitudes are to be associated with the atoms in the crystal lattice, and 
describe their state – i.e. whether or not they have an extra electron or (if we are analyzing electron holes in the 
lattice) if they are lacking one. You may forget all of the formulas in this paper, but you should not forget this! 
56 (0.15×1010)·(5.5×10−10) = 0.825. The 1/m and m dimensions obviously cancel out, so it is a real-valued number 
without physical dimension alright!  
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Of course, kb is expressed in radians, so we should think of that as an angle: an angle of 1 rad is about 

60° (57.2958, to be precise). The point is: this is not a small angle, and Feynman’s use of the small-

angle approximation is, therefore, not justified. 

How should we think of this? We think of it as a nice example of how our realist interpretation of 

quantum mechanics shows why and how mainstream quantum physics can fail to see how stuff actually 

works. The E = Ak2b2 formula was a bit of a joke anyway, wasn’t it? It suggests anything goes, and that 

the concept of an energy band is basically not relevant. Why? Because an E = Ak2b2 energy formula 

models everything but a band, right? It has no upper limit, so that’s not what reality tells us.57 

So… Well… What is the conclusion? Nothing much, but we will still devote a separate section to them 

(see below). Before we do so, we should note that we were very tempted to add another section about 

Schrödinger’s wave equation for a linearly moving electron. However, we think we covered that – to a 

very reasonable degree, we think – in a previous paper on the matter-wave, amplitudes, and signals, so 

we will not dwell on it here.58  

Conclusion 
This paper applied our realist interpretation of quantum mechanics to an analysis of the mechanics of 

electron propagation through a crystal. We derived a formula for the effective mass of an electron which 

differs by a factor 2 from Feynman’s. We think this solves his rather weird remark on the relation 

between the effective and free-space mass of an electron, which says the effective mass turns out to be 

2 to 20 times the free-space mass of the electron. Our calculations imply the effective mass equals the 

free-space mass in the absence of a potential barrier between successive atoms in an lattice, which is 

what is to be expected. We also find Feynman’s use of the small angle approximation for the argument 

of the wavefunction so as to simplify the energy formula is unjustified. That makes sense because the 

reduced energy formula has no maximum, which contradicts the empirical reality of the conduction 

band in conductors as well as in semiconductors.  

Jean Louis Van Belle, 2 November 2020 

 
57 Students may wonder what a maximum implies, really. Needless to say, if the applied voltage is too large, the 
potential difference will just rip the material apart. So that is end of story then. In that sense, then, there is neve a 
maximum, of course – but that is, of course, not what we are talking about here. 
58 See: Matter-waves, amplitudes and signals. The paper is quite long and, hence, the reader may want to skip 
several sections and jump to where he needs to jump. 

https://www.researchgate.net/publication/341379219_Matter-waves_amplitudes_and_signals

