October 2020, revised January 2021

SOLUTIONS TO CMI MILLENIUM PRIZE PROBLEMS

Jorma Jormakka

Abstract

This document of 162 pages contains my solutions to five CMI Millennium Prize
problems. Solutions to the remaining two problems are not here, as they are
published elsewhere. This version from January 2021 differs from the original
one in October 2020 in that I found an error in the 2008 proof of the Riemann
Hypothesis and removed it. The 2020 proof is still alive. The Hodge
counterexample is still in a journal review. Other papers are not submitted.




Foreword

If you ever get the great idea of solving the seven millennium prize problems
that Clay posed in the year 2000, so my suggestion is just forget it. It is not
because those problems would be totally impossible to solve - in fact, you might
very possibly find a solution that would appear to you be correct - but you might
find it very hard to get your solution read and checked by any expert or journal.

Should you submit it to a journal, my guess is that the likely outcome is that
the journal rejects it on whatever basis, like that they could not find a referee, or
that their expert recommended not publishing it, but you would not get a review
that addresses the content. Though actually I did get two-three reviews that
addressed the first few pages of the submitted paper and got stuck there, though
there was no error in that place. When I answered the referee comments the result
was that the journal could not find a referee or that their expert recommended
rejecting the paper. I have some experience on this because in 2008-2010 I wrote a
set of papers that solve all seven problems and submitted four of them to journals,
but from all submissions of those four papers I did not receive a single review that
was correct and addressed the content. Experts mostly would not answer. Should
they answer - I got four answers in total - these answers are likely to be fast
written and incorrect. Their goal is just to get rid of you. But one of these four
answers was different: one expert did point out an error in my original proof of
the Riemann Hypothesis. That was nice of him. Now the error is corrected and
the revised version of the original proof is included in this book.

Of course you may try asking some friendly mathematician who is not any
special expert or a journal editor /referee, but my guess is that he will not comment
your solution, unless there is some obvious error or misunderstanding in your
solution. If you have an easy error, you get answers. Even I have been asked to

read a few of these incorrect solutions. I broke them all in a minute or so, and



answered politely pointing out the error. But this would happen only if there are

obvious errors.

Solutions to well-known problems are like hot potatoes: nobody wants to touch
them and they would like to stay as far away from them as possible. If you have
a solution to a well-known problem, you should assume that all mathematicians
you ask to read it only hope that you would just disappear. Mathematicians do
not want to attack well-known hard problems. Many of them think that T would
not be modest to try to solve such a problem and the work to result ratio is better
if one tries other problems. It is like a sportsman who would not try to get a gold
medal in olympics because that would not be modest, so he would participate
only in less important competitions because it gives a better work to result ratio.

Maybe. But I think one should try to hard problems.

Some people react negatively to an effort to solve the millennium problems
because there is the prize and mathematics should not be made for money. Let
us just say that getting the prize is highly improbable. I very much doubt that
Clay has any money: the problems were chosen to be nearly impossible to solve in
any foreseeable future. Of course mathematics is not done for money. There are
easier ways to get a million, such as robbing a bank. I, of course, did not start
solving hard problems in 2000 when Clay posed the problems. The first problem
I solved (or thought I solved, if it sounds better) was the Poincaré Conjecture. In
1986 I was doing my Ph.D. in mathematics and the supervisor went for a long
time to the States, so that gave me the freedom of directing my work to a more
challenging direction. I decided to look at the Conjecture. It took me a large part
of 1986-87, and later many months afterwards all the way to the year 2001. But
I never got my solution checked. I did contact many experts and send the paper
to several journals, but the result was always the same: no review of the content,
only rejection. After Grigory Perelman got his solution accepted in 2002 I let the
Poincaré Conjecture proof be as it is, but did make an effort with the remaining

six problems in 2007-2010, just for fun. Now checked my solutions in this year



2020, not so much for fun but in order to finish unfinished tasks. In these two
time periods 2070-2010, 2020, I spent about half a year of intensive work on each
of these six problems, so in total four years of intensive work has been spent on

these seven problems.

Four years is rather much. I doubt many people have tried these seven problems
for four years, or any single problem for half a year. There is a wrong opinion that
if there is a well-known unsolved mathematical problem, then certainly a large
number of good mathematicians must have tried to solve it and failed. Probably
the number of those who tried is quite small and it is unknown if they failed
because efforts to solve well-known problems are usually not checked. Let us take
the Hodge Conjecture. You might be quite wrong in thinking that most, or even
many, mathematicians specializing in algebraic geometry have tried to solve this
conjecture and failed. Very few of them would ever consider trying because most
would think that it is a difficult problem, so they would not manage solve it and
the time would be wasted. Many of them would also be keenly aware of what has
happened to people who tried to solve well-known problems: the effort seriously
harmed their career. And this is perfectly correct reasoning: that is what is likely
to happen. All you may expect is to wake up mockers, now it is especially easy

with the Internet, you might wake up some nasty trolls.

Should you try to solve all seven prize problems you face another complica-
tion. Mathematicians are in the belief that nobody can solve problems on several
unrelated fields of mathematics. The prize problems are each on a different field,
therefore no single person can understand and solve them. Even the idea of doing

so is ludicurous and points out to mental disease.

I think this is slighty faulty type of logic. Nobody, and certainly not a mathe-
matician, is offended because applied mathematicians go messing up in unrelated
fields where they are not experts. They apply mathematical reasoning to physics,

finance, medicine, even warfare, you name it: mathematics can be used in some



problems in almost any field, and you do not need to be an expert of the subject

field.

But applied mathematicians do not dare to apply mathematics to problems
in any field of pure mathematics. I think it is because pure mathematics has no
practical usage and for that reason there is no real need in solving any problems:
intruders who come to solve your problems are not wellcome. They are trespassers
and should be shot. But in fact, only four of the prize problems are in pure
mathematics. Three are in applied mathematics. That does not change the issue:
mathematicians can mess up with any other field, because as every mathematician
for sure imagines, researchers on those other fields are on the level of kids playing
with lego pieces, but no applied mathematician can come to mess up on the

playground of a fellow mathematician. There must be some limit.

T kind of understand this logic, but do not approve it. The fact is that how do
we know if a problem that is difficult on a particular field of mathematics is really
difficult in essence, or is it only difficult when using the tools of the particular
field? The problem may require a different way of thinking. Probably it cannot
be solved with ready tools from some other field, but it may be possible to solve
it by inventing a method from the scratch. This may sometimes be so. I was very
happy by one answer of an expert of computational complexity of my proof of the
P not NP problem. He did not want to say anything of my proof, and gave the
reason that it was so totally different from what is done in that field. I guess a
solution should be something totally different if the methods of the field do not
solve the problem. But this is not always the case. My first proof of the Poincaré
Conjecture was simply geometric topology. It seemed that one or more famous
people of the field had tried something similar but failed, and judged that those

methods cannot work - but used differently they did work.

As for the importance of the prize problems, it should be obvious that they do

not have any importance. If they had some importance, then you would expect



that somebody would be interested enough in checking if the solution is correct,

but they are not interested.

Maybe that is a too negative opinion, maybe I can invent some importance to
these problems. The Birch and Swinnerton-Dyer conjecture could have had clear
importance. It is very difficult to find all solutions to integer elliptic curve equa-
tions, while is is easy to solve modular elliptic curve equations. The conjecture
proposed that the (usually infinite) number of solutions to the integer problem
(i.e., the rank of the elliptic curve) is related to the (usually infinite) number of
solutions to the modular problem (through the algebraic rank of the L-function).
Unfortunately this is not the case, as my proof shows. Thus, this conjecure has
no importance. I also found a counterexample to the Hodge Conjecture, therefore
also this problem also has no importance as the conjecture was false. This coun-
terexample to the Hodge conjecture is in a sense a technical couterexample to
what can be selected as a form: I show that a linear combination can be a sum of
a form and its conjugate, or composed of a form in one side and a conjugate in an-
other side, but not a form only without a conjugate part. Usually, one thinks that
a nowhere vanishing 2-form in a K3 space can be composed without a conjugate

part. This selection of a form is what I show is not a linear combination.

Am T being still too negative? I sure hope not. I found two different proofs
for the Riemann Hypothesis, though one proof was finally incorrect in an inre-
coverable way. This does not have any greater importance since everybody has
always believed that the Riemann Hypothesis is true, but one of my proofs may
have some minor usage. The new proof explains why the interesting zeros of the
zeta function ¢ have the real part one half. Tt is because the sum of poles of (/¢!
must cancel in the positive infinity on the x-axis. The older proof form 2008, well,
it is wrong.

The Navier-Stokes problem asks if liquid can produce an infinity starting from
quite natural initial values. There are 180,000 lakes in Finland. The water in none

of them produces infinities, so we knew the answer to this question already. I



do not think a proof of what we know has any greater importance. But it was
not so in the problem statement. The original problem statement set the initial
values in such a way that one could get an infinity. This was because implicitly the
problem statement used an old theorem and this theorem had an error. I did not
know of this theorem, T just solved the equations in my way and the result was in
conflict with the old theorem. It is sometimes good not to know the field too well:
there are errors in accepted theorems. The peer-review is not capable of finding
all errors. I solved this problem as it was stated in the problem statement and got
the paper published. Clay modified the problem statement when my paper was
already accepted but not yet published. If you do not believe that the problem
statements have been changed over the years, look at the Birch and Swinnerton-
Dyer problem. It refers to a paper from 2001 and not as to be published. So, was
the text written in 20007 Besides, there is an error in this problem statement also.
I did not like the approach of secretly modifying a problem statement and will
not care to make another attempt on this problem. Solving problems of another
field is essentially charity work. You put lots of effort in order to help the people
on that field by solving a problem they cannot solve themselves. I expect thanks,
not cheating. But as for importance, I do not think the Navier-Stokes problem

has any importance.

Then there is the P not NP problem. Some people explain the importance
of this problem in the following way: they say that should P equal NP, then
a large range of computational problems would have a fast solution. Much of
cryptographic security would be lost, while if P is not NP, then we would know
that those problems do not have fast solutions and the solution time would grow
exponentially as a function of the problem size. Nicely, I solved this problem and
got a bound that is just slightly above a polynomial bound. This bound does not
allow making any kind of conclusions if something is too difficult to compute or
easy to compute. With this bound, that is, with this prize problem solved, nothing

at all is clarified. The prize problem is totally without any importance.



The problem of Yang and Mills fields could have had importance if the mass
gap could have been proven, but my proof gives solutions without a mass gap.
The question is really of quantization. Usually in quantum gauge field theory you
fix the gauge and then use the Faddeev-Popov way and get the ghost fields. The
problem here is that the quantization of the field theory fails already long before
this step if a sound mathematical solution is required: quantization gives divergent
propagators that have to be renormalized by a step that does not tolerate day
light. If this step is corrected, then you do not need to fix the gauge and proceed
in the customary way. I have done this in the book Reconsidering Einstein in
chapters 1 and 7. The whole book is rather destructive in character questioning
many known truths in physics. I do not think any theoretical physicist would
consider my results important and certainly not useful. They would preferably

forget them.

But one should not forget the Poincaré Conjecture. There were many pur-
ported proofs of the Conjecture. They were not checked. Then Perelman got his
proof checked and accepted. I do not know if there was any major breakthrough
in geometric or low-dimensional topology because a proof was finally accepted.

Possibly there was, so maybe one prize problem may have had some importance.

Of course, you may argue that the prize problems have importance because
they lead to new theorems. To counter this vain hope I include a small theorem
that did come as a side result of my solution to the Birch and Swinnerton-Dyer
conjecture. As far as I see the theorem has no importance what-so-ever. To make
the point even clearer, I add two left-over results from the the Riemann Hypothesis
proofs (one was false, the other not checked). Naturally, you do get results that
are finally not needed when trying to prove some chosen theorem, but there is no
reason why these side results should every prove useful for anything.

I include in this book one proof of the Riemann Hypothesis, a counterex-
ample of the Hodge Conjecture, a long version of the solution to the Birch and

Swinnerton-Dyer Conjecture, a proof that P is not NP, my first proof of the



Poincaré Conjecture as far as it can be reconstructed from later versions of the
proof, and two papers with totally useless results that were invented as side prod-

ucts.

For the Navier-Stokes problem solution see my article in EJDE from 2010 and
for the Yang-Mills problem solution see my book Reconsidering Einstein Lambert
Academic Publishers, 2020, chapters 1 and 7. I will not include these solutions in

this book.

Thope I managed to convince you that mathematical results are usually useless.
They are allowed to be useless. They are made mainly for fun, but it is not much

fun if nobody agrees to read them. But fine, there should be some importance.

Let us try to find the importance elsewhere. I think it can be found from the
great difficulty of getting proposed solutions to well-known problems reviewed.
This difficulty gave me an idea of how to conquer the world. You need lots of
money, not a million or a few millions from Clay, but millions of millions. To have
billions you must control some important banks and through them finance, but
money buys. You can buy much of the media with such money, and through media
control the minds and souls, be the light of the nations, but if the light in you is
darkness, then the nations are lead by darkness. This darkness may be essential
to you because you may have your favourite story, in history for instance, and too
much light might not support this story. It is not enough to control the media,
you need to control people whom other people trust. Today it is the scientists,
as they are the new priests. People trust that the priests know as they have the
book, even though much in the book is false. You can donate lots of money to
private universities so that they can hire the best experts, give scholarships to the
best students, and get the best equipment. With such resources there always are
good results, but as the financier you have the say-so who is given the merit for
the results. It could be your man. And so it comes to the point that the prizes
should go to the correct people and not to the incorrect people. But this was just

a thought, let us say that it is not so.



Personally I do not care about the importance. For me the main result is that
this long task will soon be finished. In this book I give four solutions to still
open problems. Are the solutions correct? I just spent much of this year checking
them and they seem correct, but that does not imply that they are correct. The
expectation is that all solutions are incorrect, yet, no hard problems are solved
without trying them. Even one correct solution is enough.

Two of the four solutions to open problems included in this book are currently
submitted. Two others are almost ready to be submitted, and will be submitted. I
will send only an abridged version of the long paper on the Birch and Swinnerton-
Dyer conjecture to a journal. I will not check the long version carefully for typos,
so be carefull, but that paper has much good material. I do not have any hopes
of getting these solutions reviewed in any meaningul sense. Why should this time
be any different than any other time?

In hindsight it was a totally useless exercise, but I cannot deny: it was great
fun to crack those problems.

Yes. Ignore what I just wrote. Solve the seven problems. It is great fun. I
warmly recommend!

Seriously. Of course. I never joke.
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On the zeros of the Riemann zeta function

Abstract. Zeros and the pole of the Riemann zeta function ((s) corre-
spond to simple poles of the logarithmic derivative f(s) = & In((s). In
Re{s} > 1 the function f(s) has an absolutely convergent sum expression
£(s) = 52, hi(s) where hj(s) = ha(js) and ha(s) = — $23°_, In(pm)pi,
a sum over all primes p,, > 1. When the Taylor series of f(s) is evaluated
at a point (1,0), 1 >> 1, the absolute values of the coefficients of the Taylor
series decrease in a negatively exponential manner when [ increases. The
function f(s) has simple poles in the area Re{s} < 1. The pole gives the
function r/(s — sx), which can be evaluated into a Taylor series at (I,0).
The coefficients of the Taylor series of the pole decrease as ™! as a func-
tion of I. This implies that in the sum of all poles of f(s) poles must cancel
other poles so that the negatively exponential behavior of the coefficients
of the Taylor series dominates. The function of z = I™' arising from the
pole —1/(s —1) at s =1 is —z/(1 — ). The poles of f(s) at even nega-
tive integers give the function —zC. These two negative functions cannot
cancel poles sx that are on the x-axis and 0 < s < 1. Thus, such poles do
not exist. Pole pairs s, 7, give the function x + /(1 — z) that cancels the
sum —zC —z /(1 — z) when C = 1 if only if every pole s has Re{s} = ;.
The convergence of the coefficient of every power ¢ > 0 of z larger to zero

at least as O(x) is shown possible for this solution.

Key words: Riemann zeta function, Riemann Hypothesis, Number Theore.

AMS Mathematic Subject Classification: 11M26

1 Definitions

The Riemann zeta function is defined by



where s is a complex number. The zeta function can be continued analytically to
the whole complex plane except for s = 1 where the function has a simple pole.
The zeta function has trivial zeros at even negative integers. It does not have

zeros in Re{s} > 1. The nontrivial zeros lie in the strip 0 < z < 1. Let

P ={p1,ps,...|p; is a prime,pj 11 >p; > 1,j > 1}

be the set of all primes (larger than one). Let s = = + iy, 2,y € IR and = > %

The Riemann zeta function can be expressed as

¢s)=JIa-p" (2)
Jj=1
This infinite product converges absolutely if Re{s} > 1. See e.g. [1] for the basic
facts of ((s).

2 An introductory lemma and the theorem

Lemma 1. The functions

o

hi(s) == In(p;)p;”* , j>0 (3)

j=1
are related by hj(s) = hi(js). The functions h;(s) have analytic continuations to
Re{s} > 0 with the exception of isolated first-order poles. The poles of h;(s) that
are not on the x-axis appear in pole pairs: close to sy, where Im{sy} > 0, h;(s)

is of the type
r

hi(s) = + f1(s) (4)

S — S

and close to sy, where s, is a complex conjugate of s, hj(s) is of the type

hi(s) = —— + fo(s)

S Sk,

12



The functions fi1(s) and f2(s) are analytic close to s, and s} respectively. If the

pole is at the x-axis, there is only one pole of the type (4) with Im{sy} = 0.

Proof. The claim

follows directly from (3).

The function hy(s) converges absolutely if Re{s} > 1 because
27"
j=1

converges absolutely for Re{s} > 1 and [Inp;| < [p§| for any fixed & > 0 if j is

sufficiently large. Therefore

| In(p;)p; *| < 2lp; *"¢|

for any fixed a > 0 if j is sufficiently large. Therefore, by (5), h;(s) converges

absolutely if Re{s} > .

From (2) follows

The derivative ('(s) is analytic in all points except for s = 1. The function hy(s)

is continued analytically to Re{s} > § by

hi(s) = ((s)7'¢"(s) — g(s) (6)

where

a(s) = D" hy (o)

Jj=2

13



The function ((s)~! is analytic except for at points where ((s) has a zero or a
pole. The function g(s) is analytic for Re{s} > 1 because each h;(s), j > 1,
is analytic in Re{s} > % Thus, the right side of (6) is defined and analytic for
% < Re{s} except for at points where ((s) has a zero or a pole. At those isolated

points hq(s) has a pole.

At a pole sg of ((s) the zeta function has the expansion

C
((s) = s + higher order terms.
— Sk

If Re{s} > 1 the function hi(s) is of the form

r

hi(s) = ¢'(s)¢(s) ™" — g(s) = + fi(s)

S — Sg

where fi(s) is analytic close to s, and r = —k < 0 is an integer. The function

¢(s) has only one pole, at s, = 1= (1,0), and it is a simple pole, thus r = —1.

At a zero sy of ((s) the zeta function has the expansion

¢(s) = C(s — sx)* + higher order terms.

If Re{s} > 1 the function

r

hi(s) = ¢'(s)¢(s) ™" — g(s) = + fi(s)

S — Sg

where fi(s) is analytic close to s and r = k£ > 0 is an integer. It is known that

((s) has many zeros with Re{s;} = 1/2.

Thus, hi(s) has only first-order poles for Re{s} > % and therefore h;(s) has
only first-order poles for Re{s} > % At every pole of hi(s) in Re{s} > } the
value of r is an integer.

As hy(s) is continued to Re{s} > 1 by (6), the equation (5) continues h;(s)

to Re{s} > 5;. Then (6) continues hi(s) to Re{s} > 7. The function hy(s) has

14



isolated poles at Re{s} > i. Each pole is a first-order pole, but the value of » at

a pole does not need to be an integer.

We can repeat the procedure inductively: If h (s) is continued to Re{s} > o

1
2i5°

by (6), the equation (5) continues h;(s) to Re{s} > Then (6) continues hi(s)

to Re{s} > 54+. By induction, all h;(s) are analytically continued to Re{s} > 0.
In this inductive process hi(s) gets isolated first-order poles. In these poles sg
the values r = r; can be positive or negative, and they do not need to be integers.
If hi(s) has a pole
r

hi(s) = o + fi(s)

(here fi(s) is analytic close to si), then h;(s) = hi(js) has a pole at j's; and

1

the r value is j~'r since

.717‘

J

hj(s) = h1(js) = 5= isr

+ fi(js)-

The function hq(s) is symmetric with respect to the real axis. By (4) h;(s),
j > 1, is also symmetric with respect to the real axis. Therefore poles of each
hj(s), j > 0, appear as pairs s, and sj. In the special case where sy, is real there

is only one pole, not a pair. o

Theorem 1. All poles on;il hj(s) in 0 < Re{s} < 1 have the real part .

Proof. Let us consider a function f(s) that has a first-order pole at sq and write
21 = s— 8g- The function f(s) does not have a Taylor series at sg, but the function

21 f(z1 4 so) has a Taylor series at z1 = 0 and f(s) can be expressed as

1) = =2+ Y et (™)
L k=0

Let us evaluate f(s) at another point at sg + 1, [ > 0, by first writing z; =1 — 25

where |z1| << 1, inserting z; = [ — 29 to the series expression of f(s), and then

15



considering the result when |22| << 1. The function

fi(z1) = f(z1 +50) — =L (8)

21

has the Taylor series at z; =1 — 2o where |21] << 1 as

o

fil = z2) = Z em(l—22)™

= (k+14)! >
= ZZ T (=1 epyi28 = Zbkzg.
j k=0

k=0 i=0
Thus
(ki)
bk = Z ( z'k') l (—l)kckH.
=0
As
1 dk

we Ccan express

1. d o\ 1 dk
= P (1) — 0.
b (Zoz' dz;> k!( ) dszl(s)ll 0 (9)

If there is no pole of f(s) at so + I, the function

fl(l — 22) = z bkzg
k=0

is analytic and defined by its Taylor series as powers of zo where the series con-

verges.

The pole of f(s) at ¢_1 can be evaluated as a Taylor series of z5 at so + I as

c_1 c-1 1 Co1 = (22K
l—2’2:l1—2211:l;)<l) ’
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We can subtract a set of first-order poles of f(s) in points s; € A and define

filz) = f(5) =D (10)
€ S — Sj
jEA
where r; = c_; ; and express
s—sp=1(5—80)— (85 —80) =21 —8j+s0=1—2—(s; — s0)-
At the point sg + [ the set of poles is
T]' _ Z ’I"]' _ Z T]‘
Z = — -0 (11)
AT jeAl—zz—(s—so) jeAl—aja:
where a; = s; — o and z = (I — 29) L.
Let us consider .
1
Tk
= 12
f0 =3 1 h) (12

Jmax

fi(s) = =3 In(;)p;*.

Let [ >> 1. The Taylor series of the set of poles points s, at so in powers of 27 is

oo k1
S (St )

i=0 \k=1

and the Taylor series at sg + [ in powers of zo0 =1 — 21 is

[ee] k1
Z (Z re(so +1 — sk)i1> 23

i=0 \k=1

For each k the coefficient of the ith power of 21 at sg is ¢; = ri(sk — so)_"_1

while the coefficient of 29 at sg + 1 is

bi=ri(so+1—s5) " =TT (i + 1) (se — so)l TR+

17



The absolute value of the coefficient b; of the Taylor series in powers of 25 at sg+1

decreases as
k1
> el
k=1

as a function of [ >> 1.

The part f1(s) of f(s) satisfies

Jmax Jmax

|f1 $+l Zln p] —1 Zln —s —llnpg

Jmax

e Z In(p;)p;*| = e *|fu(s)]. (13)

The absolute value of the coefficient b; of the Taylor series in powers of z5 at sg+1
decreases as

|bz| S 67““2|Ci|.

This is negative exponential decrease and much faster than the hyperbolic decrease

for the set of poles.

When [ — oo, the hyperbolic contribution from the poles must vanish: every
nonzero coefficient of the Taylor series of f(s) at (I,0) when I — oo must decrease
as a negative exponential e !"(2), This negative exponential of [ decreases faster
than any negative power of /. For each power i of x, the coefficient in the power
series of z coming from the sum of the poles must go to zero at least as O(z)
leaving the negatively exponentially decreasing coefficient from fi(s) in (12) to

dominate.

The sum of the poles decreases as O(z), z = [, and goes to zero when z — 0
assuming that the x-coordinate of every pole of f(s) is smaller or equal to one,
but the required convergence that each coefficient of the power series of x must
go separately to zero at least as O(x) is a stronger condition. The requirement

that the coefficient of a power i of x the sum of poles decreases at least as O(x)
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means that that the poles of f(s) partially cancel each others when [ grows. Poles
cannot completely cancel: a pole at s with r = r; can be completely cancelled
only by a pole at s with r = —r. The sum of poles has the poles of its terms, but
at [ >> 1 there can be partial cancellation so that the Taylor series coefficients

decrease sufficiently fast as a function of [.

Let jmax — 00 in (13). Then f(s) = hi(s). If Re{s} =1 >> 1, the sum (13)
taken to infinity converges absolutely. The inequality (13) holds when jpax — 00
and the absolute values of the coefficients of the Taylor series at sg + [ for the
function hq(s) must decrease in negative exponential manner as a function of /
when [ — oco. It follows that every h;(s) = hi(js) also has the same negatively
exponential dependence of the coefficients of the Taylor series at (I,0) on [ when
I >> 1. Consequently the sum of the poles of the functions h;(s) = hq(js) has
same negatively exponential dependence for coefficients at (I,0) on ! when ! >> 1.

Therefore the sum of the poles of the function

must satisfy the requirement that the coefficient of each power of 2 decreases at

least as O(x) when [ grows to infinity.

We did not continue h;(s) to the area Re{s} < 0 in Lemma 1, but the function

f(s) is analytically continued to Re{s} < 0 by
d
=9
78) = £ nc(s)
to all points where ((s) # 0 and we can find all poles of f(s).

The function f(s) has the following poles in Re{s} > 0:

(i) There is a pole with r = —1 at s = 1.
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(ii) There is a set A of pole pairs hq(s) at s, and s}, where s has a nonzero
imaginary part, and the r-value rj is positive. All we know of s is that 0 <

Re{sy} < 1, and that that there exist poles s; with the real part 1.

(iii) There may be a set Aq of poles si 1 of hi(s) with ri 1 a positive integer

and the pole sy, is real, 0 < s < 1. No such pole is known.

Inserting s = 89 + 1, sg = 0, z = ! to the expression of a pole (4) on the

x-axis gives (ignoring the analytic function part in (4))

Tk Tk

s—sr l—agpx’

Here ay, is a real number. A pole pair in the positive and negative y-axis can be

written as
Tk IT}

s—sp 1—(1+iag)arz

r Ty

s— s} 1o (1 —iag)arz’
Here z = (I — z2) ' > 0 is a real number and small if [ is large, ar, = Re{s;} and
ay, is chosen positive. We will always take sq as 0. The number [ is the distance
from sq = 0 to the observation point on the x-axis, (I,0), where the Taylor series
with zy is evaluated and |z2| << 1. As 25 is the variable of the Taylor series at
(1,0), the expressions are valid for any small z, and we select 22 = 0 for easier
notations. Thus, z = [~1. The pole (i) at s = 1 gives the power series of z where

ar=1land r = —1

oo

xr -z m
= =—z ™.

1—(agz) 1-—=x mzzo

The zeros of ((s) in the area Re{s} < 0 are the so called trivial zeros at even

negative integers. They come from the formula




where B,, = 0 if m > 1 is odd. Zeta does not have a zero at s = 0. From the

functional equation

¢(s) = 2°7* 'sin(2 'ws) (1 — 8)¢(1 — 5) (14)

we can deduce that the trivial zeros are zeros of sin(2 '7s) and therefore first-
order zeros. Thus, at a point s = —2k, k > 0 integer, the function f(s) has a

first-order pole with the r-value 1.

A pole at s, = =2k, k>0, is

Tk 1

s—s, S+2k

We can evaluate the Taylor series of z; at sg and the Taylor series of z5 at sg + 1

for any such pole and for a finite sum of such poles:

1 1
80+Z1+2k_80+2k

(1) (o0 + 20)) 4

1 1
So+l—20+2k so+1+2k

Z(SO +142k) 12
i=0

but if sum the index k goes to infinity, the series diverges at every finite point
so + I. We will evaluate the sum of these poles at so = 0, conclude that the
contribution is negative, and present a way to move a finite but growing sum of

these poles to (I, 0).

First we find out the sign of the infinity of the sum of the poles sy = —2k at
so = 0 and z; = 0. Notice that for a point s; = —k the pole at that point, with

the r-value r, when evaluated to a Taylor series at so = 0 and z; = 0 is

ol

§—5;
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This is the inverse of a pole with the same r but with s; = £ when evaluated to a
Taylor series at so = 0 and z; = 0. As an example, s; = 1 is the pole at s = 1 with
r = —1. When evaluated at sg = z; = 0 it is the inverse of a pole with r = —1
but s = —1. Thus, the pole at s, = —2k with » =1 > 0 is the same at s = 0 as
a a pole at s = 2k with r = —1 < 0. We see that any sum of the poles s, = —2k

gives a negative infinity when evaluated at sqg = 0.

The type of infinity of the sum of all poles s = —2k at sg = 0 can be calculated.

Using the facts that ((s) has a simple pole at s = 1

C(s) = == +9(9)

where g(s) is analytic at s = 1 and that lims_1(s — 1){(s) = 1, so a = 1, we can

write

This result gives

1 1i lC(l) i
— = = = — = lim ——.
« 2k 2 Pt Kt 2 502§

M8

~
Il

Thus, the sum of the poles at s = —2k appears as a simple pole when evaluated
at sg = 0. The pole has a negative r-value with r = —1 at sg = 0. However, it is

not a simple pole. A simple pole with r = —1/2 is

lim (—1/2)1/(s — sg).

8§—80

It is moved to sq + [ by writing

lim (=1/2)1/(s =1 —sg) = (=1/2)/l = —x/2

8§—80

where 2 = 17!, This pole is finite for every I > 0, but the sum of the poles s, = —2k

is infinite at every finite /. This is so because the infinity limg_, s, (=1/2)/(s — s0)
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is not caused by the pole being physically at sg, the infinity comes from the sum

of the numbers 1/(1 + 2k).

If we subtract all poles sy = —2k from f(s), then fi(s) is infinite at every
point. Because of this reason all poles s = —2k cannot be moved to (,0) at the
same time. We can only move at a given [ > 0 such a subset of poles (like a finite
set) that the sum gives a finite number when moved to (I, 0). All poles have to be
moved at some point as the sum of all poles of f(s) should be zero at I — co. Thus,
we must move more poles when [ grows until all poles are moved when [ — oo. The
choice of which subsums of poles are moved for each [ cannot influence the result.
We will make a convenient choice for these sums: let us choose a suitable growing
function N(l) and move the subsum of poles s, = —2k satisfying & < N(I). A
finite sum up to N(I) can be moved to sg + I, and when N () increases with [, all
poles —2k are included in the finite sum when k& < N(I). The tail of the infinite

sum that is outside the finite sum up to N(I) goes to zero when | — oo.

Thus, we take a finite sum

As it is a finite sum, it can be moved to (/,0) without creating an infinity. If
N(1) is sufficiently large and fixed, and I = 0, the moved sum is —2/2 — €(l). The
number €(l) depends only on N(I) and we can select a function N(I) such that
€ < min{ey, e '} where ¢y > 0 is small. Then () decreases with [ faster than any
power of z = [~!. The number N(I) increases when I grows, and therefore the
absolute value of the sum grows with I. It gives a function —zC(l) — €(l). This
function cannot have any higher powers of x, only the first power, because every
power of z can be continued to so and there would be the power of = also at s,
but at sg the function is —z/2 when N(0) — oco. In the limit 2 — 0 the function
2C' (1) must be of the order O(x) because all other poles give contributions of O(x)
and the sum of all poles must vanish when ! — co. Since C'(l) > 1/2 is a growing

function and limited from above, the function —zC(l) — € must converge to —zC,
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where C' > 1/2 is a finite real number. The number € goes to zero, as it decreases
faster than any power of x. The number C will be determined later in this proof.

The poles (iii) of A; sum to a series of the type z3 -, cma™ where every
¢m is nonnegative. Since all of these poles are in the area 0 < s < 1 and they
are isolated and therefore do not have a concentration point at s = 1, the power
series of z coming from these poles cannot be of the type b(z +z? + 23 ---), which
is the type of the power series of the pole at s = 1. It follows that the poles of A
cannot be cancelled the pole at s = 1 giving the contribution —z /(1 — z). Adding
the contribution —zC' from the the sum of poles —2k does not help to cancel any
poles of A;. The poles of (ii) yield a power series of z where the coefficient of
every ' is nonnegative. They cannot cancel poles of A;. Thus, the poles of A;
cannot be cancelled by any set of other poles in the limit [ — 0o. Therefore the

set A; must be empty.

The pole pairs in A can be cancelled by the poles in s = 1 and in —2k, as will
be seen later. The coefficient of the power one of z can be cancelled by sum of the
corresponding coefficient —1 of the pole at s = 1 and the coefficient —C' coming
from the poles in Re{s;} < 0. Higher than power one coefficients of z coming
from a sum of pole pairs in A can be cancelled only by the pole at s = 1 since

—2xC' does not have higher powers of z.

The two poles (ii) of a pole pair have a real sum:

Ty Ty 2(1 — apx)

- + - = .
1—ar(l+iag)r 1—ap(l —iag)r Ty — 2arz + (1 + oF ) (arz)?

We expand the sum S of the poles of a pole pair omitting the multiplier zr) for

simplicity in this calculation up to (16):

g 2(1 — agx) 227w 1
12z 4 of(arr)? 14 ad(arr)? 1 - 2a5z7y,
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where v, = 1 + o} (agz)?.

2 — 2437 .
= 2T T Z(Qakaz'yk_l)’.
T i

Writing B, = (2(119)"7,6_"_1 we get

oo oo oo oo
S=2 Brix’ —2ar Yy Briz'tt = 2B’ — 24 Y Pri 17’
i=0 i=0 i=0 i=1

oo
=280+ Y _(2Bki — 2aBri-1)z’.

i=1

Fori >0

2a i—1 _
2,31' — 2akﬂk,,~,1 = 2%(2&]{}% T ak)

Yk

= (3?4]?1)1 (2= 7k) = Br,i(2 = )
k

This gives an equation for every i > 0

28; — 2arBr,i—1 = 2Bk,i — VrBr,i-

Inserting v = 1 + (agagz) yields for i > 0

2a1Brk,i-1 = WBri = Bri + 27 (arar)?Br,i-

For every k when | >> 1 and thus for 0 < z =1~! << 1 and i > 0 holds

20 Bri—1 = WBk,i = Br,i + O(z?).

The coefficient of the the power z?, i > 0, is

281, — 2aBri1 = Bri + O(z?).
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The coefficient of the power of z+1 in the power series —z/(1 — z) of the pole
in s = 1is —1 for every i > 0. The coefficient of zi*! in the power series of the
sum of poles (ii) is

Z Tk (28k,i — 20k Pr,i—1)

keA
where we have included the multiplier zr, that was so far omitted. Summing the
powers of 4 from i = 2 to i = 41 + 1 and inserting (16) gives the equation where
the coefficients of the pole pairs (ii) must cancel the coefficients of the pole (i) to

the degree of O(z?):

i14+1 t1+1
i1 =— Z(—l) = Z Z rkBri + O(2?). (17)
i=2 i=2 k€A

For each k, when z — 0 and ¢ > 0, holds

Br,i = 2aPBr,i-1- (18)

If every ay = % the recursion equation (18) gives Bk ;41 = P, for every k. For
every k the power series of z for i > 1 is of the form z8; 1(z + 2? + 2% + ---).
This is the same form as the power series —z(z + 22 + 2% + - - -) for the pole s = 1
for ¢ > 1. The power series for the poles k for i > 1 add to one power series of
the type zb(z + 2 + 23 + - - -). We see that if every a; = 1, the sum of poles (ii)
cancels all powers ¢ > 1 in the pole in s = 1 when z — 0 and the coefficient of
each power i > 1 of x converges to the negative of the coefficient of the power i

of x in the power series for the pole in s = 1 as O(z?).

Assume that one ay, is not 5. The functional equation (14) shows that if there
exists a zero sg = xg + 1yo of ((s) with 0 < zy < % then there exists a zero of ((s)
at a symmetric point in % < x < 1. This implies that we can find sg such that

2aj > 1. The form of (18) for a nonzero z, i > 0, is

Br.i = 2arBr,i-1 + O(z?). (19)
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For ay the recursion (19) gives B ; = Brr,1(2a ) +O(2?) From (17) we get (20):

i1+1
i = Z Z kBri + O(&”) > B 1(2ap)™ + O(a?). (20)
i=2 keA
The right side in (20) grows as By,1(2ar )™ as a function of i; while the left side

is linear in ;. This is a contradiction. Thus, every a; must be %

By (20) each aj, = 5. Inserting a, = 27! to (21) gives

Bi = z re(1 4+ 272 (aga)?) "L (22)

keA
The recursion equation for B ; is Bk, = (2ar/Vk)Bk,i—1- As 2a;, = 1 and since
vk > 1, this implies that Sy ;1 > B, for all ¢ > 0. Recursion (18) for a; = %
shows that for every ¢ > 0 the value f3;; is the same when z — 0. Since v, — 1
when x — 0, ; is the same for every ¢ > 0. Equation (20) implies that 8; = 1
for every ¢ > 0. In the limit © — 0 holds 84,0 = Bk,1. Therefore also §; = 1 when

z — 0.

The claim of Theorem 1, i.e., that each a; = % for sy € A and A; is empty,
is already proven. The reason for this result is that since the poles of f(s) at
Re{s} < 0 give —zC, all powers i > 1 of z in the series —z/(1 — z) for the pole at
s = 1 have to be cancelled by the poles of A and A;. This series to be cancelled
by the poles of A and A4; is —z2% — 2% — z* — --.. No sum of poles in A; can give
this series because each pole in A; is smaller than one and larger than zero. A
pole pair s, s}, in A gives this series if and only if Re{s;} = ;. If even one sj, has
the real part not at %, (20) gives a contradiction. Thus, all poles of A have the

real part as one half.

Let us still check if the solution is possible. We check if all

Bi=_ kB (21)

keA
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can have the value 1 as the solution gives, and if all coefficients of the power series

of x can go to zero at least as O(z) when | — oo.

Because z — 0, the values of ay, in (22) must grow to infinity with k. The set
A is necessarily infinite. We renumber the poles of (ii) so that (ay) is a growing
sequence and the sum k € A is the sum k = 1 to infinity. Since ax = £ by (20)

we can evaluate

2Bk,i — 2axPr,i—1 = Br,i(2 — k)

and get
(0.5apz)? )

=By [ R
Bryi = Br,i 1( T+ (0.5052)?

Let I >> 1 be fixed. If @, >>1 =2, then

(0.5a,z)?
1+ (0.5a2)?

is close to one and fj; is close to zero. This means that large values of oy con-
tribute very little to the Taylor series at so + . The sum in (22) can be finite and

there is no reason why it could not be one as the solution gives.

The contribution from the poles at s = —2k is —xC, from the pole at s =1
it is —z/(1 — z), from the poles of A4; it is 0, and the contribution of the pole
pairs of A is approaching the series (2 +z + 2? + 2° +--+) when z — 0 as O(2?)
separately for the coefficient of each power i of 2. The sum of these contributions
when [ — oo is

—Ca:—%+0+x(2+w+m2+z3+---): (=3/2+2B0)z = (1= C)z. (24)

The sum (24) must be zero. This is possible when C = 1.

The convergence of the coefficients of the powers of z to zero in (24) when
x grows is O(2?) for the coefficient of each power i > 1 of 2’ separately, which

fulfills the convergence criterion.
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For the power one of x we only get the result that the convergence as at
least O(z) is possible. The term Sy converges to 1 as O(2?) since every B ; =
Br,i—1+ 0(562). Each 3; converges to 1 as O(m2). The contribution from the poles
at —2k is —zC(l) — €(l) where 0 < €(I) < e~! goes to zero very fast. The sum
—zC(l) — €(l) — z + zfo can go to zero at least as fast as O(z) as the solution

requires. The solution is possible. o

All known facts of the Riemann zeta function that are used in this proof can
be found in [1]. The history and background of the Riemann Hypothesis are well
described in the book [2]. As the problem is still open, recently published results
do not add so much to the topic. As they are not needed in this proof, they are

not referred to.
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A note on the Hodge conjecture

Abstract. The paper presents a counterexample to the Hodge conjecture.
Key words: Hodge theory, differential forms, algebraic geometry.

3 Introduction

The Hodge conjecture is one of the better known open problems in mathematics
and was chosen as one of the Millennium Prize problems by the Clay Mathematics
Institute [1]. The formulation of the conjecture in [1] is: On a projective non-sigular
algebraic variety C, any Hodge class is a rational linear combination of classes
cl(Z) of algebraic cycles. This seems to say that every Hodge class on an algebraic
projective complex manifold M is a linear combination with rational coefficients
of the cohomology classes obtained by the Poincaré duality from homology classes
of complex algebraic subvarieties of M.

The paper proposes a counterexample to the Hodge conjecure in the the alge-

braic projective complex manifold

M:{(Sl:82:83284385386287388)|S‘11+S§+S§+83:0, ( )
1
3+ 8¢+ 57 + 55 =0,8; +s5 =0}

M is an algebraic subvariety of codimension 3 in the complex projective space
P7 and a closed complex manifold of dimension 4. The manifold M is composed
as a product of two Fermat quadratic surfaces tied with the third homogeneous
polynomial equation in order to embed M into a projective space. As the Fermat
quadratic surface is a K 3 space, the manifold M inherits a (2,0)-form that is never
zero from the first copy of K3 and a similar (0,2)-form from the second copy of
K3. Tt is shown in the presented paper that the wedge product of these forms is

a (2,2)-form that cannot be represented as a Q-linear combination of cohomology
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classes of deriving from algebraic subvarieties of M. This form, having only one
term f(P)dz1 A dza AdZs A dZy, is rational (it is a linear combination of this type

of forms with rational coefficients) and thus a Hodge class.

The study of what cohomology classes can be obtained by the Poincaré duality
from homology classes of submanifolds was started by René Thom, but in real
manifolds. Thom’s original paper is in French and rather difficult to read, but we
can look at [2] that is available on-line and find there the following statement (page
1 in [2]): All homology classes with integral coefficients of compact orientable
differentiable manifolds of dimension < 10 are realizable by submanifolds. As
a 4-dimensional complex manifold can be understood as an 8-dimensional real
manifold, this statement, combined with the Poincaré duality, implies that every
singular cohomology class of the 8-dimensional manifold can be realized as a linear
combination with integer coefficients of classes of real submanifolds. However,
these real submanifolds need not be complex submanifolds because a complex

submanifold inherits the complex structure from the mother manifold.

If Z is a complex submanifold of M of codimension k then the inclusion map
i : Z — M induces a cohomology class [Z] that is in H**(M). In local coordinates

the cohomology class [Z] is then a form of the type

Y = f(z,2)dz! Adz’ (2)

where (z,2) = (2',...,2",2',...,2") are the local coordinates. As 1) € H*¥(M)
there are the same number k of indices in the multi-indices I and J. This does
not seem to say very much. However, if we look more carefully we see that the
form (1.2) has the property: if z are the local coordinated of the submanifold, the
differentials dz7 and dz’ always appear in pairs, as dz? A dz7. The reason is the

following.

The tangent space of a 2-dimensional complex manifold in a chosen base point

P is C?. There are two complex coordinates z; = x; + iy, and 2o = 2y + iys.
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(Let us use lower indices for a while as it is more natural.) A 2-dimensional real
plane in the tangent space of the chosen basepoint can be spanned by any linear
combination of four independent vectors e;,1,€y,1,€z,2,€y2 but a complex line
cannot separate z; and y;. They are not vectors, they are numbers in the field
C. Thus, a complex line through the basepoint can only be a linear combination
az1 + bzs = ¢, where a, b and ¢ are complex numbers. Such a complex line defines
a real plane as the z and iy coordinates of z = x + iy correspond to the vectors
e, and e,. In the local coordinates of the (real) mother manifold this (real) plane
has the coordinates e, = ae, 1 + be, 2 and e, = ae, 1 + bey 2. It can be expressed
by using a wedge product xe, A ye,, which is a vector pointing to a direction
orthogonal to the plane as the wedge product is a bit like the cross product.
Instead of ze, and ye, we can use a linear combination of them: z = z + iy and
zZ = x — iy. In this case the wedge product gets the form z A z. Here z is a local
coordinate of the complex line. It is clearer if we denote the local coordinates of the
tangent space of the complex submanifold by z; and the local coordinates of the
tangent space of the mother manifold by z,,. Then z; is a linear combination (with
complec coefficients) of the local coordinates z,, and a complex curve expressed
as a (1,1)-form in is f(P)dz' Adz' where 2’ = 2} is the only local coordinate of the
1-dimensional submanifold and P is the basepoint. If we take a complex surface
as the submanifold, it has two local coordinates 2] and zj and the form is of the
type

f1(P) f2(P)dz1 AdZy Adza ANdZzy (3)

Consider a (2,2)-form of the type (changing the notation to upper indices)

Y = f(z,2)dz* Ndz? NdZ® A dzt (4)

Does such a form exist in the cohomology of M and can such a form be obtained

as a Q-linear combination of forms of the type (1.3)?
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Lemmas 3.1-3.3 are only needed to show that a form of the type (1.4) is not
exact, i.e., zero in the cohomology. Lemmas 3.1 and 3.2 show that for a particular
type of a form 1 we get *¢ which is quite similar to % in form. Lemma 3.3 shows
that the form is harmonic and thus not exact. Actually, we created the form so
that both dip = 0 and d(x1) = 0 for trivial reasons. There is a special condition in
this part of the proof: Lemmas 3.1-3.3 needs an assumption that the submanifolds
are algebraic varieties defined by polynomial equations with real coefficients. The
important part is that the coefficients are real since the proof makes complex
conjugation and requires that f(P)* = f(P*), which is not always true. This
assumption means that the manifold M must be selected in such a way that this

assumption holds.

Lemma 3.4 shows that a form of the type (1.4) exists on X = K3 x K3, which
is a compact complex manifold of complex dimension 4. Lemma 3.3 shows that
the form is not zero in H*?(X). This is where we need the surface to be K3 and
e.g. an Abelian surface would not work. Complex conjugation sends a harmonic
form to a harmonic form, and thus we have a wedge of two harmonic forms, but
the wedge of two harmonic forms is not necessarily harmonic - it can be exact.
The nowhere vanishing (2,0)-form is needed in order to conclude that the wedge

product is harmonic.

Lemma 3.5 proves that a form of the type (1.4) cannot arise as a Q-linear
combination from the cohomology classes of submanifolds. Here we again need a
similar condition as in Lemma 3.1 that f(P)* = f(P*). This condition follows
if the mother manifold and all submanifolds are algebraic varieties defined by
homogeneous polynomial equations with real coefficients. A restrictive assumption

must be added to the lemma and fulfilling it requires a special form for M.

The manifold X in Lemma 3.4 is not quite what we want. It is a submanifold
of P2 x P but we want an algebraic subvariety of P™ for some n. Thus, we replace

X by M. No changes are needed to Lemma 3.4.
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The (2,2)-form from Lemma 3.4 is rational and represents a Hodge class. This
fact seems obvious considering that it is like (1.4) and has only one term. However,
in 2011 I received a comment from an expert of the field stating that the form is
not rational. Therefore this issue must be addresses.

Finally T comment the apparent conflict of of the presented result with a
published Ph.D. thesis [4]. The thesis proves that for some K3xK3 manifolds
the Hodge conjecture holds. The conflict is only apparent since the proofs of
Lemmas 3.1 and 3.5 require special conditions that f(P)* = f(P*) and do not

state anything for the general case of K3xK3.

4 Notations and concepts

We will use the notations in Kodaira [7] page 147. Local coordinates of a com-
plex manifold M of complex dimension n at the base point zg are denoted by
2Y, 2", f(2Y, ..., 2") is the complex conjugate of f(z!,...,2"), and the Hodge
star operation is denoted by .
Let ¢ and ¢ be C°°(p, ¢)-forms in a complex manifold M.
1
77 g

1
V= 17 2 Yo ey (DA A A 2% NN

> Corr g (A2 A Ad2® NdZP A - A dEP

The inner product is defined as

(0, 9)(2) = p,iq, S Coron b (o i1 (2) (6)
and
) = [ o5 @

where the volume element “+ is

= = (=) V2 dzt A Ad2" AdEU A - A dE" (8)
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Here

9(2) = det(9,5(2))a=1,....n (9)

is given by a Hermitian metric

n
Z 90pdz® ® dz” (10)
a,f=1
and
n
w=1 Z gagdzadiﬁ (11)
a,f=1

is the associated (1,1)-form, and w™ = w A --- Aw is the n-fold product. Then

1

(0% = (O (1) 2g(2) o

> bar. a5, (2)

x¢a1...ap31...5qdzl A---Adz" AdzL A - A Z7

(12)
1 _ _
= p'—q' Z Pas.apBi. B (2)dz% A -+ Adz® A dZP A dEPe A xp(2)
= ¢(z) A xt)(z)
where
L Ay A, _
#p(2) = ()" (1) IHER R sgn | T g()g P 2)

Ap,Bg By Bp—q (13)

xdzBr-a A dz4n-»

The multi-indices are A, = a1 ...ap, An—p = Qpt1...apn, By =P1...8q, Bh—g =
Bg+1 - - - Bn- Notice, that Kodaira on page 117 defines the Hodge star differently

as
wn -

(0, 9) ¢ = 9(z) Ax(2) (14)

but the usual definition in the literature is
(@, P)voly = p(z) A *y(2) (15)
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ie.,

(0, 9)— = w(2) Axp(2) (16)

w’ﬂ
n!
as we have defined.

Let us select local coordinates such that g,5(z0) = dap where z is the base

point. Then also g5 (zp) = da3-

We will usually mark indices as upper indices but in a calculation in Lemma 3.5

upper indices get confused with powers and indices are marked as lower indices.

5 Lemmas and a Theorem

Lemma 1. Letp=q=2,n=4, and

¢12§4_1(Z) = 4f(zl,22, 23; 24)

Vorasfido(2) =0 if (a102B1B2) # (1234)

(17)

and let f(z',22%,23,2%) be a holomorphic function satisfying f(z', 22,23 2%)* =

f(z4, 22,2, 2%). Then in local coordinates

¥ = f(21, 22,28, 2Y)dzt Ad2? AdZP A dzt

xp = g(2)f (21,22, 23, 2%)dz® Adz* Adz A dZ? 1
Proof. The first claim is obvious since
) = iwlm(z)dzl Adz? AdzZ3 A dzt (19)
For the second claim we calculate
wh = (1)1 (=1)243+2 250y ! z B g(2)0' 34 (2)d2® Ad2* Adzt AdZ: (20)
3412

36



Since

Yo asf1 P2 (z) — Z gX1 a1 gX2a2 ggllll 932H2 1&\1 o pin (o (Z)
A1,A2, 01,12

= Z 5)\1a1 6)\2042 5ﬂ1u1 5ﬂ2u21zj>\1/\2u_1!f2 (Z)
A1,A2, 01,102 (21)

Prozi(z) if (araafifs) = (1234)

= wala25152 (z) =
0 otherwise
Thus
x1) = g(2)P1031(2)d2> A dz* Adz' A 22
(22)
= g(2)f(21, 2%, 2%, 2%)d2® A dz* A dE A 32
and the assumption on f(z!,22, 2%, 2*) gives
Lemma 2. Letp=q=2,n=4, and
1/112371(2) = 4f(zla 22; 235 24)

(24)

¢a1a2§1§2 (z) =0 Zf (041(123162) ?é (1234_1)

and let f(z1,22%,23,2%) be a holomorphic function satisfying f(z', 22,23, 2%)* =

f(z1,22%,23,2%). We can select the metric such that in local coordinates

¥ = f(2', 22,23, 2Y)dz" Ad2® AdZP A dz?
(25)
sp = f(24,2%, 2%, 2%)d2® A dz* A dzt A dZ?

Proof. At the base point zp we can select the metric g(zo) = det(g,5)a,6=1,...n
such that g,5 = dap- Then g(20) = det(g,5)a,p=1,....n = 1. We can make the same

selection at all points z and thus g(z) = 1.
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Lemma 3. Let ¢ be a (2,2)-form in a complex manifold M. Let 1) be expressed

i local coordinates as

¥ = f(2',22%,2%,2Y)dz" Ad2® A dZP A dz? (26)

2 1

where f(21, 22,2, 2%) is holomorphic satisfying f(z',22%, 2%, 24)* = f(z*, 2%, 23, 24).

Let us assume that the complex dimension of M is four, M is compact and without

boundary (i.e., closed). Then A = 0.

Proof. For compact manifolds without boundary
AMp=0 & dp=0 and =0 (27)
Let us calculate dvy
15 f
dip = J; @(zl, 22,2%,20d2 Nd2t Ad22 AdZP A dE =0 (28)

since dzd Adz' =0if j =1, dzd Adz? =0if j =2, and

of

ﬁ(zl, 22, 23, 24) =0

z

9 (29)
ﬁ('zla 227 23, 24) =0

since in the coordinate system (z!,..., 2", 2',...,2") the coordinates 2z’ and z7 are

considered independent. The second assertation follows from the definition of the
codifferential: if x : 2% — O"~F is the Hodge star operator then § : 2F — k-1
is defined by

¢ = (=1)" I (xdx)y (30)

Inserting n = 4, k = 2, yields

0 = —(xdx)p = — * d(xv) (31)
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We may assume that the metric is chosen such that g(z) = 1. By Lemma 3.2
x) = f(2',2%, 2%, 2M)d2® A d2* A dz' A dE? (32)

As in the previous case, we conclude that

~ of
0z

Jj=1

d(x)) = (z',2%,23,2")d2? Adz® Ndz* AdZ' AdZ? =0 (33)

Lemma 4. Let X be a product of two K3 surfaces. Then X allows a (2,2)-form
of the type
f(24 22 f(23,2Y)d2" Ad2? AdZ3 A dz? (34)

where f(2',22) is holomorphic and nowhere vanishing.

Proof. The existence of a nowhere vanishing 2-form is often taken as the defini-
tion of a K3 surface, the additional condition guaranteeing that a 2-dimensional
complex manifold X is a K3 surface is that the manifold X is connected. This
nowhere vanishing 2-form X is the generator of H%9(X), i.e., every other element
a € H?Y(X) can be expressed as a = ¢ for some ¢ € C. The complex conjugate
X of X is the generator of H%2(X) as is shown by the Hodge duality pairing. Let

the (2,0)-form A be expressed in local coordinates as

A= f(2', 2%)dz' A d2? (35)

Then f(z!, 2?) is holomorphic and nowhere vanishing. If M = K3 x K3 then there
are two nowhere vanishing 2-forms A\; and As. Let us remember that a complex
K3-surface is compact and as a real manifold it is a 4-dimensional closed manifold.
Thus, M is closed and we can use Lemma 3.3. We can make a (2,2)-form as a
wedge product of

M\ = f(2, 2%)d2t A d2? (36)
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and

o = f(22,21)dz® A dz* = f(z°,2Y)dz® A dz? (37)

as f(2®,2*) is holomorphic. Thus, we define

Y = f(2',2%)dz" Nd2® A f(Z2,2Y)dz® A dz?
(38)
= f(2', 22 f(2%, 2" d2" A d2? AdZ® A dz?

The form ) satisfies Ay = 0 by Lemma 3.3. We still have to show that it is not
zero in H>2(X). Typical ways to show this are calculating periods or intersection
products, but we will show it differently. For any complex manifold M the Hodge
star gives an isomorphism from H*(M) to H" *(M) and the Poincaré duality
gives an isomprphism from Hy (M) to H**(M). Especially, when n = 4, H?(X)
and H,(X) are isomorphic and if X = S; x Sy H%(S;) and H2(S;), i = 1,2 are
isomorphic (for any coefficients, so coefficients are supressed in the notations).
Let this isomorphism be ¥ : Hy(X) — H%(X). Let C be a 2-chain in S; and let
(C,pt) € X be a family of pairs where p; is a path in Sy. This family C' x [0, 1]
defines a homotopy from (C,tg) to (C,t1). By the homomorphism we have also a
family A\; A A2 (P;) parametrized by ¢ € [0,1]. Then P; defines a path in Ss. This is
where we need the nowhere vanishing (2,0)-form. If there existed a point P; such
that Ay(P;) = 0 then ¢ = 0 at any point (Q, P;) € S; x S>. As the preimage of
zero is a point, this would yield a homotopy from C' to a point, i.e., (C,pg) = 0
in 79 (X). Consequently (C,pg) = 0 in Ho(X) and ¥(C,pg) = (M1, Fp) = 0 in
H?(X). As there is no such point Py, (C,pg) is not contractible in X and is
therefore nonzero in Ho(X). Its image under ¥ is therefore nonzero in H2(X).

Thus, 1 is a harmonic form in H??(X).

Lemma 5. A (2,2)-form of the type f(z,2)dz' A dz? A dz® A dz* is not a linear
combination with rational coefficients of cohomology classes deriving from com-
plex submanifolds of complex codimension 2 in a complex submanifold of complex

dimension 4 assuming two conditions: 1) the mother manifold is an algebraic vari-
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ety defined by homogeneous polynomial equations with real coefficients, and 2) all
submanifolds are algebraic varieties defined by homogeneous polynomial equations

with real coefficient.

Proof. Let N be a complex manifold of dimension n and let M be a complex
submanifold of N of complex dimension k. Let i : M — N be the inclusion map
and the complex structure of M be induced by the complex structure of N. Let
P € M be apoint in M and (z'*,y'",...,2'%, y'*) be a local coordinate system in
T Mp where M is considered as a real manifold of dimension 2k. The coordinate
system can be completed to a coordinate system of TNy py = TNp by adding

2(n — k) coordinate vectors. This yields a coordinate system

ik 1k $1k+1’

(ml’yl):(xlliyll""Jx Jy ) Ik+17‘

y AN

to TNp where P = (0,0) = (0,...,0). We can assume that the coordinates are
orthonormal. The manifold N can be considered as a real manifold of dimension

2n and T Np be given a local coordinate system

(x’y):(ml’yl"”,xn,yn) ) P:l(P):(0,0)

There is an orthonormal coordinate transform A : R2" — R2" A € SO(2n), such
that
[ y']" = Alz y)" (39)

The coordinate systems at T Np can be chosen such that

d=gd viy , F=2i—iy) j=1,...,n
(40)
2= iyt =2yl j=1,...n
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and there is an orthonormal coordinate transform B : C* — C" such that for

(z72) = (217217"'7'2”72")

(41)
(Z,ZI) — (zll,fll, » "zln’zln)

the transform takes (2, 2) to (2, 2'), [' 2']T = B[z 2]T. As the complex structure

of M is induced from the complex structure of NV, the following statement holds

if (2,2) = ("2, . 2™ de yi=0forj=1,...,n
(42)
then (z,2) = (z',2',...,2",z") e ¢y’ =0forj=1,...,n
It follows that if
2 = Zam,jzm (43)
then
79 = "ap ;2" (44)
m

that is, a,,,; € R for all j and m. The Poincaré dual [M] of M considered as a
2k-dimensional real manifold in the 2n-dimensional real manifold N satisfies the
condition that [M] capped with the fundamental class of N is the homology class

of M. Thus, [M] is a form of the type

(@', y")de* 1 A dy'*TL A - Ada'™ A dy'™ (45)

Since z'/ and y" are independent, the class [M] is represented at p by a form of

the type

(2", 2")dz"* 1 AdZ*TE A A2 A dET (46)
In coordinates {2', 21, ..., 2™, 2"} the form can be expressed by inserting dz'/ and
dz" as linear combinations (with real coefficients) of dz* and dz*, k= 1,...,n.

Let us now take a two dimensional complex plane in a four dimensional com-

plex manifold. We will use lower indices in this calculation as we obtain squares
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at some places and upper indices get easily confused with powers. The two local
coordinates 21, 2§ of a complex plane in a four dimensional complex manifold can

be expressed in the local coordinates 21, 29, 23, 24 of the mother manifold as

21 =bi1z1 + bi2za + bizzz + biaza

(47)
2y = by1z1 + baoza + baz2zs + basza
where b;; are complex numbers. We want to see what terms come from
dzl! Adz"y Adzh A d2's (48)

when the local coordinates 2’ of the submanifold are replaced by the local coordi-
nates z; of the mother manifold. We get 36 terms the form dz,,, Adzm, AdZm  AdZm,
where m; < msy and m3 < my4 because if f m; = 1, m; can be 2,3,4, if m; = 2,
msg can be 3,4, and if m; = 3 then ms = 4. This means that there are six possi-
bilities for my, mo. There are also six possibilities for ms, m4. Together there are
36 possibilities and thus 36 different terms. While the terms can be calculated

we get simpler expressions by making a linear transform of the local coordinates

2, 2y
21 = a(—byzy + b122}))
2y = a(bar 27 — b112) (49)
a = (barb1a — biibas) "

Then

!
21 =21 +a1323 + Q1424
!
Zo = Z9 + 2323 + 2424
(50)

a13 = a(biabaz — bigbae) , a4 = a(biabag — biabea)

ass = a(barbiz — bi1baz) ,  aos = a(barbis — bribas)
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These new coordinates are not orthogonal, but that does not matter here: we just

want to see what terms come from

dz} Adz'y Adzh A d2's (51)

when the z; coordinates are inserted. Again there are 36 terms, but the expressions

are shorter than for the original coordinates z;'. The first six terms are:

= —dz; Ndzo Ndz; Ndzy — |a13|2sz ANdzg ANdzZy N dzZz — |a14|2d22 ANdzs Ndza N\ dzy
—|a23|2dz1 ANdzs ANdzy Ndzs — |024|2d251 ANdzy Ndz1 N dzy

—|a23a14 - a24a13|2dz3 N dZ4 A d§3 N d24
(52)

Terms 7-16 numbered in this order:

+ajsdz ANdzo A dza N dZs + alydzy A dzo ANdza A dZy
+ai3dzo Adzgs ANdZy A dZs + aradzo A dzy A dZ A dZs
—ai3ai,dzo Ndzz N dZy N dZs — ajga14dze Adzg A dZy N dZ3
+agz(asqal, — assais)dz Adzs Adzs A dzy (53)
+ass(assal, — asgaxi3)dzr A dza AdZs A dzs
+als(azzaia — asaaiz)dzz Adzg AdZ; A dzs

+al,(asgars — asqarz)dzs Adzy Adz; A dzy

Terms 17-22:

—a24035dz1 Adzg N dzy N dZs — adgaa3dzy Adzs A dzy A dZy
—ayz(aszay, — as,ais)dza Adzs Adzs A dzy
—ar4(a3zayy — a34ai5)dza Adza Adzs N\ dzy (54)
—ajz(agsais — aggai3)dzs Adzy N dzZa N dZs

—aj,(az3a1s — assa13)dzs A dzy AN dza N dzy
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Terms 23-34:

+a§3a13dz2 A ng A d21 A d23 + a§3a14dzz A dZ4 A df] A dig
+a;4a13d22 N dZ3 A d21 A d24 + a§4a14dz2 A dZ4 N dfl A d§4

+a23a1‘3dzl ANdzz NdzZs N\ dzZs + a23a’1‘4dzl ANdzz NdZy N dzZy

(55)
+agqaisdzr Adzg A dZa A dZs + azaaldz Adzg A dZa A dZg
—a;3d21 ANdzo ANdzy Ndz3 — a§4dz1 Adzo Ndz1 A dzs
—a23d2:1 A d23 A d21 A ng - a24d21 A dZ4 A dzl A d22
We are mainly interested in these two last terms, terms 35 and 36:
+(a23a14 — a24a13)d23 ANdzqs ANdzi N\ dzo
(56)

+(assai, — a3,ai3)dzr Adzo AdZ3 A dzy

We assume that the mother manifold is an algebraic variety defined by a
finite number of homogeneus polynomial equations of a finite number of complex
parameters s; and real coefficients. An example of such a variety is the Fermat

quadratic surface defined by the homogeneous polynomial equation

s1+s3+s3+s8;=0 (57)

In thie polynomial equation the coefficients are all integers (all are 1s).

If P, = (s10, 520,830, S40) is a chosen basepoint, the local coordinates of the

manifold can be chosen as z; = s; — s;0. Let us consider a (2,2)-form

F(P)dz A dzy Adzs Adzy (58)
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that is linear combination with rational coefficients of classes of n complex sub-

manifolds. Each submanifold gives 36 terms i of the type

©j (P)(pk(P)Aj,k,idzm1 A dzmz A dims A dzm‘; (59)

Here Aj . ; is the coefficient of dzm, A dzm, A dZmg A dZy,, for two (1,1)-forms j
and k and 7 is numbered as in (3.36-3.40) where we have explicitly written the
coefficients A; 5, ¢ = 1,...,36. Thus, for j =1 and k¥ = 2 the coeflicients of the

last two terms are

A1,2,35 = 423014 — 424013
(60)

A12,36 = a33a7, — G5,a73
where a,,, are calculated for the submanifold corresponding to two (1,1)-forms
that we numbered as j = and k = 2. For different values of j and k we get different
Gmn but it was inconvenient to add the indices j, k to (3.36)-(3.40).
If we use the coordinates z;' instead of the simpler coordinates z; and calculate

A1,2’35 and A1’2,36, they are

A 2,35 = —bi3bagb] 059 + b14basbi b3y + b13baabiabsy — biabazbiybs, (61)

A1 236 = —bi3b54b11b22 + b1 4b33b11b22 + b 513 b3 b12bo1 — b14b55b12b21

Clearly, always holds

Ajkze = Ajkas” (62)

In order for a (2,2)-form of the type (3.42) to be a Q-linear combination forms cor-
responding to submanifolds (of this type) in each point P must hold 35 equations

of the type
> 0i(P)pj(P)Ajri =0 i=1,...,35 (63)
ok

and the last sum must be non-zero
chk%‘ (P)pj(P)Aj k36 70 (64)
.k
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where c;;, are rational coeflicients. This is a set of linear equations for the un-
knowns cj;. It is clear that in a chosen basepoint Py we can solve these linear
equations and find complex numbers c;;. that satisfy these 36 equations, provided
that there are at least 36 independent submanifolds. It is not clear if we can find
rational numbers c;, that satisfy all equations, but let us assume that we have
found rational c;;, that satisfy these equations at the point Fy. The question is if

these same c¢;, can satisfy these 36 equations in every other point P.

It is easily shown that they cannot, assuming what we have assumed that
the homogeneous polynomial equations defining the mother manifold and the
submanifolds have real coefficients. With real coefficients we can find another

point P; as a complex conjugate of F.

Thus, let us take the second point as P = (87, 39, S50, Sa0)- Then P, = Fj}.
The mother manifold and submanifolds are assumed to be algebraic varieties
defined by a finite number of homogeneous polynomials with real coefficients.
Therefore if Py is a solution to the homogeneous polynomial equations, then so it
Py. The functions ¢;(P) have the same form at P = Py and P = P; but the values
differ: ¢;(P1) = ¢;(Py) = ¢;(Po)* because the coefficients of the homogeneous
polynomial equations are real. This is the essence: in order to show that the 36
equations cannot be satisfied at every point P we need to find another point P;
which is far from P, (in the close vicinity of Py the 36 equations are satisfied)
and be able to calculate what the 36 equations are at the point P — 1. It is not
likely that the 36 equations could be satisfied at each point P even if we would
not make the restrictive assumption, but it is difficult to find a point P, without

making this assumption.

There are two ways to transfer the local coordinates from Py to P;. One way
is to choose similar local coordinates 2;, i+ = 1,...,4, and 2!, j = 1,2, in the

k3

basepoint P; as in FPy. In this case the form dz; A dze A dZ3 A dzy does not change
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in the transformation and the numbers A;;;, 4 =1,...,36, do not change:

Ajk36(P1) = Ajr,36(Fo) (65)

where A;; ;(P) means Aj; ; calculated at the point P. The other method is to
take conjugates. In this case both the form dzy A dza A dZ3 A dZs4 and the numbers
Ajri, 1 =1,...,36 change to complex conjugates.

Let us follow the first way. The equation 36 at the point P = P; gives the

coefficient of the term dz; A dza A dZ3 A dz4. The coefficient is

D einei (P (PO Ajkae(Pr) = D cinpi(Po) 0 (Po)* Aj k36 (Po)
j’k J,k

= ]Zk ¢k (Po)pj (Po) (Ajk,36(Fo))” (66)

*

= | Y cinpi(Po)p;(Po)Ajrss(Po) | =0
Jk
That is, at the point P; the form dz; A dzy A dZ3 A dZ4 vanishes. The coefficient
that does not vanish at P; is the coefficient of the term dz3 A dzy A dz1 A dzo.
The second way corresponds to finding the form at P; by conjugating the form

at Py. In this case

Z CikPj (Pg)goj (Pg)Aj’k’ga (Po)dzl Adza ANdzs N\ dzy
7.k

= z CikPj (Pl)SOj (Pl)Aj,k,SG (Pl) (d21 ANdzo N dZs N d24)*
I (67)
= Z Cjk‘ﬂj (Pl)QDJ (Pl)Aj,k,36 (Pl)dzl A dZQ A d23 A d24
3.k
= Z Cjk(pj (Pl)SDJ (Pl)Aj,k,gﬁ (Pl)d23 A dZ4 A dél A diz
3.k
In this method the coefficient of the form stays as nonzero, but it is not the

coeffient of dz1 Adze ANdz3 ANdzs at P;. Tt is the coefficient of dz3 Adzy ANdz; Adzs.
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The coeffient of dz; A dzs A dZ3 AdZs at P is zero also in this method. Naturally,
both ways give the same result.

We conclude that the form (3.42) cannot be created as a linear combination
of terms (3.43). There should be at least two nonzero terms, those corresponding

to Aj 36 and to Ajk 35.
Theorem 1. The algebraic variety

M = {(s1:82:83:84:85:56:57:53)|s7 + 85+ 53+s55 =0, (68)
68

sg + 85+ 57+ 53 = 0,54 + s5 = 0}

is an algebraic subvariety of the complex projective space P7 of codimension 3 and
a complex manifold of dimension 4. There is a Hodge class in H*? that cannot
be represented as a Q-linear combination of the classes of algebraic subvarieties

of M.

Proof. Clearly M is a submanifold of P7 and it is an algebraic variety. It contains
two copies of the Fermat quadratic surface, which is a K3 surface. The subman-
ifolds of dimension 1 for the Fermat quadratic surface are defined by adding one
homogeneous polynomial equation. The dimension of the space of (1,1)-forms in
K3 is 20, thus if we find 20 polynomial equations that give an essentially different
submanifold, we have represented all (1,1)-forms by an algebraic subvarity. By

inspectation, the homogeneous polynomial equations are

si=0 i=1,2,3,4

si=1 i=1,2,3,4
(69)

si+s;=0 (,5) =(1,2),(1,3),(1,4),(2,3),(2,4), (3,4)

si+s;=1 (i,5) =(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)

Clearly, fixing one of s; to zero gives a submanifold and the submanifold is different

for each i = 1,2,3,4. In the complex projective space P! there are only two
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numbers, zero and one. Thus, setting s; = 1 gives another set of four different
submanifolds and there are no more equations tying only one s;. Setting the sum
of two s; variable terms together gives six different submanifolds if set the sum to
zero and another six if we set the sum to one. There could be more equations of this
type, but as these 20 equations give 20 different classes, we need not look further.
There cannot be more classes: all other equations yield linear combinations of the
classes. All of these 20 equations have real coefficients and we can use Lemmas
3.1-3.3 and 3.5.

Lemma 3.2 holds without any special considerations. In Lemma 3.3 we notice
that a complex K3 surface is compact and as a real 4-manifold it is closed. Thus,
the product of two K3 surfaces is closed. M is obtained from K3 x K3 by adding
an equation and is also closed. Lemma 3.3 can be used.

Lemma 3.4 applies also to M and gives the (2,2)-form.

The conditions for Lemma 3.5 are filled by M and the lemma shows the (2,2)-
form of Lemma 3.4 cannot be represented as a Q-linear combination of classes of
submanifolds.

The (2,2)-form in Lemma 3.4 has only one term in the local coordinates of M
everywhere. Thus, it is not a linear combination. It is a single term and therefore

can be considered as a rational class.

I wrote the first version of this paper in 2011 and sent it to arXiv for discussion
purposes. I was not at all sure if my result was correct since the solution seemed
too easy and there was a conflict with a statement in [4] on page 54. I got an
answer from an expert of the field, Bert van Geemen. His comment was that the
(2,2)-form in Lemma 3.4 does not represent a Hodge class since we cannot show
that it is rational.

The explanation by Bert van Geeman is the following:

! We remember that singular cohomology of a complex manifold of complex
dimension n is defined as the singular cohomology of the underlying real manifold

of dimension 2n. This yields H*(X;Z). In order to get H*(X; k), where the field
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kis Qor R, or C, we form the tensor product of H*(X;Z) with k. When the base
classes of Z are selected, the classes of the tensor products are linear combinations
of the base classes with coefficients in k. We can multiply the created (2,2)-
class with any number in k& and get a harmonic class. If the class is a multiple
of a base vector, we can always multiply it with a suitable number to get a
class in H*(X; Q). However, if it is a linear combination with generic coefficients,
multiplication by one number does not give a rational class. This seems to be the

case with this (2,2)-form.

Theorem 2 in [4] on page 54, also published in [5], shows that the Hodge
conjecture holds for certain K3xK3 spaces, showing that in the general case
the constructed (2,2)-form cannot be a Hodge class. The space of Hodge classes
B(H?*(S,Q®H?(S,Q)) is identified up to a Tate twist with Endgq, (H?(S,Q)) on
page 14 in [4]. Zarhin’s theorem is used to characterize Endpq,(T") on page 16, and
Mukai’s theorem is used in the proof of Theorem 2, as in the proofs of other theo-
rems in [4]. Mukai’s theorem requires that the endomorphism ¢ : T'(S1) — T'(S1)
is a Hodge isometry. A Hodge isometry maps H2%(X) to H?°(X), as is clear e.g.
from [6] page 211. This method in [4] seems to derive from a paper of D. Morri-
son [7]. The endomorphism in the presented paper is complex conjugation, which
sends H%9(X) to H%2(X) and is thus not a Hodge isometry. Mukai’s theorem
thus cannot be used, but the identification of the space of Hodge classes with
endomorphisms preserving the Hodge structure still holds, and consequently the

(2,2)-form created in Lemma 3.4 does not represent a Hodge class.”

T accepted this answer from an expert at that time and wrote in revised version
of the arXiv paper that the proof does not give a counterexample to the Hodge
conjecture. However, when I have now checked the paper, I find that the presented
(2,2)-form is not a linear combination of (2,2)-forms. It has a single term and
therefore a multiplication with a number does give a rational form. Thus, it is a
Hodge class. The complex manifold M can be understood as a real manifold of

dimension eight. The form corresponds to a real submanifold of dimension four
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that is obtained by selecting local coordinates as v1 = eg,1 + €y,1, V2 = €5,1 — €y.1,
U3 = ey 2+ey 2 and vy = e; 2—ey 2. This submanifold gives a homology class that is
the class of the submanifold. By duality there is a cohomology class corresponding
to it. This cohomology class is inherited to singular cohomology of M and it is
not a linear combination of anything.

The issue with the apparent conflict with [4] is avoided by noticing that the
proofs of Lemma 3.1 and 3.5 require a special condition on the K3-surface. There-
fore they do not state anything of K3xK3 spaces in the general case. Yet, if it
follows from those results that the (2.2)-form in Lemma 3.4 cannot be rational,

then the logic of that argument should be checked.
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On the rank of elliptic curves

Abstract. The paper proves that the Birch and Swinnerton-Dyer con-
jecture is false. This is the long version of the paper. A short version was

submitted to a journal.

Key words: Elliptic curves, Euler product, Birch and Swinnerton-Dyer con-

jecture.

6 Introduction

Let P = {p1,p2,..-|p; is a prime, pj+1 > p; > 1,5 > 1} be the set of all primes
larger than one. In [1] an elliptic curve C over the field of rational numbers @ is

a curve defined by the Weierstrass equation

v =z4azx+b

where a,b € Z and z,y € ). The discriminant of the cubic equation is A =
—16(4a® — 27b%) # 0. Let N, denote the number of solutions to y* = z* +az +b
mod p; and let ap; = p; — Np,.

The incomplete L-function of the curve C' is

L(C,s) = [[ A =app;* +p,>) 7", (1)
jEAC

where

Ac ={j € N,j > 0,p; does not divide A}.

The Euler product (1) converges absolutely at least if Re{s} > 2 because |a,| <
2p. This upper bound for < a,| is obvious since z takes p values and y can take

two values for each z. Hasse’s statistical bound |a,| < 2pz improves the area of
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absolute convergence to Re{s} > 3/2 and [1] gives this area. The problem state-
ment [1] tells that L(C, s) has a holomorphic continuation to the whole complex

plane, thus it does not have poles.

The Birch and Swinnerton-Dyer conjecture says that the Taylor expansion of

L(C,s) at s = 1 has the form
L(C,s) =c¢(s—1)" + higher order terms (2)

with ¢ # 0 and r the rank of C. The rank of an elliptic curve is defined as the rank
of the group of solutions in the rational numbers. The number r in the Taylor
expansion of L(C,s) is called the algebraic rank of the curve. The conjecture is

thus that the rank and the algebraic rank are equal.

Let p > 2 be prime, Z, the cyclic group of integers modulo p, and Z; =

{1,...,p — 1}. The set of quadratic residues modulo p is the set
QR, = {z € Z,|Fy € Z, such that y>=2 ( modp)}
and the set of nonresidues modulo p is
QNR,={z € Z)|z ¢ QR,}.
If g is a primitive root of Z}, then
Z, = {d%9",..., 9"}
The set QR,, is the subset where g has even powers:

QRP = {907927 .t }
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Thus, #QR, =#QNR,, the sets QR, and QN R, have equally many elements.
If the integer a divides integer b it is written as a|b. For brevity, we write y = =

as a shorthand of y = z ( mod p) when there is no chance of confusion.

There is a recursion formula for deriving rational solutions from a rational
base point (x,y)
Tip1 = 8] — 22 ,yit1 = Yi + Si(@i1 — 24) ()

_a+3z?
2y;

i

This recursion gives a new rational solution in the following way:
Yirr = Y7 + 20iSi(iv1 — 2) + S} (@ip1 — 2i)°

= wf +azx; + b+ 2y;Si(wip1 — x;) + 51-2(33141 —x;)?
= mfﬂ +aziy1 +b

yielding
Tipy + T @i + 7, + 0 = 2y;S; + (Tig1 + 223) (Tig1 — T5)

which gives

372 + a = 2y;S;.

The recursion may end or it may generate an infinite number of rational solutions.

An example where the recursion ends is the following:

We define the curve C; by a Weiestrass form with a = 33 and b = —26. As
the base point we take o = 3 and yo = 10. The recursion (3) shows that z1 = xo,
y1 = yo- It follows that recursion generates only one solution (3,10). The curve
(' is a special case of

T = 3s° Yo = 95>+ s (4)
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a=27s* + 65> b=s2—27s°

with s = 1. For every nonzero integer value s the solution (4) gives z1 = o,

y1 = yo- These solutions are found by setting 1 = z¢ in (3).

The rank of an elliptic curve is the number of independent base points from
which the recursion derives an infinite number of rational solutions. For C; the
recursion gives only finitely many points, but for that special elliptic curve there
may be other base points that give infinitely many different points. An example
of an elliptic curve having infinitely many rational solutions is y? = 23 — 5%z. This
is known since 5 is a congruent number. If d is a noncongruent number, such as

r? for any integer r there are only three solutions: (0,0) and (+d,0).

The recursion formula (3) has a corresponding operation in integers modulo p
in the form

ziy1 =57 —2z; ( mod p) (5)
S; = (s +323)(2t;)"" ( mod p)

ti=2® +ax+b( mod p).

If (z4,91) is a solution in Z; then the recursion formula in Z, gives another

solution (Zit1,Yi+1), Tit1,Yir1 € Z,, where

Y71 =tiy1 ( mod p).

The operation also takes a pair (z;,¢;) where t; € QN R, into a pair (i1, ti+1)
where t;11 € QNR,,. Iterating the operation gives classes of pairs (z;,y;). If there
is a solution in @, then all of the iterated solutions map to the same set of (z;,y;)
in Zp.

The claim that the Birch and Swinnerton-Dyer conjecture should hold seems
to be based on the idea that an infinite number of solutions in rationals for an

elliptic curve C' would give more solutions in the modular case. This is a very
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strange idea because there are very many solutions for a modular equation e.g.
in knapsack problems and it is very difficult to find integer solutions to knapsack
problems. The modular problem and the integer problem are quite different issues.
The same should be the case with the modular problem and the rational problem
in elliptic curves. The natural expectation is that these problems are very different
and one does not give information of the other.

Two elliptic curves over rationals are known to have very high rank (one

exactly or rank 20 and the other of rank at least 28). They are of the form

v 4ry+y=a®—2> b

where b € IN. Writing this curve in the Weierstrass form gives

3 3, (. 2 _<lag
yi =27 + ( 48)5’71 + ( 576 )
1 5

—y+ (2 +1 =z— —
Y1 y+2($+ ) T =2 - g

and in the form where coefficients are integers is

ys = 9x3 — 1472, — 2149 — 576

5
yo = 24y + 122 + 12 5132:4.7:—5

As a and b in the Weierstrass form are not integers in these elliptic curves, they
are not elliptic curves considered in [1] and in this paper.
7 Calculation of a,, for y? = z®> — d’z

Lemma 1. Let p > 2 be prime and a an integer. Assume —1 € QNR, and
a # 0 ( mod p). The number N, of solutions to the modular equation
2

y* =2° +az ( mod p) (6)
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is Np =p.

Proof. Let
A={z e Zj|ti € QRp, t1 = z(z* +a) ( mod p)},

B={z€ Z)|t1 € QNRy, t1 = z(z*> +a) ( mod p)},

and mq, =#A, my =#B. We can write

-1
Alz{mzl,...,p |t1 € QR,,t1 = z(2* +a) ( mod p)},

2
Azz{le%l,...,p—lh‘lEQRp,tlzx(m2+a)( mod p)},
Blz{le,...,pglh‘lGQNRp,tlza:(x2+a)( mod p)},

By, ={z = I%l,...,p— 1|ty € QNR,,t; = 2(2* +a) ( mod p)},

and my; =#A;, ma; =#B;, i = 1,2. The sets A; and A, are disjoint and
A = A; U A,. Similarly, the sets By and B, are disjoint and B = B; U Bs.
Calculating

_p+l

AQZ{—{L‘: 9

yoeey—p—1|t1 € QRy,t1 = z(2* + a) ( mod p)}
P

p+1
={_'Z-=p_T77p—p+1|tll EQRP

t = p—t1 = (~2)((=2)? +0) ( mod p)}
= (o =1, PN € QRy = (~a)((~2) +a) ( mod p)).

If it were true that —1 € QR,, then there would exists € such that —1 = €2. Then
for any y holds —y? = (ey)? € QR,. But as we require that —1 € QNR,, it is

not possible that —y? = h? for any h because if it is —1 = (y~*h)? € QR,. Thus,
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—y? € QNR, for every y. Therefore

-1
Ay = {2’ = 1,...,pT|t'1 € QNR,,t, =2'(z'* +a) ( mod p)} = By.

Similarly, A; = By. It follows that
mp =mi1+mi2=m11+mana,

ma =Ma1+Ma2=ma1+ M.

Thus, m1 = m». Let a € QR,. Then there are two values z € ZJ that yield
t1 =0 ( mod p). Therefore
p—3

m+mo=p—3 :>m1:T.

Every z € A yields two solutions y,p — y to (6). Every x giving t; = 0 ( mod p)
yields one solution y = 0 to (6). The number of solutions is
p—3

If a € QNR, then m; +my =p—1 and

~1
Ny =2 +1=p.

The lemma is proved. o

Let us give an example of Lemma 1. Let d = 1 and p = 11. Then QR;; =
{1,3,4,5,9}. When z ranges from 0 to 10 the values of z(z* —1) give the sequence
0,0,6,2,5,10,1,6,9,5,0. Removing zeros from this sequnce as they are neither
in QRp nor in QN R, we notice that —6 = 5. Because —1 € (QNR, we have
6 € QNR, and —5 € QR,. Likewise —2 = 9,50 2 € QNR, and 9 € QR,;
—10=1. The sameis with -1 =10 € QNR, and 1 € QR,. We get 2(p—3)/2 =8
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solutions: (4,4), (4,7), (6,1), (6,10), (7,3), (7,8), (9,4), (9,7), that is, for each x
there are two y values. Additionally we have the zeros. They give three solutions
(1,0) and (10, 0) from z2—1 = 0 and (0, 0) is a solution. Together there are 11 = p

solutions.

Lemma 2. Let p > 2 be prime. The number of solutions y? to the equation
y? —c=2*( mod p) (7
satisfying y*,x* € Z3 is

25 if —1 € QR, and ¢ € QR,,
3 if 1€ QNR,,

Ll if —1 € QR, and c € QNR,.

Proof. Let us assume that (7) holds. Thus there exists z € Z; such that the

modular equation

y—zt=y-7)(y+tz)=c

can be written as

Then

y=2"e (22 +¢), 2=2""21(2* —¢).

Let +e denote the two roots of 2> = —1if —1 € QR,,. If —1 € QNR,, there are

no such roots.

Ifce QNR, and —1 € QR,, there are no solutions to the equations

2 =c , (€2)® = —ec. (8)
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In this case we let z range over the p — 1 numbers in Z7 in the equation for y. If

two values z; and 22 give the same y, then

ie.,

-1 _— -1

21tcz; T =29t czy o,
_ —1 —1

21—z =c¢(zg — 21 ).

Multiplying by 2125
z129(21 — 22) = zlzzc(zgl - zfl) = c(z1 — 22)

and 2120 = ¢, i.e, 20 = czfl. When z ranges over all values in Z; the number y

gets all values it can get and exactly two values z map to the same y. The number

of different y is therefore ”Tfl.

If some value of z gives y, another value of z gives —y. As +y yield the same

y? the number of different y? is half of the numbers of y, that is, 2.

If c € QR, and —1 € QR, then there are two solutions z to both of the

equations in (8). These four values of z are all different. Removing them gives

ot

p — 5 values for the range of z. The number of different values y* is 2°.

If c € QR, and —1 € QN R, there are two solutions for 22 = ¢ but no solutions
3

to 2% = —c. The number of different y? is 2=,

If c € QNR, and —1 € QNR, there are no solutions for z? = ¢ but two

solutions to z2 = —c. The number of different y? is %.D

Lemma 3. Let p > 2 be prime and a an integer. Let —1 € QRp, a # 0 (
mod p) and g a primitive root of Z;. The number N, of solutions to the modular
equation

y* =2° +az ( mod p) 9)
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is

N, =8ny + 7 if —a= g* and i is even,

N, =2p—8ny — 7if —a = ¢g* and i is odd,
N, = 8n, + 3 if —a = ¢g**! and i is even,

N, =2p—8n, — 3 if —a = ¢**! and i is odd.

Here n. is the number of solutions y* € Z, yielding y* —c€ QR,,c=1or

B={a' € Z}|t' € QRp,t' = 2" + az’ ( mod p)}. (10)

If —a = g% we insert t = g%’ and z = g '2’. Then t' = 2> + a2’ changes

to g% = ¢%'x® — ¢%'gix, ie., to t = 2% — 2. We reduced —a to ¢ = 1.
If —a = g?"*! we insert the same t and = as above. Then ¢ = z'® +az’ changes
3i,3 _ 2+l

to g3 = ¢3'xd — g% gix, e, to t = 2% — gx. We reduced —a to c = g.

We write both of these cases as t = 2% — cx wherec=1if —a=g¢g** andc=g
if —a = g¥t1,
Let

A={z € Zj|t € QR t1 = 23 —cx ( mod p)} (11)
A'={z € Z}|t € QNR,,t; =2 — cz ( mod p)}.

If i is even then g¢° is in Q R, and in the substitution ¢t = ¢3¢ holds: if t € QR,,
then t' € QR,. If i is odd, then t € QR, implies that t' € QN R,,. Thus, for even
i B = A while for odd i B=A'.

Let us write the sets A and A’ differently
A={g"g"(¢** —c) €QR,)k=0,...,p—2} (12)

AI = {gk|gk(92k —C) € QNRpak = 07“‘7p_ 2}
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and let us divide them into subsets of even and odd indices of k

p—3
A1 = {g*|9>* (g™ — ) € QR,, k=0, ..., —}

A2 — {g2k|92k+1(g2(2k+c) —C) € QRp,k :0"”,p;3}

2
p—3
Ay = {g”H g (9" — ) € QNRy k= 0,..., 7 )
Al = {gzk+1|gzk+1(gz(2k+c) —¢) €QNR,, k=0, ’1%3}

Then A = A; U Ay, #A =# A +#4, and A' = A\ U AL, #A' =# A +#A.

We also define sets that do not have the z = g* term in t = 2(2? — ¢).

p—3
C:{g2k|92k—CGQRp,kZO,...,T}

—3
O = {g®g* —ce QNR,,,kzO,...,pT}

(13)

and divide these sets into subsets where a set with a running index 2k is divided

into two sets with running indices 4k and 4k + 2:

—1 ~3
Cl = {g4k|g4k —c€ QRP:g4k < pT;k: OaapT}
—1 -3
Ca = {g"**|g"*? —c € QRp g™+ <Pk =0,... P25,
—1 ~3
C{ = {g4k|g4k —cE€ QNRpag4k S pTvkzoa"'apT}a
-1 —
Cy ={g"**|g"** —c € QNR,, g"** < T k=0, . F= 3

(14)

The rule g** < 25% and g*%+2 < 251 removes half of the values of the running

index. Then C' = C, UCy, #C =#C, +#C5 and O = O} UCY, #£C" =#C! +#CL.

The idea is to map the solutions of t = g*(g?* — ¢) bijectively to solutions

of t' = ¢g** — c. Clearly, if g* € QN R, multiplying with it changes t' € QR, to

t € QNR, and if g* € QR, multiplying by it does not change the set. This is
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why we divided the sets to A4;, A}, i = 1,2. In i = 2 sets g* € QNR,, so if an
element of C} is multiplied by g* we get an element of A,. Likewise, Cy and A)
correspond to each other.

The following relations hold

#A =#2C1+#2C),
#A =#2C1+#2C,
#Co =#C—#C1
#Cy =#C'—#C1.
Solving # A yields
#A = 24Cy + 24C)
= 2#C) + 2#C" — 2#C.

The value a is used in the proof of this lemma in two places only. One is in
(10): if —a = ¢g* or —a = ¢***! and the index i is even, then B = A. If i is odd,
then B = A’. The other place is in Lemma 2 where the numbers of solutions in
the different cases depend on if whether —a = g% or —a = g?"*!, ie., ifc=1or
c=g.

Case 1: —a = ¢!, i even. Then ¢ = 1 and the relation

#C' =23 _#C.

holds. In this relation we have counted the values of k£ in C'U C" and excluded

the one value of k that gives g°* — 1 = 0 ( mod p) because 0 ¢ QR, U QNR,.
1

Thus, the number of valid indices k is one less than the number 27— of indices

kE=0,..., % in (13). The correct value of valid indices ”2;3.
Counting indices k in C7 U C] in (14) gives
#C) = B2 —#Ch.
In this relation we have excluded the solution to g?* —¢ =0 ( mod p). In Cy

and C] the counted element is not the number of indices k. It is the number of

values g**. This number must be reduced by one. The result follows as 251 — 1 =

p—5

1 -

Calculating # A gives

64



#A=24#C1 +p—3—2#C — 2% + 240y
= 4#Cy — 2#C + P51

Writing #C; = n; and inserting from Lemma 2 the case —1 € QR, and

¢ € QR, where #C = % yields
#A=dny — P50 + PL = dny + 2.
In Case 1 holds N, = 2#A + 3 because if there is a solution y* = z(z% — 1),

then it is satisfied by two y values, +y, and there are three solutions where y = 0,
namely z = 0, 22 = +1. Thus N, = 8nq + 7.

Case 2: —a = g%, i odd. Then B = A'. Thus

#A =2#C| + 2#C,
=25 _ 940, 4+ 24C — 24#C,

:”2;5—4n1+”2;5=p—4n1—5

In Case 2 N, = 2#A’ + 3, thus N, = 2p —8nq — 7.

Case 3: —a = ¢**1, i even. The differences to Case 1 are

N, =2#A+1

#C' = P —#C

#C) = 23° —#Cy
#C =3

because ¢ = g and g?* — g = 0 is not possible.
We denote #C; = n, and insert from Lemma 2 the case —1 € QR, and
¢ € QNR, where #C = p;—l. Making these changes to the calculation of Case 1

gives N, = 8ngy + 3.

Case 4: —a = ¢**1, i odd. Analogically with Cases 2 and 3 we get N, =

2p — 8ngy — 3.

The definition of C; is a bit complicated as the running index k loops over
twice as many indices than are needed and the set has a test to discard half of

the values values k because in this way C' is clearly the union of C; and C,. It is
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good to notice that the set C'; has as many members as the set

{y*ly* —c€ QR,}

where ¢ = 1 for Cases 1 and 2 and ¢ = g for Cases 3 and 4.
The proof of the lemma is completed. o

Let us look at an example of Lemma 2. Let a = —d? for d = 1 in (9) and
p =13. As g we choose 2, which is a primitive root for Z;;. Then 1 =20, 2 = 2!,
3=244=225=296=257=2"1,8=2%9=2% 10=2!0 11 =27 and

12 = 26. The sets are

A= {23’29} AI — {21’22’24’25’27,28’210’211}

A =0 Ay ={2%2°}

Ay ={22,24,28)219) Al ={2',2° 27 2!}
C={2"2°} ' ={2%2%2%2%
Ci=0 Co={2',2%}
Ci={2°2"}  Cy={2%}

There is a direct correspondence between C; and the first half of A;, as there
is between Cj and the second half of A}. This is because if g°*(g** — 1) € QR,
then g** — 1 € QR, and if ¢** — 1 € QR, then +¢**(g** — 1) € QR, since
—1 € QR,. There is also a direct correspondence between C5 and the first half of
Ay, as there is between Cy and A}. This is because if g?#+1(g?(?+1) — 1) € QR,
then ¢g?(k+1) — 1 € QNR, as g € QNR,, and if g??k+1) — 1 € QNR, then
+g2h+1(g2(k+1) _ 1) € QR, since —1 € QR,. This gives the relations between

the sizes of the sets.

The case of Lemma 1 covers half of all p because of Lemma 4.
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Lemma 4. The following statements hold:

(i) —1 € QR, if and only if 4|(p — 1)
(ii) The number of p < N such that 4|(p — 1) approaches half when N grows

to infinity.

Proof. Let g be a primitive root of Z;. If 4|(p — 1), then a = ng_l is in Z; and
a*> = —1.If -1 € QR,, then —1 = g* for some 4,0 < i < p—2. Since —1 # 1 holds
2020 ( mod (p—1)). Thus 2i #0and 2i #p—1. As (—1)2 =1 = gP~1 = g¥
holds 4i = k(p—1) for some k where k has the possible values 1,2,3. If k = 2, then
—1 = g% = gP~! = 1, which is impossible. Thus, k¥ € {1,3}. Then gcd(4,k) = 1
and therefore 4|(p — 1). This proves the claim (i).

Claim (ii) is shown true by considering the Sieve of Eratosthenes. In this
algorithm primes are found by reserving a memory vector for all numbers and
marking the place of 1 as full and all other places empty at the beginning. On
each step the first unmarked place is taken as the next prime p. The place of p
is marked and all multiples of p are marked. In this algorithm the first step takes
p = 2 and marks all multiples of 2. The unmarked numbers are all odd. The
next prime is p = 3, the first unmarked number. All multiples of 3 are marked.
The numbers that are marked for p, i.e., multiples of p, are are all odd and
equally distributed modulo 4. Consequently, the numbers that remain unmarked
are all odd and equally distributed modulo 4. This continues in each step, thus
the numbers that remain unmarked are all odd and equally distributed between
1 (mod 4) and 3 (mod 4).

In each step the first unmarked number is the next prime p. It is selected
as the smallest number in a set of unmarked numbers that are always odd and
distributed equally between two sets 1 (mod 4) and 3 (mod 4). The next prime
p has half a chance in belonging to either set. The number p — 1 is always even
and if p = 1 modulo 4, then 4|(p — 1). This is so in half of the cases when N

approaches infinity. o
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The numbers n; and ns in Lemma 3 are not easily evaluated for statistical
purposes as we did not check how many numbers x give the same t = z(z? + a).

This is done in Lemma, 5.

Lemma 5. Let p > 2 be a prime and —1 € QR,,. If c = 1 the solutions are
divided into singlets and multiplets. In the set of singlets each x is mapped to a
unique y2. In multiplets three, in maximum size cases two, values of = are mapped

to the same y2.

(i) There is a running index ¢ such that in singlets ¢ runs from 1 to p — 1 and
two values of ¢ map to the same z.

(i) Tn multiplets there is a running index ¢ such that ¢ runs from 1 to p — 1
and two values of t map to the same x. For p — m values of ¢ three values of z
map to the same y? and three values of —z map to the same —y? € QR,,. Thus,
twelve indices t map together either to QR, or to QNR,. That is, two ¢ map
to the same z. Six ¢t map to the same (h,z) where h = z(z> — ¢). If h € QR,,
then —h € QR, and twelve values of ¢ giving (h,z) or (—h,—2z) are all in QR,,.
If h € QRP,, then twelve values of ¢t map to (h,z) or (—h,—z) are all in QN R,,.

The value of m is as follows:

Case ¢ = 1:
m=13if 3€ QR, and 3 ™' + 1 € QR,
m=9if 3€ QNR, and 37! +1 € QR,
m=9if 3€ QR, and 37! +1 € QNR,
m=>5if 3€ QNR, and 37' +1 € QNR,
Casec=g:

If3€eQR, and g+ 1€ QR, then m = 5.
If3e@QR,and g+ 1€ QNR, then m = 1.
If3 € QR, then m = 1.
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(iii) In multiplets there are m; values of ¢ that map to z such that two values
of x map to the same h = z(x2 — ¢) because one of the three values of z is equal
to one of the other two. In this case eight values of ¢ map to (h,z) or (—h, —z),

all are either in QR,, or all in QN R,,. The value of m; is as follows:

Casec=1:

mi =6if 3€ QR, and 37" +1 € QR,
my =4if 3€ QNR, and 37! +1 € QR,
my =2if 3€ QR, and 37 ' +1€ QNR,
my =0if 3€ QNR, and 37' +1 € QNR,

Case c = g:

If3e€ QR,and g+ 1 € QR, then m; = 4.
If3e @R, and g+ 1€ QNR, then m; = 0.
If 3 € QR, then m; = 0.

Proof. As in Lemma 3 we can reduce the equation h = z(2? 4+ a) to h = z(z? —¢)
where ¢ = 1 or ¢ = g, where g is a primitive root of Z7. We will consider only the

cases c=1and c=g.

Let us first consider how the equation

where z and y belong to QR, U QNR, and r # 0 is fixed can be solved with a

running index ¢{. We have two ways of solving it.

In the first way we write 22 = y? and

2 —r’=(z+r)(z—r)=2>

69



There exist ¢ such that

T+r=zt, z—r =2l

Then

z=2""2t+t "), z=2r(t —t ") .

Thus

z=rt—t") e+t y= 20t —t7H 7L

Ifz =r(t—t=1)"1(t+t~1) for some t, then the equation is automatically satisfied.

We can count the indices ¢. If two values ¢; and ¢, give the same z, then

=t )+t ) =t =ty ) T+ 85

Solving gives t2 = t2. There are three different values of #, namely tl,tfl, —tfl,
that could give z, but checking shows that ¢, ' gives —z and only two different
values of ¢, namely #; and —¢; ' give z. Additionally z and —z yield the same 32

and 4y give the same y2. Thus, eight indices ¢ yield the same solution.

The second way to solve the equation is to write it as

and find a running index ¢ such that

r+2=rt, z—z=rt"L

Thenz =2"r(t+t Handy =+2"r(t -t 1). Iff 2 =2 1r(t + ¢ 1) for some t,
then the equation is automatically satisfied. Two values of ¢ map to the same x
because if

th b =ty ity
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then ¢, = t;'. The two values +z give the same z? and two values +y give the
same y2. Also in this way of solving eight indices of ¢ give the same solution. The

two solution methods give the same result.

In both ways we have to exclude indices ¢ for whicht—¢t ' =0ort+¢t ' =0

because for suc ¢ the number z or y is not in QR, U QNR,,.

Next, consider the case of

22+a=b

where a € QNR, and b € QNR,. Multiplying by a primitive root g gives the
equation

& —d?* = (c+d)(c—d) = gz?

where ¢ = gb € QR,, d*> = ga € QR,, and we can use the running index method
as

c+d=gat, c—d=at .

If be QNR, and —a € QR, we can write —a = ¢> and proceed as

- =(x+c)(z—c)=b.

The running index solution method fails only if b € QNR, and a € (R, but
-1€ QNR,.

The second general issue we have to look is how to estimate the number of

solutions to h € QR,, for h = z(2*> — ¢). We can solve the equation

225322—(1

by a running index s as
1

Z+TrT=-Cc8,2—T =S8
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ie.,if z = —271(cs +s71) for some s, then 22 — ¢ € QR,. If z is not of that form
for any s, then 2> — ¢ € QNR,. If (z € QR, and 2> —c € QR,) or (z € QNR,
and 72 —c € QNR,), then h = z(2®> — ¢) € QR,, else h € QNR,,. The numbers x
are produced by a running index ¢ that gives every number x twice. Thus, z has
half of the values in Z}, or possibly a few less if some ¢ must be discarded. The
possible values that 2 should have in order that 2 — ¢ is a square 22 are given by
another running index s. Also here some values of s may need to be discarded.
The running indes s also gives each z twice and can reach (about) half of the

values in Zy.

If these two sets of numbers x can be considered independent, then for one
fourth of the indices ¢ holds z € QR, and z” — ¢ € QR,,. For one fourth of the
indices ¢ holds z € QNR, and 2> — ¢ € QNR,. Thus, for half of the indices ¢
holds h € QR,. If so, then we can think of indices ¢ as probabilistic trials where
half of the time hit a success, h € QR,,, and half of the time fail, h € QNR,. We

will later formulate this condition as the Statistical Assumption.

The issue in this statistical method to know is how many of these trials can
be considered independent. It means, how many indices ¢ act as a group where
all values of ¢ in the group give either h € QR, or h € QNR,,. We alreasy know
that at least four indices ¢ act as a group: each z is given by two values of ¢ and
+2 map to £h, which are either both in QR,, or both in QNR, when —1 € QR,.

There can be more indices ¢ acting as a group.

Let us start from the case where more than one x map to the same h =

z(x? — ¢). If so, then we can find 2; and 25, ; — x5 # 0, such that

a:f —cxy = a:g — ¢y,

Then

a:f—}—a:lmz—}—argzc
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ie.,

(221 + 22)* + 323 = 4e. (15)

If there are solutions x; # x2 to (15), we say that xo belongs to the case of
multiples. If x5 is the only value of x that gives ¢, then we say that z2 belongs to
the case of singletons. We have to look separately at the cases ¢ =1 and ¢ = g.

Case ¢ = 1. Let us write

z = +£(2z1 + 22)

and

Then there exists ¢ such that

2+z53tx2,2—z5t*1:c2.

Solving these equations yields

2y =43t +t7) 7 2z =27 (3t — 7).

The value of x4 is then

1 =2 Yz —2) =2 22 (£ 3t —t 1) — 2).

We can write

h=xo(zs —c) =43t +t 1) 2Bt +t 1) 116 — (3t +t1)?). (16)

Let us do the former general consideration with two running indices ¢ and s
explicitly, just for clarity. We take another running index s that assures that the

term 16 — (3t +¢~')? is a square. As we assume that —1 € QR, in this lemma,
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we can write the square as —r2 for some r. Thus

16— (3t +t 1) = —r? (17)

which yields

(3t+t "2 —r>=16.

There exists s such that

St+t '+r=4s,3t+t ' —r=4s"".

Solving gives

St+t ' =2(s+s5"). (18)

If s loops over all numbers in Z; and # satisfies (18), then the term (17) is a square
in (16) and

h=xo(x5 —c) =m?(Bt+t~1)7!
where m? is a square:
m? =43t +t7 )16 - (3t +t71)?) = —4(s+ s )3 (s —s71)2

Writing 3t + ¢! as 2(s + s~ 1) gives

showing very clearly that h € QR,, if and only if 2(s + s7') € QR,,.

If 16 — (3t + ¢t~ 1)2 is not a square, then 3t + ¢t~! belongs to the numbers that
are not reached by s + s~1. This set of numbers is (about) half of all numbers in

Zx. If 3t +t~ " is in that set and if (3t +¢~') € QNR,, then from (9) follows that

b=(3t+t71)71 (16— (3t +171)?)
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is in QR, and
h=xo(25 —c) =43t +t71)7%b

is in QR,. This explicit calculation agrees with the general consideration that
h € QR, for (about) half of the indices ¢, but there is some probabilistic variation,
the trials of ¢ can be seen as probabilistic trials.

In the case of multiplets when ¢ = 1 we may have to discard a few cases of
the running index ¢: if we do not then some cases may do not give three different
values of z, or any values at all. As —1 € QR,, is assumed in the lemma, there
exists € such that €2 = —1.If 3 € QR,, then 3 = 3?2 for some . Then ¢ values +ef3
and +8 need to be discarded. If 3 € QN R,, there are no solutions to t? = +3.

The number 5 cannot be modulo zero because zero is not in QR, or QNR,.
Thus, the roots of 3t + ¢t~ = 0 must be discarded. This means that if 3 € QR,,
two values of ¢ must be discarded.

There are cases when one of the three x values equals one of the two. If
214 = z;_, then 2 = 0. This means that 3t — t~! = 0, i.e., 2 = 37!. For
3 € QNR, this cannot happen, but for 3 € QR, there are two values of ¢ filling
this condition. If so, we get only two different values of x.

If 25 = iy, then £6 = 3t —t 1, ie., (t£1)2 =31+ 1. 137 +1 € QR,,
there are four values of ¢ that give only two different values of x.

Solutions z = +1 give 22 — ¢ = 0 and thus h = 0. We have to discard four
values of ¢ that give x = +1.

Counting the numbers m and m; gives:
p—-m=p-1-2-2-4-4=p—13if3€ QR, and 37 +1 € QR,
p—m=p—1—-4—4=p-9if 3€ QNR, and 37! +1€ QR,
p—-m=p—1—-4—-4=p-9if3€ QR,and 37" +1 € QNR,

p—-m=p—1-4=p-5if3€ QNR, and 37! +1 € QNR,
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my =6if 3€ QR, and 37! +1 € QR,
mi =4if 3€ QNR, and 37' +1 € QR,
my =2if 3€ QR, and 37! +1 € QNR,

my =0if 3€ QNR, and 3 ' +1€ QNR,

For singletons Lemma 3 gives a calculation of ny where the looping index ¢ goes
from ¢t =1tot=p—1 and gives each z two times. Exactly half of the numbers ¢
give multiplets and are first removed. The remaining (exact) half of the numbers
t give singletons. The cases to be excluded are already in the multiplet numbers.
Thus, singletons give exactly (p —1)/2 values of z. The values +x yield the same
h and two values of y give h = y*> € QR,,. Thus, eight values of the running index

t map as a group. This is shown in Lemma 3 where N, = 8p+ 7 for Case 1. About
half of the groups map to h € )R, and about half to h € QNR,,.

Case ¢ = g. For 5 belonging to the case of multiplets (15) gives the equation

(2z1 + 22)* + 323 = 4g. (19)

We split the analysis into two cases:

Case 3 € QNR,. Then we write 22 = (2z1 + z2)? and thus
9712 =22 — (nan)?
where 12 = 3g~!. Then
2+ nxe = g’lzt , 2—nxy = 2t N

Thus 4 = 2(g7 't +t71) and 2, = 271 (+2 — 20), i.e.,

2y = (20) Mg+ T T -t ).
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There are two values of ¢ that map to the same 2, namely ¢t and —¢~!, solved as

before. The third value ¢! maps to —xs.

There are no values of ¢ giving g~ 't +¢~! = 0 which would yield no z or no z
and would have to be discarded. Thus, all values of ¢ yield x5 and z14.. There are
no values of ¢ for which 23 — g = 0 and consequently h = 0. Thus, all values of ¢
yield a valid h. There are no values of ¢ for which z =0 and 214+ = z1_. All these
special cases are missing if ¢ = g and 3 € QNR,,, but there is still one special case

left:

If xo = x14 then 3x5 = £z and solving it gives

2 £2n3 gt — g =0.

—1

Inserting 39~ = n? yields

2 +1=(t+1) =g+ 1.

If g+ 1 € QR, there are four indices of ¢ that give solutions where x5 = 14 or
x2 = z1_. The other values of ¢ give three different values of z. If g + 1 € QR,

wegetm=5andm; =4.Ifg+1€ QNR, then m =1, m; =0.

Case g = 1 and 3 € QR,. Then there exists 3 such that 3? = 3 and since we
assume that —1 € QR, there exists € such that €2 = —1. Then —3 = (¢f)? and
(12) can be written as

2% — (efwy)? = 4g

where

2z = X2z + 9.

There exists ¢t such that

2+ €fxy =2t ,z — €fxy = 2471,
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Then

z=gt+t7t, xa = (f) gt —t7Y).
Thus
21 =2tz —m) =27 (gt +t7") — (eB) (gt —t 7).

2

There are three values of z that map to the same h = z(z* — g), except for in

possible special cases.

Here gt —t ' Z0and gt +t ' # 0 as —1 € QR,. Therefore z and z, are

always in Z7. It means that z14 # z1-. It is also not possible that 22 —g=0.

The only special case that can appear here is that zo = z14. If so, then

21 =2 1 (d+2 — x9) = z9. Thus 325 = +2. We get the equation
3(ef) Mgt —t ) =£(gt +t7)

which simplifies to

3(ef) Mgt —t7H) = (gt +t71).

This leads to

=g '(1£3(ef) ) T(1F3(eB) )
t2 =g M0 £3(ep)"H) 72

Clearly, there are no solutions ¢ to this equation.

The result is that if ¢ = g and 3 € QR, (and —1 € QR, as assumed in the
lemma), then m = 1 and m; = 0.

The proof of Lemma 5 is complete. o

Let us give two examples of Lemma 5. For p = 13 we get for the running index
t=1,2,3,4,5,6,7,8,9,10,11, 12 the following sequences zo = 1, —, 6,12, 3,10, 3,10,1,7,—, 12,
x4+ = 0,—,10,0,7,6,3,10,12,3, —,1, ;- = 12,—,10,1,3,10,7,6,0,3,—,0, h =

1172(.’12‘% - 1) = 07 _72707 11727 1172707 117 _70'
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The two values of ¢ that do not give x5 are 2 and —2 = 12. They are solutions
to3t+t 1 =0,ie,t?=-3"1 = -9 =4, thus t = £2. There are two values of
t giving 21, = z;_. They are solutions to t> = 37! = 9, i.e., t = 3,10. We get
these four special values of ¢ because 3 = 2¢ € QRy3.

The four values of ¢ that give h = x5 (22 — 1) are values t = &1, £4. They give
T9 = %1 and thus 22 — 1 = 0. These special values of ¢ appear because ¢ = 1. For

¢ = g there are no such special values of t.

There are four values of ¢ giving 2o = z;+. They are solutions to (¢t + 1)% =
371 +1 = 10. Thus, t £ 1 = +6. That yields t = 5,6,7,8. We get these special
values of t because 371 +1 =10 = 2'9 € QR;3.

The sum of the special values of ¢ is 4 + 4 + 4 = 12. This is subtracted from
p— 1 = 12 and the result is zero showing that there are no cases when three
different values of z map to the same h for p = 13.

As the second example consider p = 29. There are four groups of triplet x
values that map to the same h:

x=>5,10,14 = —24,—19, —15 map to 4, and

z=19,24,15 = —10, —5, —14 map to 25 = —4. While

z=12,20,26 = —17,—-9, —3 map to 5, and

r=3,9,17 = —26,—-20, —12 map to 24 = —5.

These 12 values of z need 24 values of the running index t. Additionally we
have two values of z that give h = 0, that is, x = £1. These need four values
of t. This means that all p — 1 = 28 values of ¢ are already used in the case of
multiples and there cannot be any more special values of ¢. This is indeed true
since 3 € QN Ry and 371 +1 = 11 € QN Ry9. Therefore m = 5, as Lemma 5 says,
and the number of triplets of values of  mapping to the same h is (p—5)/6 = 4.
Both h = £5 are in (QRs9 and both h = +4 are in () Rzg. The expectation value
is that (p — 5)/24 = 1 are in (QRa9. We got one more in p = 29: there is random

variation around the mean.
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There are exactly 14 = (p — 1)/2 singletons:
x=2,4,6,7,8,11,18,21, 23,24, 25,27, 13,16
map to
h=6,2,7,17,11,15, 14,18, 22,12, 27, 23,9, 20.

Of these 14 singleton h values six are in () Rag, namely 6,7,22, 23,9, 20. It is about
half of 14 = (p — 1)/2 numbers in QRy3. It is not exactly half, there is random
variation around the half.

Let us formulate an assumption that allows us to estimate averages and vari-

ances of the numbers a,.

Statistical Assumption. Let the numbers h be defined as
h=s+s"'( modp;) s=1,....,p; — 1

and let nj be the number of s that give h € QR,,. Then n;/2 is binomially
distributed with the mean at (p; — 1)/2 and the variance (p; — 1)/4. Notice that

s+ s~1 gives each value h exactly twice.
Lemma 6. Let a,, = p; — N, and N, be the number of solutions to
y* =2 +az +b. (20)

The following claims hold assuming that the Statistical Assumption holds.

(i) In Cases 1 and 2 of Lemma 3 the expectation values of a,, are 2 and —2
respectively when p; ranges over all primes. For Cases 3 and 4 the expectation
value of a,; is zero.

(ii) The variance of a,; is 2p; when p; ranges over all primes.

1
(iii) The statistical bound by the standard deviation is: |a,,| < 2p?.
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Proof. By the Statistical Assumption the expectation value of n; in Lemma 3
for Cases 1 and 2 is E[ny] = ”8;5. Thus Ela,] = p—(p—-5+7) = -2 for
Case 1 and Efa,] = p— 2p—p+5—7) = 2 for Case 2. In the Cases 3 and
4 of Lemma 3 E[ns] = 252, Thus Efa,) = p— (p — 3+ 3) = 0 for Case 3 and

Ela,) =p—(2p—p+3—3) =0 for Case 4.

The expressions of N, in Lemma 3 are not convenient for calculating variances
needed in (ii) as Lemma 3 does not count how many times the running index hits

the same z. We have to use the forms in Lemma 5.

Lemma, 5 lists numbers m < 13 and m; < 6, which are different for differ-
ent cases of multiple x values. These few special cases are not important when
estimating the variance of a, when p ranges over all primes. For that reason we
assume that p is so large that 13 << p and all values of ¢ in the case of multiples

give a value h that comes from three values of z.

Case 1: b = 0. Lemma 4 shows that —1 € QN R, in half of the cases of p;. By
Lemma 1 a,; = 0 in these cases. In the remaining half of the cases —1 € QR,;.
Exactly half of them are singleton cases of Lemma 5 and exactly half are multiplet

cases of Lemma 5.

In Lemma 5 is used a running index ¢ = 1,..,p — 1. In singleton cases two
values of t map to the same z. Only one z maps to a given h = z(z2 —¢), c =1
or ¢ = g. Both h = 2(2? — ¢) and —h either belong to QR,, or both belong to
QNR,,. For each h € QR,,, there are two values y, (i.e., +y) that give the same

y? = h. Thus, eight values of t map together as a unit.

In multiplet cases two values of ¢ map to the same z. Ignoring the m < 13
special cases, three values of z map to a given h. Both h = x(2? — ¢) and —h
either belong to QR,, or both belong to QNR,,. For each h € QR,, there are
two values y, (i.e., &y) that give the same y? = h. Thus, twenty four values of ¢
map together as a unit. There is no difference between the casesc=1and c=g

except for in the small numbers m and m; in Lemma 5.
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By the Statistical Assumption we can treat the situation as trials in a bino-
mial distribution. In the binomial distribution there are n trials and the success
probability is p and ¢ = 1 — p. Then the expectation value is E[ number of suc-
cesses | = np and the variance is npg. Here we have p; /k independent trials, where
for singletons k = 8 and for multiplets k& = 24. Each success gives k units and
the probability p = 0.5. Thus, the average np must give p; as ap; = p; — Ny,
should have the average at zero, or close to zero, for us to use the binomial dis-
tribution assumption. We have a better match to the binomial distribution if we
count not (z,y) but (z,y?) cases. Then the expected number of successes from p;
trials is p;/2 = p; - 0.5 = p;/2. In the binomial distribution the variance would
be p; -0.5-0.5 = p;/4 as p = ¢ = 0.5, but in our distribution k/2 units of success
are in a group. The number of independent trials is p;/(k/2) and the unit size is
multiplied by k/2. The effect of this grouping is that the variance is multiplied
by k/2, i.e., the variance 6® = 1 3" (y; — ;) is multiplied by a if n is chaged to
n/a and y; changed to ay;.

The variance of the singleton cases is therefore (p;/4) - (8/2) = p; and the
variance of the multiplet case is (p;/4) - (24/2) = 3p;. Singletons represent one
fourth of all cases and multiplets represent one fourth of all cases, while —1 €
QNR,, are half of all cases. Adding the cases with their probabilities of occurance
gives

, 1 1 1

Multiplying the result by 2 to count +y instead of y? gives
o = 2p;.

Case b # 0. In this case the addition of b removes the condition that guaranteed
that a,, = 0if -1 € QNR,,. For the case —1 € (QR,, this same condition
guaranteed that z and —z both give h and —h in QR,, or both give h and —h

in QNR,,. This condition is removed from both cases when b # 0 because if
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hi —b = h and hy, — b = —h, then the relation between h} and h} = —h} + 2b
does not say anything of h5 € QR,, if b € QR,,;.

In other ways the case b # 0 does not differ. Having b # 0 does not even
change the special cases of ¢. It only removes the condition that was discusses
above. Exactly half of the cases are singletons and exactly half of the cases are
multiplets. The effect of removing the coupling of z and —z causes that in the
singleton case k = 4 and in the multiplet case k = 12. As a compensation, there
is no case of —1 € QN R, when there is zero variation of a,,. The case where
-1 € QNR,, is the same as the case where —1 € QR,,. These cases give the

same variance and the total variance is

1.1 1 1.1 1
022 = 5(51)]' + §3pj) + 5(5101' + 53171‘) =Dj

Counting the solutions (z,y) instead of (z,y?) gives
o = 2p;.

The statistical bound (iii) is a bound by standard deviation and it is known
as the Hasse bound. The average variance over all p; is 2p;, but if b = 0, then for
the part —1 € QR,,; the variance is 4p;. Thus the standard deviation for these p;
is 2p§.

The proof of Lemma 6 is finished. o

8 On the zeros of the Taylor series

Lemma 7. Let ¢(s) have a Taylor series at so of the form
¢(S) =Cy+ CT(S - So)r + CT+1(S - 80)T+1 s

Let



Then

hs) = TCC'OT (s —s0)" "'+ O((s — 50)") if Co#0
h(s) = - _TSO +0(1)  if Co=0.

Proof. The claim comes directly from calculating

@'(s) =rCr(s —s0)" '+ (r —1)Cry1(s — 50)" -~

h(s) = - Ing(s) =

]

Why Lemma 7 is written down here is that it may not be obvious that the
only singularity h(s) can have at s = s is a first order pole. The algebraic rank
of ¢(s) is a multiplier (i.e., residue) in the divergent part of h(s). If the residue of

h(s) negative, then the function ¢(s) has a pole of the order ot the residue.

Lemma 8. Consider an infinite product

¢(s) =TT~ fi(s)) " (21)

jeA

where A is an infinite subset of IN. Let us assume there is « > 0 and C > 0 such
that
[£i(s)] < Cp; ** (22)

and

|£;(s)| < C'ln(p;)p; **. (23)

Here s = = + iy and f}(s) denotes the derivative of f;(s). The following claims
hold:

(i) The function ¢(s) is finite and nonzero if Re{s} > 5.
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(ii) Let s satisfy 5= < Re{so} < 5. If the function

g1(s) =D fi(s)£;(s) (24)
jeA
is finite at sg, then
h(s) =Y fi(s). (25)
jeA

is finite at so and ¢(s¢) is finite and nonzero.

Proof. From the assumption (22) follows that the infinite product (21) is abso-

lutely convergent if Re{s} =z > a~!. We expand

Lingls) =Y (f,'-(s) ij(s)'“) . (26)
k=0

JEA

By (22) |f;(s)| < Cp}?®. Because

oo
>t
j=1

is absolutely convergent if z > 1, the derivative of the series

o0
> _In(p;)p;
=1

is absolutely convergent if z > 1. By (23) holds

|£j(s)| < Cln(p;)p; **.

Thus the series

> fis)

JEA

is absolutely convergent if Re{s} > a™!.
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In the right side series of (26) the terms for each k converge absolutely if

Re{s} > m The terms for k& > 0 define an analytic function

9(s) = (f}(S) ij(S)’“>
k=1

JjeA

This function is finite if Re{s} > 5-. The function

91(s) =Y fj(s)fi(s)
jeA
in (11) is the first part of this series. The other parts converge if Re{s} > =-. The
function g;(s) can be analytically continued to the area 5~ > Re{s} > 5. The
continuation is analytic with the exception of possible isolated singularities, poles.

The series for k = 0 converges if Re{s} > é and defines an analytic function

h(s) = ) _ £(s).
JjEA
This function can be analytically continued to Re{s} > % The continuation is

analytic with the exception of possible isolated singularities, poles.

Whether h(s) or gi(s) is infinite in a given point s or not, we can formally

write

L ing(s) = 6(5) £ 4(5) = h(s) + o)

L 5(5) = 9'(5) = his)6(s) + 9()6(5)

Assume ¢(so) = 0 for so = 2o + iyo, = > g > 5. The function g(s) is finite at

S0, thus g(sg)d(se) = 0. If h(s) is finite at sg, then h(sg)@(se) = 0 and ¢'(so) = 0.

All derivatives of g(s) are finite at sq.

If h(s) is finite at sq, then all derivatives of h(s) are finite at sg. If so, then

by induction all derivatives of ¢(s) are zero at so: assuming that it is proved that

[f—;¢(s) for j < m, then (Z—"n (s) is given by a sum where every term is a finite
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value from derivatives of g(s) or h(s) multiplied by zero, a derivative j > 0 of ¢(s)
at so. If all derivatives of ¢(s) are zero at sg, then ¢(s) is zero everywhere. This
is a contradiction as ¢(s) is described by an infinite product (21) that converges
and is not zero when Rs{s} > a 1. It follows that ¢(sg) cannot be zero if h(sg)

is finite.

Next, consider the infinite product of two complex variables s and z
U(s,2) = [T = fi(s) + fi(s +2) 7" (27)
jeA
The infinite product is absolutely convergent if Re{s} > a~!. Let us expand
6 oo
azln@b(s,z):—z< (s+2 Z fjs+z))> (28)
JEA k=0
The terms k > 0 define a function of two complex variables
oo
u(s,z)z—Z( s+zz f]s+z))>
jEA k=1
This function is finite if Re{s} > ;..

The series for k£ = 0 converges absolutely if Re{s} > — L and defines a complex

analytic function

h(s + 2) Zf s+ 2).

JjeA
This function is the same function h(s) as earlier. Now it only has the variable
. s . . 1
s + z instead of s. We assume it is already continued analytically to Re{s} > 5

It may have isolated poles when Re{s} > 1.

We can write

% In(s,z) = w(s,zfl%@b(s,z) =h(s+z) + u(s, z)

4p(5,7) = hls + 2)(s, )+ uls, 25,2 (29)

87



The functions g(s) and u(s, z) are analytic (implying finite) at an open environ-

ment of the point s = so because + > Re{s} > ;-

The function (s, s — s) is an analytic function of one complex variable s and
1 (s0,0) = 1. The function (s, sg — s) cannot be zero in every point in an open
environment of sg because else it is zero everywhere. Likewise, (s, so — s) cannot
be infinite in every point in an open environment of sq because then (s, sg —s) !
is zero everywhere. It follows that we find z # 0 such that |z| << 1, s = s+ z and
¥(s,80 — s) # 0. Let this point be (s2,22). It follows that s + 20 = s¢. Keeping
s fixed at sy and letting z vary, v(s2, z) defines a complex analytic function of
z. As 1(s2,29) is finite, the partial derivative of 1 (s2,2) with respect to z at
z = zo is finite. Thus, the left side of (29) is finite. The right side contains a
finite term w(s2,22)Y(s2,22) and ¥(sa, 22) is finite and nonzero. It follows that
h(s2+22) = h(sg) is finite. Because h(s) is finite ¢(sq) is nonzero. The first claim

(i) of the lemma is proven.

In the second claim (ii) of the lemma we select a point s = sg such that
5= > Re{s} > 5. The function g(s) — gi(s) is finite in this area because the
series defining this function converges absolutely. The function u(s, z) converges

with the exception of the first term. Thus

ug(s,z)=—2<f]s+zz f]s+z))>
k=2

jeA

is finite in this area. In the first term

=Y s +2)(fi(s) = fils +2)

jeA

we insert z = sg — s and get a complex analytic function of one variable s. This
function can be continued analytically to the area 5 > Re{s} > 5. If g1(so) is

finite, then also uj(sg, so — S0) = u1(S0,0) is finite. The argument that h(sg) is
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finite goes in the same way as in the case where ;= < Re{s} < 1. This proves

the second claim. o

9 Application to L(C, s)

Lemma 9. Let ay, = pj — N, and let N, be the number of solutions to
v =2 —d’z ( mod p).
(i) The function g1 (s) with the series expression

g91(s) = Y In(pj)ay,p; >
jEA

in the area where the series converges does not depend on d.

(ii) If d = k? the function h(s) with the series expression

h(s) = Y In(py)ay,p;°
JEA

in the area where the series converges does not depend on k.

Proof. From Lemma 1 follows that if —1 € QNR,, then a,;, = 0. If —1 € QR,,

Lemma 3 gives two possible values for ay, :
ap; =Pj — ij =p; —8ny; — 7if d e QRI;J.

ap, =pj — Np, = —p; +8n1; +7Tif d€ QNR,,

where n ; is the number of solutions y* € Zy, yielding y*—1 € QR,,. The number
n1,; does not depend on d, thus the square of either of s, does not depend on d.
It follows that g1 (s) does not depend on d.

In h(s) the number d is a square k2. Therefore d is a square in every Zy.-

It follows that for every p; the case in Lemma 3 is always Case 1. The value
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Np, = 8ny,j + 7 for every p;. Thus, the function hg(s) does not depend on what
square number d = k2 is used: in Lemma 2 the number a = —d? is removed at

the beginning by a substitution and ¢ = 1 in Case 1 of Lemma 2. o

The problem statement [1] says that the product (1) converges absolutely for
Re{s} > 2. This claim assumes the statistical Hasse bound |ay, | < 2p;§. Therefore
this bound must be considered accepted in the context of the problem statement
of [1]. The Hasse bound follows from the Statistical Assumption and implies that

some similar statistical assumption is used in the bound.

Lemma 10. If ¢(s) is Lemma 8 is L(C,s) as defined in (1), then the term
of the infinite product in Lemma 8 is

fJ(S) = apjpj_s _ p}—ZS.

Then
h(s) = fj(s) = hi(s) + ha(s)

jeA
where

ha(s) = — Y ap, In(p;)pj°.

JjEA
The function hs(s) is

ha(s) =23 In(py)p} 2.

jeA
It diverges at s = 1 and has a simple pole

1
ha(s) = 1 + finite terms

at s = 1. The function g1 (s) we define as

91() =Y £i(8)£i(s) = 91,1(5) + g1.,2(5)

JEA
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where

g11(8) = Z In(p;)a; p; .
jeA

It is the the part of g(s) that diverges if s = 1 and g1 2(s) and the other parts of

g(s) converge at s = 1.

Proof. A simple calculation shows that the forms of h(s) and g;(s) are as in the
claim of the lemma.

The pole of the function ha(s) at s = 1 is derived from the pole of the Riemann
zeta function ((s) at s = 1. Zeta has a simple pole of residue 1 at s = 1. Thus

close to s = 1 zeta is
¢(s) = | I(l —p; %)t = b + finite terms.
> J s—1
J

Derivating gives h(s) for the zeta function:

) _
¢'(s) _ ! s—1 + finite terms = h(s) + g(s).

() (s-12 1

Calculating from the infinite product we get

L Inc(s)) = h(s) + g(s)

where

hs) == (), "

g(s) = — Zln(pj)p;% 4o

and g(s) converges when Re{s} > 1. Thus, the divergent part is
Z In(p;)p;° = L + finite terms
7 153 s—1
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close to s = 1. Changing —s = 1 — 2z gives

+ finite terms

_ 1
2> In(p;)p; " = 253
j

that is

J

1
QZln(pj)pl.*zs =57 + finite terms.
J

1

In Lemma 6 we derived the Hasse bound |a,,| < 2p;. It is a statistical bound

where a random variable is estimated by the standard deviation. This statistical

bound can be used for investigation of the convergence of the L(C,s) function

4o
2

because any looser bound |a,, | < 2p;

;" , a >0, on a general p; can be improved

by adding the probability that |a,,| is higher than (a chosen multiple) of the

standard deviation of |a,, |.

Lemma 8 shows that the bound on < a,,| cannot be a stricter bound of the
type |ap,| < pffa where a > 0 for a general p; because if there is such a bound,
then g(s) converges at s = 1 and Lemma 8 shows that L(C, s) is always finite and
nonzero. Yet we know that In(L(C, s)) is infinite at s = 1 for some elliptic curves

C.

From the Hasse bound it follows that g¢;(s) converges for Re{s} > 1. By
Lemma 8 g¢1(s) must diverge at least for some C' at s = 1 because there are
elliptic curves C such that L(C,1) is not finite and nonzero. The Hasse bound
guarantees that g(s)— g1 (s) converge absolutely if Re{s} > 1 and that g1 »(s) also
converges absolutely if Re{s} > 1. The part that cannot be shown to converge is
91,1(s). It must diverge at s = 1 because g1 (s) is the same function for all elliptic
curves C of the type y? = z(2? — d?) (see Lemma 9) and for some values of d
the L-function has a zero value at s = 1. If g1,1(s) would converge at s = 1, then

L(C,1) would be finite and nonzero for every d.
All claims of the lemma are proven.o

With these results we can discuss the Birch and Swinnerton-Dyer conjecture.
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10 The Birch and Swinnerton-Dyer conjecture

The original reason why Birch and Swinnerton-Dyer formulated their conjecture

was that the function

was growing approximatively linearly for some values of d for elliptic curves of
the type y? = z(2? — d?), while for some other values of d the function did not
tend to infinity when n grows.

The function they studied in [2] can be written as

- Np —1
o 1% = e [T -5
=1 Pi

n n n
=D log(l—app;") = =D anpj' + 3 a4
j=1 Jj=1 Jj=1

1
As a,; is on the range of p; by the Hasse bound, the higher terms converge. The
first two terms may diverge at s = 1.
The function studied can be completed into a complex function that is evalu-

ated at s = 1:
oo oo
H —ap,p; )7 = [ - a7

Let the sum to be over the set A

Ly(C,s) = H(l — apjp;s)fl.
JEA
The difference with this function and L(C, s) in (1) is that the term p1 % in (1)
is missing.
For Ly(C,s) the function in Lemma 10 is f;(s) = ap;p~* and h(s) has the

expression

h(s) = hi(s) = Y _ fi(s) = = D ap, In(py)p;°

JEA jEA
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The sum diverges at s = 1 and h(s) may have a simple pole at s = 1. The function
g1(s) is

91(s) = = _ In(p;)ay,p; >*.
JEA

The part of the sum expression of g;(s) diverging at s = 1 is

91,1(5) = gi(s).

The sum diverges at s = 1 and g;,1(s) may have a simple pole at s = 1.
For L(C, s) the function f;(s) = ap,p~* — p*~2* and h(s) has the expression
h(s) =D fi(s) == (ap; In(pj)p; ° — 2In(p;)p; **) = ha(s) + ha(s).
JjEA JjEA

The sum diverges at s = 1 and h(s) may have a simple pole at s = 1. The function

g1(s) is
g1(s) = — Z ln(p]-)aszj’% + z In(p;)ap,; (3p; > —2p5~*").
jeA jEA
The part of the sum expression of g (s) diverging at s = 1 is
g11(s) = Zln(Pj)a,%jP;zs-
JEA
The sum diverges and g; 1(s) may have a simple pole at s = 1.

Thus, the (possibly) divergent part g1,1(s) of g1(s) is the same for Lo(C, s)
and for L(C, s), but the function h(s) for La(C,s) lacks the second part ha(s) in
h(s) for L(C,s). This missing function has a first order pole and residue one at

s = 1 as the Lemma 10 shows.

The Theorem on page 4 in [1] states that it is proven that if the elliptic curve
C' has rank zero then the L-function L(C,s) has the algebraic rank zero. There

is a conflict: Theorem 1 proves that Theorem on page 4 in [1] is in contradiction
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with the initial experiments of Birch and Swinnerton-Dyer, assuming they have

been correctly described in the literature:

Theorem 1. Assuming that Lo(C,s) satisfies the Birch and Swinnerton-
Dyer conjecture for rank zero, then L(C, s) cannot satisfy the conjecture for rank

zero.

Proof. Birch and Swinnerton-Dyer studied elliptic curves of the form 42 = z(z? —
d?) with several values of d including values d = 1 and d = 5. These curves have
rank zero if d = k? for some integer k. Assuming that Birch and Swinnerton-Dyer
concluded that the function they studied, L(C, s), has a finite nonzero value at
s = 1 for d = 1, then it follows that h(s) + ¢1,1(s) must be finite at s = 1 for
d = 1. For Ly(C, s) holds h(s) = hi(s), thus hi(s) + g1,1(s) must be finite for
d=1.

Consequently, if Lo(C, s) fills the conjecture for rank zero, then the function
L(C, s) cannot have a finite nonzero value at s = 1 for elliptic curves with a =

—d? = —1 and b = 0. The function hy(s) has a pole at s = 1 and is of the form

1
ha(s) = P + finite terms.

Therefore

1
hi(s) + ha(s) + g1,1(s) = Py ) + finite terms.

Because of this pole, the function L(C, s) has a zero at s = 1. Thus, for an elliptic
curve of rank zero the L-function L(C, s) has a zero at s = 1 and has the algebraic
rank one. o

Errors happen, but if Theorem on page 4 in [1] (and the literature results that
it is based on) is correct, then Birch and Swinnerton-Dyer were a bit mixed up:
they thought that a pole of Lo(C,s) at s = 1 for d = 1 is a nonzero value of

Ly(C, s) and that a nonzero value of Ly(C,s) at s =1 for d = 5 is a zero.
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Though it seems that the problem as stated in [1] is solved in negative without
any use of Lemmas 1-4 simply because it contradicts what Birch and Swinnerton-
Dyer found in [2], these lemmas were given for the purpose of solving the problem
statement in [1]. Thus, we will assume that the problem statement [1] is correct
in its claims and show that it leads to a contradiction without referring to the
results of Birch and Swinnerton-Dyer in [2].

The problem statement [1] says that L(C,s) is analytic in the whole plane
implying that it does not have a pole at s = 1 for any d. Theorem on page 4 in
[1] says that for rank one and zero the Birch and Swinnerton-Dyer conjecture is
true.

The function hs(s) has a pole with residue 1 at s = 1.

Let us consider the values @ = —d? with d = 1, d = 5 and d = 19 for the
simple elliptic curves that Birch and Swinnerton-Dyer studied: thus a = —d? and
b = 0. The numbers 1 and 19 are noncongruent numbers and give an elliptic curve
with zero rank, while d = 5 is a congruent number and gives an elliptic curve with
rank one. I verified that 19 is a noncongruent number in [3] as it seems necessary
to verify literature results in this field.

The value d; = 1 is a square number and picks up only the first case with
i = 0 in Lemma 3. Thus, a, = N, —p = 8n; + 7 — p. The other two values of d
give a choice of the two first cases in Lemma 3: if d € QR,, then ay, 4 = ay, 1,
while if d € QN R,, then a,; 4 = —ay; 1-

The divergent part g1,1(s) of g1(s) has a square of a,; and therefore it is the
same function for all three values of d. Let the residue of the (possible) pole of
91,1(s) at s = 1 be r. That is, if there is no pole, then r = 0.

The function h4 (s) is different for different values of d. Let us write hq 4(s) for
the function hq(s) for the value d. We will denote the value of the residue of the
(possible) pole of hq 4(s) at s =1 by —rq. If there is no pole, then rq = 0.

Assuming that the conjecture holds for ranks zero and one, the (possible) poles

of h(s) = hy1(s)+ha(s) and g1 1(s) must cancel at s = 1. We have —r; +1+r = 0.
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For d = 5 the function hq 5(s) 4+ ha(s) +91,1(s) has a simple pole with residue one.

Thus —r5 + 1 4+ r = 1. These two equations give

rs =r1 —1<nr. (30)

The value d = 19 is a noncongruent number. Since Theorem on page 4 in [1] says

that the conjecture holds, the value d = 19 must give zero algebraic rank. Thus,

T19 =T71. (31)

Theorem 2. If statistical arguments of the distribution of prime numbers
are not allowed in the proof, then the problem statement in [1] is not well-defined
and cannot be answered. If statistical arguments of the distribution of prime
numbers are allowed in the proof, then the Birch and Swinnerton-Dyer conjecture

for L(C, s) fails in rank one.

Proof. The Hesse bound is a statistical bound and requires treating prime num-
bers in a statistical manner. If statistical arguments are not allowed, then the
problem statement should not use the Hesse bound. As it does make an argument
with the Hesse bound, the problem statement is not well formulated and a poorly
formulated problem statement cannot be answered.

No statistical arguments are needed in Lemmas 1-3 and Lemma 4 claim (i). In
Lemma 4 claim (ii) there is a statistical argument using the Sieve of Eratosthenes.
Prime numbers can be deterministically generated by the Sieve of Eratosthenes.
Because of the construction of this sieve we can make some statistical observations,
such as the claim (ii) in Lemma 4.

The number of solutions for y> — 1 € QR, is (p — 5)/4 for the case —1 € QR,
according to Lemma 2. Exactly half of the numbers y are in Q R, and half are in
QNR,. We will now make a statistical argument: for a randomly chosen prime p

(about) half of the solutions y> — 1 € QR,, have y € QR,, and if p; ranges over
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all values, the probability that y € QR, is exactly 0.5. Thus, the expectation
value for ny is (p — 5)/8 where the expectation value means that the number
p is randomly chosen. It follows that the expectation value of a,; for d = 1 is
Ela,,] = pj — 5+ 7 — p; = 2. Because the mean of a,, is 2, the function hy 1(s)

for diverges at s = 1. It has a simple pole with residue —rq for some r1 > 0.

We will make another statistical assumption: the prime d, where d = 5 or
d = 19, does not have any special relationship with a randomly chosen large prime
pj. Therefore the expectation value of a,, is 2 if the randomly chosen prime p; is
chosen from the set satisfying d € QR,. Likewise, the expectation value of a,,; is

2 if the randomly chosen prime p; is chosen from the set satisfying d € QN R,,.

We need another statistical assumption: because the prime d, where d = 5
or d = 19, does not have any special relationship with a randomly chosen large

prime p;, the probability that d € QR, for a randomly chosen p; is 0.5.

If these statistical assumptions are accepted in a proof, then we can make the

following observations. Let a,, 4 denote the number a,, for the value d.
By Lemma 1, if =1 € QN R, then a, = N, —p = 0 for every d.

By the claim (ii) in Lemma 4 holds —1 € QNR, for half of the randomly
chosen primes p;. It follows that a,, 4 is zero for every d for half of the randomly

chosen primes p;.

For the other half of the randomly chosen primes p; holds -1 € QR,,. Of
these values half have d € QR,, for d # 1 and then a,; 4 = ap, 1. The rest (i.e.,

half) have d € QN R, and thus ap, g = —ap; 1. Let d € {1,5,19} and

Al,d = {.7 S Ald S QRpja_]- € QRPJ'}

Ayg={jeAlde QNR,,,—1 € QR,, }.
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The statistical assumptions mean that for d € {5,19} we have

> apap =Y apap’ (17)

JEAL 4 JEA1L1
-5 __ —s
§ : Qp;,dp ~ = — § : ap; 1P
jeAQ’d j€A2,1
2 : -5 _ E : —s
apj7dp - apj’dp "
JjEAL 4 JEA2,4

Therefore for d = 5 we get

h1,5(s) = Z ap, 5p ° + Z ap; 5p ° =0

JEAL5 JEA2 5

and r5 = 0. Thus, by (30) follows ; = 1 and thus r = 0.

But by the same argument, for d = 19 holds

higg(s) = D apaop °+ Y apaep”° =0

JEA1 19 JE€EA2 19

and rig = 0. This is in contradiction with (31).

Thus, if statistical arguments are allowed, the Birch and Swinnerton-Dyer
conjecture fails for rank one for L(C,s). o

Tt is not any better for Ly(C, s):

Corollary 1. If statistical arguments of the distribution of prime numbers
in Theorem 2 are allowed, then the Birch and Swinnerton-Dyer conjecture for

Ls(C, s) fails in rank one.

Proof. Tf statistical assumptions of Theorem 2 are allowed, then (17) holds. We
get the same contradiction for Ly (C, s) as for L(C,s). The only difference is that
r=1.o

We can make the following two observations.
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(1) If a = —d? and b = 0 the function g;,1(s) has at s = 1 a simple pole of the
form

-1
91.1(8) = P + finite terms (32)

If we replace af,j in g11(s)
2
_ @1 N 125
91,1 = — Z . Il(pg)pj
jea Pi
by its average value 2p; from Lemma 6 we get the approximation

_ -1 .
gi1 = — ;421n(pj)p} 25 = 1 + finite terms
j

(2) For d = k? the function h(s) with the series expression

h(s) =Y In(p;)ap,p; °

jeA

in the area where the series converges is of the form

1
hi(s) = 1 + finite terms (33)

when s is close to 1. If =1 € QNR,, the value of a,, is zero by Lemma 1. If
for —1 € QR, we replace a,; by its average value —2 from Lemma 6 we get the

approximation

h(s) = 5 3 2In(p)p;°

jeA

which is exactly of the correct form (31).

Both observations support the idea that the Statistical Assumption can be
used in estimating the values of ap,. If the Statistical Assumption holds, the
function g¢1,1(s) has a simple pole of the same form (32) for any elliptic curve.

The function hy(s) also cannot be different: either it is finite or it has the form
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(33). Therefore it is not possible that the L-function can give algebraic ranks of

six or so on, though elliptic curves can have such ranks.
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A Theorem of Congruent Primes

Abstract. The paper presents a theorem when a prime number is not a
congruent number. This theorem does not add to the present knowledge of
congruent primes since all primes fulfilling the conditions of the theorem
can already be classified into congruent and noncongruent numbers, but
the proof of the theorem has certain own interest and this is why I decided

to write it into a paper.

Key words: Congruent numbers, elliptic curves, number theory.

11 Introduction

Consider an elliptic curve of the form:
y? =% —d’x (1)

where d is an integer. A rational solution (z,y) to the elliptic curve (1) is a solution
where z and y are rational numbers.

The substitution z = d(a + b) /b, y = 2d*(a + ¢)/b* changes y? = 2* — d?z to
a’ + b? = ¢? with ab = 2d. Then 4d?> = a?(c? — a?). Integers d that give rational
number solutions to a? + b? = ¢2, ab = 2d are called congruent numbers. If d is
a congruent number the elliptic curve (1) has a rational solution where y is not
zero. In that case it has infinitely many rational solutions.

If there is a solution for d = s2, then there is a solution for d = 1 because
the substitution y = s3y', x = s%2' changes 4> = 2% — d?z to y'? = 2 — 2. It
is known that every d = s? is a congruent number. The case where d is a prime
number is amost solved.

For notations the following concepts suffice: The condition that the integer a

divides integer b is written as a|b. If p > 2 is a prime, the cyclic group of integers

102



modulo p is denoted by Z, and Z] = {1,...,p—1}. The set of quadratic residues

modulo p is the set
QR, ={z € Z;|3y € Z such that y> =z ( mod p)}.
The set of quadratic nonresidues modulo p is the set
QNR, = {z € Z}ls ¢ QR,}.

Let us start by two very simple lemmas.

Lemma 1. Let ¢® =a® +b%, a,b,c € Z, then 3h,m, e € IN such that
1 1
a=+hem , b= ﬂ:§h(m2 —e?), c= :tih(m2 +€?).

Proof. Without loss of generality we can assume that a,b,c € N. We can write
2 — b2 =(c—b)(c+b)=a’ Let h = ged(c + b,c —b). Then there exists m and
e, m > e, ged(m,e) = 1, such that ¢ + b= hm?, ¢ — b = he?. The claim follows. o

With Lemma 1 we can characterize congruent numbers.

Lemma 2. Letd € Z, d> 0. Rational solutions (x,y) with x # 0,y # 0 to
v’ =1 — &z

are of the form

k
("Elayl) = (dm+e j:_dm—i_e) )

m—e  j m-—e

m—e k m-—e
($27y2) = (d iid )7

m+e  j m+te

where k,j,e,m € N, m > e, ged(m,e) = 1, gcd(k,j) = 1, satisfy

E\2m2—e2
= — . 2
a (2j> em @
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2eq.

z

Proof. Let z,y € Q, x # 0,y # 0. Let us write a = %+1 €Q,p=

Solving (10) for = and solving z from the definition of a yields

B’ d
T = = .
20—a?2 a-1

Writing g = % for some k,j € N gives

a1 ¥ (2dj%)* + (k2)?
L2 T G2 j22d '

3

Asy #0, k # 0. By Lemma 1, oy 2 € Q if and only if there exist h,e,m € N,

ged(e,m) =1, m > e, such that

1 1
k* = hem , 2dj* = ih(m2 —e?), c= ih(m2 + e?).

If em = 0, then k = 0 and y = 0. This solution gives j = 2dj>

2452
) 141, a1 =2,a5=0,

=1+
*L.2 24j°

d
=d, x9o=—d,y=0
a—1

xr =
but we have excluded this case in the assumptions. Since em # 0, let us write

h = ¥ Eliminating h yields

Simplifying a; o yields

1 2 9 2, 2
auzm(m —e’ —2em =+ (m +e)),

)
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ie.,

2m 2e
o = =—
P mte 7P m—e
d m+e m—e
xr = = €To = —
a1 m—e’ 2 m+e’
N
y=pz,B2= (%) =4d—oar
j m2 — 2

This gives the claim. o

As two examples of Lemma, 2

3 \%92-12
d_5_(2-2) 9-1

2102 2
de7o (2A) 1609
2-5 16-9

are both congruent numbers. Notice that ged(k, j) = 1 but it is allowed that 2|k.

If d is a square, there are no rational solutions to (1) with y # 0. There are
the three solutions (0,0), (d,0), (—d,0) to (1), so the number of rational solutions

of (1) is finite, the rank of the elliptic curve is zero.

In the next theorem gives a set of values where d is a prime number and (1)
has no rational solutions, i.e., the elliptic curve has rank zero. The case of prime
numbers d is rather well known: if p = 5 ( mod d) or p = 7 ( mod d) the number
d is a congruent number and there are solutions to (1). If p = 3 ( mod d) there
are no solutions and d is not a congruent number. The only case remaining is
p=1( mod d). For that case it is known that e.g. p = 41 is a congruent number,

while e.g. p = 17 is not.

The next theorem does not solve the problem for any prime p that is one
modulo eight because if p = 1 ( mod 8) it is necessarily true that —1 € QR,, i.e.,
—1 € QR, is equivalent with the condition that 4|(p — 1) and if p=1 ( mod d),
then 8|(p — 1). The theorem does prove e.g. that p = 19 is not a congruent

number, but as 19 = 3 ( mod d) this is known. Yet, the method of this proof
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seemed interesting enough to me in order to be written down. The method may
generalize to other numbers than primes. The primality condition is used only in

a few places. The main idea is to exclude branches from a recursion.

Theorem 1. Let d > 3 be a prime such that —1 € QNR; and 2 € QRN,.
The equation (2) in Lemma 2 does not have solutions k,j,m,e € IN where

ged(m,e) =1, ged(k,j) =1, m >e > 0.
Proof. We write (2) with mq, e;

2 2 2
d= (’“) i 1 (3)
2J ei1mq

If d|m, then d|e; and ged(ma,e1) # 1, thus d fmy and d Je;. If d|k? then since d

is a prime d|k. Tt follows that k = dky and as ged(k,2j) = 1 holds d 2j. Thus
(2)*maier = dik7 (m} — €7)

which is not possible as the left side is not divisible by d. Thus d fk*. Therefore
dm? — e}

If 2 fk we convert (3) into the form

2

()
by the substitution m; = m+e,e; =m—e,i.e., 2m =mi +e1, 26 = m; —ey. As
mier = (m+e)(m—e) = m?—e? holds em = +(m1+e1)(mi —eq). As 4|(m] —e?)
in (3) if 2 fk it follows that one of my + e; or my — ey is even. If so, they are
both even and 2|m; + e1, 2|m; — e; and m, e are integers. As gcd(my,e1) = 1,
ged(my +e1,m1 —ey) = 2. Then ged(m, e) = ged(((m1+e1)/2)((m1—e1)/2)) = 1.

Since m; > e; > 0 holds m > e > 0.
If 2|k then the substitution is m = my +e;, e = my —e;. Then m, e are integers

and m > e > 0. In this case 2 }j gecause ged(k,j) = 1. Therefore 2 f(m? — e?).
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It follows that gdc(m,e) = ged(my + e1,m; —e1) = 1. We get the same form (4)

since me = m? — e? and m? — €% = 4mye;.

Then d|lem and j?|em. Let us write (4) as

§%2(m + e)(m — e)d = k*me. (5)

Since ged(m,e) = 1 it follows that ged(m £ e,m) = 1. Indeed, if m £ e = ¢yr,

m = cor for some r,c1,co € IN, then

c1ear = com £ coe = cym = (¢1 — ca)m = tcze

= m|cy = Ja € IN such that c2 = am
>m=amr =>ar=1=r=1.
Similarly, ged(m +e,e) = 1.

Since ged(k, j) = 1 it follows from (4) that k? = m? — 2. Therefore (4) implies

that dj2 = em. As dj? = em and gcd(e,m) = 1 there is one of the cases: either

2

m = ds?, e = t? for some s,t > 0 or m = 52, e = dt>.

As k* = (m + e)(m — e) and ged((m + e)(m —e)) < 2 we have two cases
cases: either m + e = ¢ and m — e = ¢ for some c;,co > 0 or m + e = 2¢} and

m—e = 2c3.
We have four cases in total.

Casel.m =ds?’, e=t>, m+e=c], m—e=c3. Then

m—e=s’d—t> = cl.

The equation yields —1 = (cot™!)? ( mod d) which is impossible since —1 €
ONR..
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Case 2. m =ds?, e =t2, m+ e =2c?, m — e = 2c3. Then

s2d+1* =2¢7 | s°d—t* = 2c2.

Multiplying the modular equations

t? =2¢} ( mod d) ,—t*>=2c3 ( mod d)

yields —1 = (2cic2t2)? ( mod d) which is impossible since —1 € QN Ry.

Case 3. m=s% e=dt?, m+e=c?, m—e=ci Then
sf+t?d=c}, s* —t’d=c3.

Thus

2_ 2 2
28" =] + ¢,

SO

48% = 2 + 2¢1¢0 + €5 + 3 — 2c165 + €
(25)2 = (c1 + 2)* + (c1 — e2)*.

It follows from Lemma 1 that 3h',e’,m' € IN, ged(m',e') = 1 such that
1 1 ! 12 12
cl—|—02=hem,cl—02=§h(m —e),

1
25 = 5h'(m'2 +e?).

Solving ¢y, ¢s, s yields
¢ = 7h'(2e'm' +m/2 _ 612),
1 ! 1,1 2 2
co = Zh (2¢'m' + € —m'?),
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1
s = Zh'(m'2 +¢e?).

Since

2t°d = ¢? — 3 = (c1 — ¢2)(c1 + ¢2)

we get

1 hlze/m/(m/2 _ e/2)

dz@

i.e.

i (h’e’m’)2 (m/2 _ 6'2)

2t e'm’
Removing the greatest common divisor of h'e’m’ and ¢ this equation can be written

as

2
d= ( ki+1 ) (ng-‘rl - ezz—‘,-l) (8)
2Jit1 €it1Mit1

As ged(m',e') = 1 and we made ged(k, j) = 1, equation (8) is is of the same form

as (3)
L (k) (m? —e?) _ (k) (m3 — ).
2]'1' e;m; 2j eimq
We have a recursion that in each step reduces the numbers m;,e; to numbers

M1, €41 that are of the order of square root of m;, e;.

Case 4. m = 52, e = dt?, m+e = 2c2, m — e = 2c3. We can select ¢; > ¢z > 0.

Then
s +t?d =2c} , s* —t?d = 2c3.
Thus
sP=c+cddt’ =c —c2 = (a1 — ) + ). 9)

Let us notice that m + e = 2¢ and

1 = ged(m + e, €) = ged(2¢2, dt?) = ged(cy,t) = 1,g9cd(2,t) =1

1 = ged(m — e, €) = ged(2¢3, dt?) = ged(ca, t) = 1.
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First we exclude one case in the second equation of (9). If t > 1 and ¢; + ¢2 =

ait and ¢; — ¢2 = ast for some ay,as € IN, then

2c¢1 = (Oé1 +Oé2)t=> t=1,2c; = a1 + as,

2¢y = (Oél —ag)t=> t=1,2c; = a1 — as.

Thus, dt? = ¢? — 3 = ajast?. Tt follows that d = ajas and as d is prime and
necessarily a; > as it follows that a1 = d, as = 1. Then ¢; = d+1and ¢co =d—1.
Consequently 52 = ¢2 + ¢2 = 2(d? — 1) is even, so m is even. Since s2 + dt? = 2¢?
it would follow that ¢ is also even as d is odd, but ¢ = 1 in this case. We have a

contradiction.

Thus, in (9) must be one of the three cases

l(c1 +c2) = (c1 —e2)|[d=> ¢t —ca =d = t* =1 + o,

or

t2|(61 — Cz) = (Cl +62)|d=> cl+c=d= tz =1 — Ca,

or

In the first case

200 =2 +d>0, 2o =t>—d > 0.

In the second case

20 =d+t>>0, 2co=d—1t>>0.

In both of these two cases we can derive in a similar way:

sP=cl+c3 = (25)2 = (2¢1)% + (2¢2)°
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yields
(25)* = (d+*)" + (d - t)*. (10)

By Lemma, 2 there exist ', e’,m’ € IN such that
d+t*=hem'  d—t* = %h'(m'2 —e?).
The first equation implies that d fh'. Thus
4d = W' ((m' +€')? — 2e")
ie.,as h' 20 ( mod d)
2= (m"?+¢e?)%' % ( mod d) (11)

which is a contradiction since 2 € QN R,;. There remains the case ¢t = 1. Then

2¢? = s? +d, 2¢3 = 5% — d. Instead of (10) we get
(267 = (d+ )2 + (d - ).

The contradiction (11) comes in the same way with ¢ replaced by s. This means
that Case 4 is not possible.
Because Cases 1, 2 and 4 are not possible, only Case 3 is left. Case 3 gives a

recursion formula. The values h',m’, e’ in Lemma 1 satisfy

e a c—b

h' = ged(b+c,b— c)

giving a? = ¢ — b2. The numbers h',m', e’ can be chosen to be positive and on
the order of a, b, ¢. Thus, h',m', e’ in (8) are of the order ¢, co. The numbers ¢y, ¢y

are of the order \/m, y/e. Therefore in each step the numbers m;, e; get smaller,
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they are reduced to the order of their square roots. Consider the problem when

the recursion stops.

Let us look at an example of d = 5. Then

3 \292-12
d—5—(ﬂ> o1

We have m; = 9,e; = 1,k = 3,7 = 2. We can do the first step and find m =

3\* 5-4
1=5=(3) 5-p

Identifying k? =32 =52-42=9,j2d=4-5=20=5-4=me, m = ds®> = 5-12,

5,e =4 and

e=12=22 m+e=5+4=32=c2andm —e=5—4 =12 = ¢2 shows that
the logic in the lemma is correct. We have Case 1, but for d = 5 the conditions
of the lemma are not fulfilled: —1 € QN R;5. This is why Case 1 does not give a
contradiction. What happens in Case 1 is that when we remove the term dt? in a

case resembling (6) we do not get (6) but
2% = cf - cg

Therefore we do not get (7) which can be inserted to the equation to Lemma 1

for calculation of the numbers A',m’, e’.

Let us look at another example, that of d = 7. Here —1 € QN R; and the Case

212 2
de7=(24) 169
2-5 16-9

is not 1.

We have mq = 16,1 =9, k=24, =5. Wefindm =164+9=25,e=16—-9=T7.

2
d=7= (%) BT
5) 25212

Thus

Here k2 =242 =576 =252 — 72 =m? —¢2, j2d =25-7T=175=25-7 = me,

m=2s=5%e=dt? =7-12,, m+e=25+7=232=2-42 = 2¢2 and
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m—e=25-7=18 = 2-3% = 2¢2. The Case is 4. We notice that t> = 1 and
c1 = 4, co = 3, thus we have the case t = 1. Then s2+d = 52+7 = 32 = 2-4%2 = 2¢2

and 2 —d=52—-7=18=2-32 = 2¢2. We get
(25)2 =100 = 64+ 36 = (2¢1)% + (2¢2)2 = (52 + 7)2 + (52 — 7)?

and therefore find the numbers h',m’, e’ for 10> = 82 + 62. The numbers are

' = ged(10 + 6,10 — 6) = 4, ¢’ = 1, m' = 2. Thus
1
d+t2:hleImI:7+1:8, d_t2:§hl(m12_el2):6

are true and

4d = h'((m' +€')? —2¢'?) =28 =4-(32 - 2).

We get the modular equation 32 = 2 mod (7), which violates the assumption

2 € QN Ry, but indeed 2 € Q R;. Therefore for d = 7 we do not get a contradiction.

The way the lemma works is that in (2) the numbers m; and e; must be
squares m; = s3, e; = t1 so that k? can cancel them. The condition —1 € QN Ry

excludes the larger branch (s? + t3) of
mi —ej = (s] +17)(s] — t7)
by (s +1?) =0 ( mod d) being impossible.

Therefore 4d|(m? —e?) leads to 4d|(s? —t?). The condition 2 € QN R, excludes
Case 4 and leaves only Case 3 which gives a recursion. Thus, the numbers m;, e;

get smaller.

If there is a congruent number d with —1 € QN R4, the recursion must continue
until it stops in some way and not to a contradiction, but the recursion does not

stop and continues to a contradiction. At each stage 4d|(m? — e?) or d|(m? — €?)
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depending on if k; is odd or even. The numbers m; and e; become smaller on each
step. Finally we must have 4d = m? — e? or d = m? — e3.
Changing variables in (2) to m = (m; +€;)/2, e = (m; —e;)/2 if k is odd and

m=m; +e;, e =m; —e; if k is even we get
d= ————. (12)

When the recursion has reached 4d = m? — e? or d = m? — e? the number j = 1.

In (12) necessarily k> = m?e? and consequently d = me. As d is prime either

m=d,e=1orm =1, e =d. As in Cases 1 and 2 the choice m = d leads to
—1 € QRy and is impossible. Thus m = 1 and ¢t = d, but then m? — e? < 0 and
d > 0 is negative. This is a contradiction. The recursion leads to a contradiction
and the claim of the lemma follows. o

There are primes d filling the conditions of the lemma: for d = 19 holds
—1€ QNRyg and 2 € QN Ry19. We also get a small result:

Corollary 1. Ifpis a prime and p =7 ( mod 8), then 2 € QR,.

Proof. If pisaprimeand p = 7 ( mod 8), then p is a congruent number. Therefore
the conditions of Theorem 1 cannot be fulfilled. The condition —1 € QR, is
equivalent with 4|(p—1). As p—1 = 6 + 8k for some £k, it follows that 4 J(p —1).
Thus —1 € QN R,,. The only other condition in Theorem 1 is that 2 € QNR,. 0
While working with the Birch and Swinnerton-Dyer conjecture in 2010 I de-
rived in [1] a theorem of congruent primes. The theorem (Lemma 11) in [1] was
never needed for the result it gives to primes, but as an easy case of the proof
method that I hoped to generalize to other d. Now I have rewritten the 2010 paper
and do not use the method of Lemma 11. Yet, it has some own interest in the
proof method. Therefore I moved it into this short paper. There were some typos
in [1] in the proof of Lemmas 10 and 11, which are Lemma 2 and Theorem 1 in
this paper. Now the errors are fixed. The method of the proof does work. Maybe

some application for the method will be found later.
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A lemma and a calculation from the Riemann Hy-
pothesis proofs

12 About this short paper

When I wrote the two proofs of the Riemann Hypothesis [1] and [2] some results
were deleted as unnecessary. As they have some interest of their own, I write them
down in this short paper.

Lemma 1 was originally in the totally new prood of the Riemann Hypothesis
[1] that I wrote in 2020. This lemma requires reading the introduction and Lemma

1 of [1]. I will not repeat the text in this paper.

Lemma 1. The following two claims hold: (i) The only poles of the sum

> hi(s)

=1

that remain after cancellations of poles of h;(s) by poles of other h,,(s) are poles

of hj(s) at points sy of the type

Tk

+ fr(8)

S — Sk

where fi(s) is analytic close to s;. The number r # 0 is an integer. Only for one
s the number ry, is negative and has the value —1. It is the pole of {(s) at s, = 1.
For the other poles s, k > 0, the value ry, is a positive integer. (ii) The function

h1(s) has an infinite number of poles in Re{s} > 0.

Proof. Claim (i) follows directly. All poles of every h;(s), j > 0, that have a
noninteger value of r must be cancelled or partially cancelled by poles of other
hm(s), m > 0, because at a pole of ((s) and a zero of {(s) the value r is always

an integer. Additionally, there cannot be any other poles of ((s) than the one
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at s = 1. Thus, in the sum of h;(s) all negative values of r sum to zero or to a

positive integer value except for hy(s) in the pole s = 1. There r = —1.

For the claim (ii) we give one possible cancellation process and then notice

that every cancellation process has the same features leading to (ii).

Let the set of natural numbers {1,2,3,4,...} be divided into disjoints sets

C; = {t;,2t;,...

ty =1, t; =3, t3 = 5, and so on.

,2kt;,...}, where 2 does not divide ¢; and t;1 > t;. Thus,

Let us take the sum of two pairs of poles of hi(s)

Tk

S — Sk

2717‘]9

Tk

*
5— s}

2717‘]9

s—2 g,

(1)

9 lgx"
s—27"sp

Because h;(s) = h1(js) (see Lemma 1 in [1]) there must be corresponding poles

at hp,(s)
1
m "k
s — %Sk
1 2—1,,.

- -
s m2 Sk

_ log—1gx"
s— -271s}

In C; there are corresponding poles for each m = 2"t;.

Let us sum these poles over C';. We see that most terms cancel

1

1
i, Tk

ik
1
s — ES[;
1 2717‘]‘;

- 1 % (1)
s — ESk

S P e
S tj2

s — 161—2*15;c
J
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%2_27‘]‘, %2_27“1‘,
J J
_ 19-2 _ 1 9-—24x
S 27 %8, s tj2 sy
lslf2_i’r‘]c %2_"7‘]9
+ J J
_ 194 _ 1 o—jex
s tj2 S, S tj2 sy
Lo-i-ly, Lo-i-lp,
J J

s — 751—,2*"*1.‘;;6
J

19—i-1
% 2 Tk

T g log i1k’
s tj2

1 o9—i—1
t_2 v 7']‘;

s—£27i gy,
J

1 9—i-2
> 2 Tk

_ 1g—i-1gx
s tj2 Sk

1 9—5—2
72 v 7']‘;

s — £2712g,
J

— 19—i—2gx
542 sy

S—ESk

(2)

There is left only one pole pair (2) in each C;. Especially in C; the function

hi1(s) has left the poles
Tk

S — Sk

Tk

— *.
S Sk,

3)

Let t; be a prime larger than 2. We can cancel the pole pair (2) of C; by

addding two pairs of poles to hy(s)




271;—.7‘]c 271%7“19
J J

+ .
—9-11 —92-11 o
§—=270g sk 8= 2718y

If %rk is fractional, the pole pair (2) of C; must be cancelled, but we will
show that it is cancelled even if tljrk is an integer: Because of (5), if we add the

poles (4) to hq(s), then there must be corresponding poles at hy,(s)

1 1

—T —r
mtj k mtj k (5)
1 _ 1 *
§ mtjsk 8 mtjsk
1 —1 1 —1
mth Tk mth Tk
T e_ Lo 1. o_ 1 o 1.%°
s mtj2 S 8 mtj2 sy,

For a sufficiently large prime m the number m%sjrk is not an integer. Therefore
this pole of h,,(s) must be cancelled. It can only be cancelled by a pole of hy(s)
and therefore the poles (4) are necessary. Therefore we must add the first pole
pair in (4) even if %rk is an integer. The pole pair in C; is cancelled by adding

the pole pairs of (4).

We do not get new poles to each C,,. The new poles (5) are added to C,,, only
if t; divides t,,,. When we sum these new poles (5) to each such Cpy, it is the same
calculation as in (1). Most poles cancel and only one pole pair remains for each

Cyn, namely

I B B (6)
§— ¢ Sk 8= 1.5k

Let j = 1, so t; = 3. We add the poles (4) to hi(s) and there remains the

poles (6). Adding (6) to (2) the new poles of hi(s)

1
a s
T Llg, g Lgx
8= 58k 8~ 8




More generally, we notice that for each C), such that 3 divides ¢, the pole pair
(2) has been cancelled. Especially, the remaining pole at Cy has been cancelled.

But now comes a complication. We continue the process by adding to hi(s) a
pole that cancels the remaining pole at C3 where t3 = 5, the smallest prime larger
than t5. Thus, we add the poles (4) for j = 3. The remaining pole pair in (2) in
the set C is cancelled, but in each C), where 15 = 3 -5 divides t,, we have a new
pole pair. That is, the original pole pair (2) in C,, was cancelled when we added
(4) with t; = t, = 3 and in this process added the poles also to Cp, where t,, is
divisible by 15 = 3 - 5, but now we add t; = t3 = 5 and again have a pole pair at
Cy, since t,, is divisible by 5 - 3. The remaining pole at C3 was cancelled, but we
made new poles to every C,, where t,, has the factor 15.

Continuing this process by adding to hi(s) poles where t; = t4 = 7 as in (4)
we cancel the remaining pole at Cy in (2), but make new poles to C,, where t,,
has the factors 4 - 3 or 4 - 5. Continuing the process by adding poles (4) to hy(s)
for each prime number ¢; in the increasing order we cancel the remaining pole in
each C; where ¢; is a prime. At the same time we are creating new poles to each
C,, where t,; has two prime factors larger than two. This is the first step of the
pole cancellation process.

In the second step we add poles to hi(s) that have ¢; a product of two primes
larger than two and select r-values that cancel the remaining poles of C; for every
t; that is a product of two primes larger than two. Again we add new poles to
C,, where t,, has more than two prime factors that are larger than two.

In the nth step we add to hq(s) poles which are products of n primes larger
than two, and select r-values that cancel the poles of C; for each ¢; that is a
product of exactly n primes larger than two.

This process continues and on each step we must add poles to h,,(s) where
m is a so large number that the resulting r value for h,,(s) is fractional. Such a
pole must be cancelled and it can only be cancelled by making a next step (4)

by adding poles to h;(s). Thus, this process cannot stop. It does not stop even if
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the r value of a pole in C; that we want to cancel is a positive integer. There is
always a large m = t;m; that will also be created because of adding the poles to
hi(s) in (4). This C,, has a fractional r value and must be cancelled. Therefore

the remaining pole of C; is always cancelled by a new pole of h(s).

The new poles that we are adding in each step to hy(s) are on each step closer
and closer to s = 0. The r-values of the poles that we have to add to h1(s) become
very large in absolute value when the number n of steps grows and the new poles
added to hq(s) approach s = 0. The absolute value of r grows because the numbers
of the remaining C,,, on each step have many factors and we add as many poles as
there are factors to those poles that do not get cancelled in each step. We cannot

reach s = 0, but every C; will have the poles completely cancelled at some step.

As a conclusion, hy(s) must have an infinite number of poles because this pole
cancellation process cannot stop. Only some poles of hq(s) remain uncancelled in
the sum 3372 h;(s).

The cancellation of poles on the x-axis is the same, only there is one pole and
not a pole pair. The procedure is obtained by setting Im{s;} = 0 in the described
process and removing the part with s;. There is a pole of h;(s) on the x-axis at

1

s = 1 with the r-value 1. This is so because hi(s) has a pole at s = 1 with the

r-value —1. Consequently hs(s) has a pole with r-value —% at s = % This pole
must be cancelled and can only be cancelled by h(s). Therefore there must be
the pole of hy(s) at s = 1, but it is cancelled and the only pole remaining on the
x-axis from this sequence is the pole of hy(s) at s = 1. However, hq(s) may have
other uncancelled poles with a positive integer r-value on the x-axis. If there are
such poles of hq(s), then they are not cancelled by this process.

We will not prove that the described pole cancellation process is the only
possible process, though this claim may be true. However, every possible pole
cancellation process has the same feature: every pole at hq(s) requires a corre-

sponding pole at each h,,(s). If m is sufficiently large, such a pole has a noninteger

r-value and must be cancelled. Cancelling such a pole by adding (i.e., noticing
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that the pole exists) a pole to any h;(s) always implies adding a new pole to
hi(s) and this again requires new poles to all h,,(s). Again some of these new
poles have noninteger r-values and must be cancelled. This process cannot stop,
thus hq(s) must have an infinite number of poles. Only a subset of the poles of

> = hj(s) remain uncancelled. o

Lemma 2 was included in one version of the old proof from 2008 [2]. There was
an error in Lemma 2 of the original paper and T had some hard time correcting
the error. In the present form [2] has a very short Lemma 2, but I tried all kinds
of things before finding the short proof. Among other things I made the following

calculation.

Assume that f(s) has a first order zero at so. Then f(s) has the Taylor series
£(5) = C(s — s0) + (5 — 50)" A(s) (7)
where A(s) has only nonzero powers of (s — s¢) and A(sg) # 0. Define

A(s) = ()7 5) " = S nf(s).

Then

h(s) = —— + f, (8)

S — 8¢

where f1(s) is analytic in a small environment of sg. Rewriting (7) and (8) gives

A(s) = (s — s0) >f = C(s — s0) " (9)
and
fi=FF"=(s—s0)". (10)
Let us define
B(S) = Cf]
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Inserting (9) and (10) to B — A shows that

— ! 1 1
B-A=Cf\(f —gmﬂ
and
/ B B 1 o l 1 2
A—CIAQ_(s—so)Q( C (s —s0)? )
Thus
v=DB—A=(s—s0)(c(s —s0)f ")(A — éAQ)
and
w = (58— s0) 11+ AC™1(s — s0))v (2

w' = (s —s0) "1+ AC (s —s0))v' — (5 —s¢) 2w+ A'C . (13)
From (11) follows
B —C7'B*=A'"-C'A? + v — C7'® —24C v
=w+v —C '? —24C . (14)

Inserting (12) and (13) to (14) gives

(s—50)"2C2fX(B'-C™'B?) = 2w—(A'+C7 ' 4%)C™ ! (s—50)*w+C~ " fw'—C~ ' (s—s0)*w’.
(15)

A calculation shows that

1
S — 8o

C—I(BI _ 0_132) — fllf—l _ 2(flf—1)2 + 2flf—1
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and inserting (7) yields
F'f =20 +2(2—s0) ' f'f

= (s —50)220 (A" — C'4%) + (s — 59)3C (A" —2C ' A' A)
+(s —s0)* (A" A —2(A")?).

Inserting

w =A"—20714'A

and

d d
A"A —2(AN2 = AP (A'A2) = A3 -1 41
(49 ds( ) Is (CH +wA™)

= ABw'A 2 + 14311;di1472 = Aw' — 24'wA3 A3 = 24w + Aw'
s

gives

F'f =20 +22—s)7'f'f
=2Cw(s — 80)> + C(s — 80)°w' + (5 — 50)*(—24"w + Aw').

and so

(S _ 50)_20_2(BI _ C—1B2)f2 —

= 2w+ (s — so)w' + (s — 80)°C 1 (—24'w + Aw'). (16)

Combining (15) and (16) gives an equation
2w — (A + C A C (s — s0)*w + C ' fw' — C (s — s50)*w?

= 2w+ (s — so)w' + (s — 80)°C 1 (—24'w + Aw').

Simplified this is
w=A—C A% (17)
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So, no new equation: it is an identify, but this identity is true for any f(s) that
has a simple pole and this fact I found quite interesting. Naturally you notice that
if w =01in (17), the solution for A has a pole, but not necessarily at sq. I think it
is worth to save this calculation. Maybe in one hundred years someone will find

some use for it.
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A Proof of the Poincaré Conjecture

Abstract. This version is very similar to the original proof of the Poincaré
Conjecture that I submitted in 1987 to the Annals of Mathematics and
sent to Professor Siebenman. Editor Raoul Bott rejected the paper and
warned me of submitting any such papers ever in the future as it will
seriously affect my career. Professor Siebenman wrote that my English is
so poor that he cannot understand what the author tries to say. My En-
glish then was as now. I tried to get this proof reviewed for thirteen years
without any better luck. The last time I tried was in 2001 when I sent a

(different) version to John Milnor. He did not comment it.

Key words: Homotopy spheres, 3-manifold topology, Morse theory.

13 Introduction

A manifold is closed if it is compact and has no boundary. In an orientable 3-
manifold every 2-dimensional embedded submanifold has two sides. Embedding
g of a submanifold N to a manifold M means, that there is a homeomorphism
between N and g(N) C M. If g mapping a submanifold N to M is not an
embedding then g(N) has self-intersections.

An embedded circle S! is called a loop. If I is a loop a homomorphism is a
continuous mapping h : I x I — M such that | = {h(0,z)|z € I}. If I is another
loop in M and there is a homomorphism A such that I’ = {h(0,z)|z € I}, then [ is
homomorphic to I, we write it / ~ I’. Homotopic images of S belong to the same
homotopy class and the set of homotopy classes is a group, the fundamental group
71 (M) of the manifold M. As a special case, I’ does not need to be an embedded
loop but a point. If it is a point, then [ is said to be contractible. If every loop in

the manifold is contractible, m; (M) =1 and M is said to be simply-connected.
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The Poincaré Conjecture states that every simply-connected closed 3-manifold
is homeomorphic to the 3-dimensional sphere S3.

A Morse function is a function f : M — IR such that in all but isolated points
there is a diffeomorphism g from a neighborhood V' of a point p € M to IR? so,
that if g(p) = (z,y,2), f(p) = z + ¢ where ¢ is a constant.

In a closed 3-manifold there are finitely many points where there is no such
homeomorphism. The points are called critical points of f and their structure is
well known: they are classified by the index i(p). Critical points of index 0 are
points where there is a homeomorphism ¢ : V — IR® from a local neighborhood
of a critical point p such that if g(p) = (r,0, ), then f(p) = r + ¢ where c is a
constant. A critical point of index 3 for f is a critical point of index 0 for —f,
so the Morse levels f~!(x) are spheres and the level grows towards the center.
A critical point of index 1 is a point p € M where f has a saddlepoint. There
is a local homeomorphism g : V — IR® from a neighborhood V of p which maps
the Morse levels f1(z) to surfaces shown in Figure 1. The level z grows to the
direction of the arrows in Figure 1. A critical point of index 2 for f is a critical

point of index 1 for —f.

Morse level

N

growing Morse level

Figure 1.
We will assume that M is a closed and differentiable 3-manifold.
The following notations will be used: I = a closed interval; S™ = a closed n-

sphere; D? = a closed disc; T? = a torus; B® = a closed 3-ball. D2 = {(z,y)|2? +
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y? <r} = aclosed disc of radius 7. U = {(z,y, 2)|z?+y> < 1,2 € [0,1], (z,y,1) =
(w,y,0)} = a filled torus. A loop is an image of an embedding g : S' — M. A
path is an image of an embedding g : I — M. A disc is an image of an embedding

g:D? — M. A collar is an image of an embedding g : D}\D? — M.
2

A closed tubular neighborhood V' of a loop [ is an image of an embedding A :
U® — M such that [ is the image of the points =y = 0 in U®. A closed tubular
neighborhood V of a path [ is an image of a homeomorphism h : D? x I — M such
that [ is the image of the points = y = 0 in D2. A closed cylinder neighborhood
of a disc D is an embedding of D? x I to M such that D is the image of the points

(r,0,1/2). When necessary, we assume that these embeddings are smooth.

Let X ~ Y mean that the manifold X (possibly with a boundary) is homeo-
morphic to Y. Usually we will assume, that the homeomorphism is a diffeomor-

phism. Let v ~ 4" mean that the loop «y is homotopic to «'.

We will assume, that the Morse functions are smooth on all points except
for a finite set of critical points. Smooth means here that f is sufficiently many
times (say, 3 to be sure) continuously differentiable in local coordinates. Let us
write M{ = {z € M|f(z) < a}, OM} = {z € M|f(z) = a} and if no confusion
can arise we write M® = M¢. OM*® is here called a Morse level. We will write
M, = M\int(M®). Let Gmqee and ap;, denote the highest and lowest levels a

respectively such that f~1(a) is not empty.

A Heegaard split is a general way of expressing 3-manifolds by glueing two
handlebodies at their boundaries. The genus g of the split is the number of handles

in the handlebodies.

Definition 1. A standard handlebody H, of genus g is the following subset
of R?

H, = {(z,y,2) € IR3|:c =45 — 24+ (24 r)cos(d),y = (2 + r)sin(h), 2| <
V1—r2|r| <1,0<60 < 2m,j=1,..,9}
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That is, H, is obtained as a union of g filled toruses which have center at
(4 —2,0,0), j = 1,..., 9, laying on the (x,y,-1)-plane and the filled tube of the

filled torus has radius 1.

There are homeomorphisms g; and g» such that g;(M?®) and go(M,) are
handlebodies embedded in IR® and a boundary homeomorphism 1) : g (M®) —
g2(M,). We can take g and go differentiable if needed. Standard noncontractible
generators ,1,...,2Zq,, and contractible generators yq1,...,yq,, are defined for
g1 (M*®). Similarily, the loops .1, ..., Tb,g, Ya,15---,Ya,g are standard generators

for go(M,).

Definition 2. A contractible standard generator of a standard handlebody

H, of genus g is a loop:

yi = {(z,y,2) € ]R3|:17 =45 —24 (24 7r)cos(d),y = (2 + r)sin(d), |z| <
V1—r2|r| =1,0 =n/2}

That is, y; is the loop on the surface of the jth filled torus of Hy, has the

center point (45 — 2,2,0) and radius 1 and is in the (y,z)-plane.

Definition 3. A noncontractible standard generator of a standard handle-

body H, of genus g is a loop:

zj = {(z,y,1) € R*|z = 45 — 2+ 2cos(d),y = 25sin(h),0 < § < 27}

That is, z; is the loop on the surface of the jth filled torus of H,, has the

center point (45 — 2,0,0) and radius 2 and is in the (z,y)-plane.
Figure 2 shows a standard handlebody with standard generator loops.
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y3

Figure 2.

Definition 4. Let M be a closed 3-manifold. The 3-manifold M has a Hee-
gaard split My, M if there there are homeomorphisms g1, g2 of M; and M, to

standard handlebodies g1 (M) and g»(M,) in IR® and a boundary identification

homeomorphism 1) such that the following diagram commutes

M1 g_1> g1(M1) — IR3

T T

oM, 0g1 (M)

~ Pl

OM, 0g2(M>)

\ \:

M, 2 g(My) = TR

The boundary homeomorphism % : g (M®*) — go(M,) induced by a Morse

function has the property, that ¢» and ¢! map loops to loops.

14 The simple proof

We will show that every differentiable simply-connected closed 3-manifold is home-

omorphic to the 3-dimensional sphere S as proving the claim for differentiable
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3-manifolds proves it for all. The manifold M is assumed simply-connected and
orientable.

We do not change the manifold M in the proof but construct different Morse
functions on it. First we recall from a theorem of Smale that it is possible to find

a Morse function which has only one critical point of index 0 and of index 3.

Lemma 1. Let M be a closed simply-connected differentiable 3-manifold.
There exists a Morse function f : M — IR such that f has one critical point of
index 0 only, one critical point of index 3 only and on each critical level there is

one critical point only.

Proof. By Theorem of [2] there is a Morse function f such that f has one critical
point of index 0 only and one critical point of index 3 only, and the number
of critical points is finite. By small modification to the Morse function we can
construct a Morse function which has the same critical points (and of same indices)
as f but such that all critical points are on distinct levels. o

Another simple lemma is needed.

Lemma 2. Let M be a closed simply-connected differentiable 3-manifold.
If a Morse function f : M — IR has one critical point of index 0 only and one

critical point of index 3 only, then for each level a OM® is connected.

Proof. If 0M* is not connected, then there exists a noncontractible loop passing
the critical point of index 0, the critical point of index 3 and two points in two

components of OM?. o

We can change the Morse function in a tubular neighborhood of a path so,
that in the new Morse function critical point of index 2 are on a higher level. We
say, that a 2-handle is moved up by changing the Morse function. In a similar way
we can construct a new Morse function where a selected critical point of index 1
is on a lower level. We say, that a 1-handle is moved down by changing the Morse

function. The modification to the Morse function for moving a 2-handle up or a
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1-handle down is local. We pull Morse levels through the handle as is shown in

Figure 3.

Figure 3.

Let us move one 1-handle to a so low level b that below it is only the 0-handle.
Let a = b + €. The manifold M; = M*? is a filled torus. The boundary of the
manifold M, = M [(M?*) is a torus. Inside the manifold M, has an embedded
exotic ball. We replace this embedded exotic ball by corresponding inside of a
normal ball. Then M, is changed to M,, which is a filled torus. The identification
map of the boundary dM?* and M, defines a glueing map g; from the boundary
of the filled torus M; to the boundary of the filled toros Ms. That is, M;, M, is
a Heegaard split of genus 1 of My U M>.

The manifold M; U M is a simply-connected closed 3-manifold. It is known
that if a genus 1 Heegaard split gives a simply-connected closed manifold, then
the glueing map is trivial, that is, it maps a standard noncontractible generator
of the torus M; to a standard contractible generator of Ms. It means that we
can find a 2-disc D € My bounding the contractible generator in Mj, and it is a
standard noncontractible generator in Mj, a loop around the 1-handle.

We can remove this 1-handle of M; by adding the thickened 2-disc (i.e., a
closed cylindar neighborhood of the disc) to M; and removing its interior from
M. This operation changes the Morse level a so that on a the manifold M? now

contains the 2-disc and there is no critical point on the level b. The 1-handle
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disappears, and as there always must be equally many 1-handles and 2-handles,
one 2-handle also disappears. That is, adding the thickened 2-disc to M?® adds
the thickened 2-disc to every Morse level a’ > a, and there will be no need to one

2-handle.

Performing this operation of moving a 1-handle down to a level where it is
the lowest above the 0-handle, finding the 2-disc in M5 which bounds a non-
contractible standard generator in My, and adding the thickened 2-disc to M?,
we remove one pair (1-handle, 2-handle) every time. As there are only finitely
many 1-handles, we end up with a Morse function that has no 1-handles and no
2-handles, yet the manifold M is closed and simply-connected. This implies that
the manifold M must be a real sphere, not an exotic sphere. Thus, assuming we

can do this operation, the Poincaré Conjecture is proven.

There is one problem left. The manifold M, is not Ms. The manifold M, has
an embedded exotic homotopy ball. If the 2-disc in M> does not intersect the
exotic homotopy ball, then we can do as described above, but let us assume the
2-disc cuts through the embedded exotic homotopy ball. We have to move the

homotopy ball away from the 2-disc in some manner.

Notice that a 2-handle is a 1-handle for the Morse function —f. That is, in
the direction of —f the manifold M> has a 1-handle and the 2-disc of Ms cuts
this 1-handle of the Morse function — f. The embedded exotic ball goes through

this 1-handle of M,. Figure 3 illistrates this:

Figure 3.
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The exotic homotopy ball must be moved away from the 1-handle of M> that
is cut by the 2-disc. Then we can remove the thickened 2-disc from M, and the

proof of the Conjecture is complete.

Figure 3 shows what is done in Lemma 3. The blackened part is a part of an
exotic homotopy ball that goes through a 1-handle. We connect the parts of the
embedded exotic homotopy ball by a (by-pass) tube that does not go through the
1-handle. The moved part of the embedded exotic homotopy ball is inside this
tube. This is a form of Kirby surgery. We show in Lemma 3 that the embedded
exotic ball is not essentially changed by this by-pass surgery.

There are wild embeddings and one may wonder if an exotic homotopy ball
might be wildly embedded and we could not find a tube like in Figure 3. This is
not a problem because the level a can be changed. The embedding of the exotic
homotopy ball does not depend on a and we can select a slightly smaller a. For
this new a there is area close to the boundary of M, where there is no part of the
exotic homotopy ball and we can find the tube, but as the following lemma says,
the exotic homotopy ball cannot be wildly embedded as it is of the dimension 3

in a 3-dimensional manifold.

The lemma has an unnecessarily complicated way of moving the exotic ho-
motopy ball. One tube is enough, but as this paper is only of historical interest

and not to be published, I keep the lemma as it was in one of the versions of this

paper.

Lemma 3. Assume that a 3-manifold M, (with boundary) is obtained from
a 3-manifold M, by addition of a 1-handle H ~ D? x I, M; = M, U H. Assume,
that My and M, are orientable. If M, contains an exotic homotopy ball Bg. Then

M, contains an embedded exotic homotopy ball B’ §

Proof. The embedding of BS to M is not wild as both manifolds M; and BS have

the same dimension 3. Wild embeddings happen only with submanifolds of lower
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dimension. As B2 is not wildly embedded, B2 =~ S? is not a wildly embedded

sphere.

Let F' be a smoothly embedded disc cutting the 1-handle H. F' can be assumed
to be in a general position so, that FNOB? is a set of disjoint circles A9 = {C;|i €

Io}, CZ ~ Sl, io finite.

The set Ao contains a nonempty subset By = {S;|j € I1} C Ao} where each
S; € B2 is a boundary of a disc D; C dB? satisfying int(D;)NAg} = 0. In order
to see that By is nonempty, notice, that each C; separates dB2 ~ S2. There must
be such circles on B2 that one of the separated sides does not contain smaller

circles. Such a circle Cj is a circle S;.

Take one S; and a circle S’; C F which is sligthly bigger than S;. There is a
disc D'; C F such that 8D'; = S’;. There may be other circles C; than S; inside
D'; but that does not matter here. Replace the disc D’; by a disc D"; which is
close to D;. Then Dj;, D"; and the annulus F; C F' between the circles S; and
S'; separates M, and one side is a 3-ball By, it is the side which does not contain
points of int(B?). The disc D"; separates M» into two components. Let U be the

component which contain points of int(By).

Let V be a closed neighborhood of F' in H and V; a smaller closed neighbor-
hood of F' in V. Then F separates V and V; and 9V is the union of a collar,

which is subset of OH, and two discs D,, Dy which have boundary at 0H.

By construction D"; and D; insersect with F' only at S’; and S;. Therefore
we can select V so small, that the component in V N B2 which contains D, is
a collar C = ¢(S! x I), for an embedding ¢ : S* x I — H such that C C V,
¢(S' x {0}) C Dy, ¢(S* x {1}) c Dy, CNF =S;, C C B3.

Similarily we can find a collar C' = ¢/(S* xI), for an embedding ¢’ : S1xI — H
such that C' C V,¢'(S'x{0}) C D,, ¢'(S*x{1}) C Dy, C'NF = S';,C'NOB2 = {)
and D"; NV C C'. D"; NV is on one side of F in V, let that be the side where

D, is.
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Let us define a homeomorphism ¢' : My — M; so, that g’ keeps the disc D";
fixed, expands the 3-ball By to B’gso, that the disc D; is pushed to the component
Ky of V [ Vi which contains Dy. The mapping g’ pushes a part A of the homotopy
ball B2 which was in M to K.

We must move this part of Bg back to M, but not through F. Let [ be a
path from a point in V3 N K} to a point in V3 N K, which does not go through F'.
We can select [ so that it does not intersect with B3 as 0B? ~ S2. Let V5 be a
small closed tubular neighborhood of [ in M;. We connect the tube V5 to A and
move A through the tube V5 to the other component K, of V [ V4 by expanding
a 3-ball into Kj. Finally we restore A back to M, by decreasing the 3-ball in U.
Now the tube V5 is filled with a 3-ball, M, is restored and the handle H is again
a handle. Let us call this homeomorphism of M; to M; by g". See Figure 3 where
the mapping is shown.

Define g as the combined homeomorphism g : My — My, g(p) = ¢"(9'(p))-
Then g(Ms) = Mo.

Let us rename the exotic homotopy ball ¢'(B2) as B2.

There are now less circles in the intersection set 4, = F U BBS. If A is
nonempty, let us return to the step of selecting one S;, repeat the procedure and
get a smaller set A,.

We repeat the procedure as long as F' U dB2 # (). When the set is empty, we
have obtained an exotic homotopy ball which is contained in My U K7 UKy & Ms.

So, there is an exotic homotopy ball B’g in My. o
The Poincaré Conjecture is proven.

Theorem 1. Every simply connected closed 3-manifold is homeomorphic to

the 3-sphere. o

The first generally accepted proof of Theorem 1 was given by Grigory Perelman

in the year 2002. This my simple proof from 1987 was not accepted, but for thirty
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three years I have considered it as a correct proof. Some proofs are checked, some

are not checked. That is simply so.
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On the existence of polynomial-time algorithms to
the subset sum problem

Abstract. This paper proves that there does not exist a polynomial-time
algorithm to the the subset sum problem. As this problem is in NP, the
result implies that the class P of problems admitting polynomial-time
algorithms does not equal the class NP of problems admitting nondeter-

ministic polynomial-time algorithms.

Key words: computational complexity, polynomial-time, algorithm, knapsack

problem.

15 Introduction

Let IN and IR indicate natural and real numbers respectively.
Definition 1. A knapsack is a pair of the form (j, (dy,...,d,)) where j,n €

IN,j,n>0andd, € N, dp >0 forl1 <k<n.

The knapsack problem means the following: given a knapsack (4, (d1, ..., dy))

determine if there exist binary numbers ¢, € {0,1}, 1 < k < n, such that

n
j = Z dek.
k=1

Let B,a € R, B > 1, a > 0 be fixed numbers. An algorithm A is called
polynomial-time algorithm to the knapsack problem if there exist numbers C, 5 €
IR that depend on B and a but not on n such that the following condition is true:

For any sequence of knapsacks of the form

((]"7 (dl,n; ey dnn)))nZI
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satisfying
logy jn < Bn®, logy di,n < Bn®, (1< k<n),(n > 1) (1.1)

the number N,, of elementary operations that the algorithm A needs to produce
an answer yes or no to the question if there exists binary numbers ¢, , € {0,1},

1 < k < mn, such that

n
jn = Z ck,ndk,n (1.2)
k=1

satisfies N,, < CnP for all n > 1.

The problem that has been described is used in the Merkle-Hellman knapsack
cryptosystem and today it is commonly known as the knapsack problem. The
name Subset sum problem is used for it in [2] p. 301, while the name Knapsack
problem is reserved for a more general problem involving selecting objects with
weights and profits. The name knapsack is more convenient than subset sum and
it is ofen used in this paper.

In the definition of a polynomial-time algorithm for the knapsack problem we
have included an upper bound on j, and on each dj ,, 1 < k < n. Such bounds
are necessary for the following two reasons (i) and (ii).

(i) The number m of bits in the binary representation of j, satisfies m <
log, jn < m+1. Thus, if log, j, grows faster than any polynomial as a function of n
then so does the length of j,, in the binary representation. It is necessary to verify
that (1.2) is satisfied. It requires making some operations (like compare, copy,
read, add, subtract, multiply, divide, modulus) that act on a representation of j,
on some base number. We may assume that the number base is 2 as changing a
number base does not change the character of the algorithm from polynomial-time
to non-polynomial-time. Any operations that require all bits of j, must require
more than a polynomial number of elementary operations from any algorithm A
if the number of bits in j, grows faster than any polynomial. Similar comments

apply to di p.
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(ii) If j,, has an upper bound independent of n, then there exist a polynomial-
time algorithm solving the knapsack problem. The Annex gives one such algorithm
in Lemma A2. The algorithm in Lemma A2 calculates an exponentially growing

number of combinations of ¢, in the same polynomial time run.

Because of (i) and (ii) j, must grow polynomially with n. We can select j, as

growing linearly as in (1.1). It gives an NP-complete knapsack problem.

Remark 1. Lemma A2 in the Annex solves all possible values of j, < Bn®
with the same polynomial time run of Algorithm AO because j, is not used in
A0 before checking the final result b, ;. Let us consider the case when j, is
not limited from above by a polynomial of n. Lemma A1l runs in polynomial
time even if the upper bound for j, grows faster than a polynomial of n but it
does not produce results that can tell if there exists a solution for a particular
value j,. A polynomial-time test, such as taking a modulus in (A1), maps the
superpolynomial set of possible values of j = ZZ:I Ck,ndr,n into a polynomial
number of classes. In (A1) the classes are all sums j with the same moduli by
rn. At least one such a class corresponds to an superpolynomial number of values
j- In order to check if any value j in the class equals j, the algorithm should in
some way check all of the values j in the class, but if the algorithm at the same
run checks all values of j then it should in some way loop over a superpolynomial
set which is not possible for a polynomial time algorithm. In general, we can
say that a single polynomial time run of an algorithm cannot solve all values
of j, that are below a superpolynomial upper bound because the algorithm can
only produce a polynomial number of results and there exist a superpolynomial
number of possible values j,. A polynomial time algorithm that solves the subset
sum problem for any value j, below a superpolynomial upper bound must limit
search and there must be values j, that are solved with different runs of the

algorithm.

Remark 2. An algorithm is a finite set of rules that at every step tell what

to do next. We can implement an algorithm as a computer program in a second
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generation language on a von Neumann machine and a polynomial time algorithm
can be implemented in this way so that it requires time and memory that grow
polynomially with respect to the problem dimension. In the case when the small-
est upper bound of j, in Remark 1 grows exponentially a program in a second
generation computer language implementing a polynomial time algorithm needs
to limit search by branching instructions, or by acting differently on different data
(like in add, subtract and compare instructions). Thus, we can find values of j,
such that the algorithm uses different branches, or acts differently on data, in

solving the subset sum problem.

16 The inequality (2.6) means non-polynomial time

It is not possible to select a fixed sequence of specific subset sum problems and
show that no algorithm can solve this specific sequence of problems in polynomial
time. This is so because we can create an algorithm that treats these specific
problems in a particular way and can solve that specific sequence of problem in
a fast way. Instead, we must first select the algorithm and pose that selected
algorithm a sequence of subset sum problems that are particularily hard for that
specific algorithm. As the algorithm can be any possible algorithm, the sequence
of problems can only be defined by using some suitable definition of a difficult
problem to the selected algorithm and we cannot give any numerical values for
all of the numbers ¢, in (1.2). The selection will be done by using the following

definition of the computation time of a subset sum problem.

For convenience, let us select n to be of the form n = 2*+2 for some i > 0. This

simplifies expressions since it is not necessary to truncate numbers to integers.
Definition 2.

We define a function f(n) that describes (in a certain sense) the worst com-

putation time for a selected algorithm.

141



Let the worst in the median n-tuple as be defined as follows. Let

h(dl,na - )dn,najn)

be the computation time for deciding if the knapsack
(Jn> (di,ns - -y dnn))
has a solution or not. Let
Median;, h(di n,-.-,dnn,jn) (2.1)
be the median computation time where j, ranges over numbers
jn €{C+1,...,2""" —1} (2.2)
satisfying the two conditions

jn,l = Jn— c {%J > 2112 (23)
where C' = 22!, and that there is no solution to the knapsack (j, (d1,n; - - -, dn.n))-
That is, jy, are the lower half bits if j,,. The values of j,, are computed separately
in calculation of the median, i.e., no partial results from previously computed

values of j,, are used.

Let (di n,.-.,dnn) range over all knapsack sequences with

[logs Z dinl =n

k=1

and dg,, < 2"n—_1 Because of this requirement at most every second value of j, in
(2.2) is a solution to the knapsack, i.e., there are 2" combinations of (¢1,p, - . -, Cn,n)

mapped to numbers from zero to 2" — 1. The worst in the median tuple for n
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is an n-tuple (di,p,...,dn,n) (possibly not unique) that maximizes the median
computation time (2.1).

Let this maximal median computation time be denoted by f(n). Thus

f(n) = max Median;, h(din,-..,dnn,Jn)- (2.4)

d1,ny-eslnn

We use the median in Definition 2 instead of the worst case or the worst in the
average case because we need 7 almost as long computations as the worst in (2.6).
In the worst and in the worst in the average, a very slow computation of one value
jn can be the reason for the long computation time. By using the median we can
find many values j, giving almost the median computational time because the
distribution of the computational time for j,, becomes almost normally distributed
when n grows due to the law of large numbers. We include only unsuccessful
cases of j, in the computation of the median because this choice implies that
a more complicated knapsack problem (i.e., more cases to check) gives a longer
computation time. If there are more cases to choose, there are more successful
cases. Therefore the time for finding a solution decreases if there are more cases

to check.

Lemma 1. Let m be fixed and n be a power of m. If f(n) satisfies the
inequality
n.,./n
Zi(=) < s (2:5)

then f(n) does not grow polynomially with n.

Proof. Tterating we get

n n n

ot () <70
and iterating up to k yields

k

Lo () < fm)

mz?=1 g mk
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ie.,

elﬁ:lnn—%k2 lnm—%lnmf (%) < f(n)
m

Setting k = 117 gives

Inm
(') T 0= E (1) < f(n).

If m is any fixed number we see that f(n) satisfying (2.5) is not bounded by a

polynomial function of n. o
Lemma 2. Let n be a power of 2. If f(n) = f1(n) + fo(n) where fi(n) is a
polynomial function of n and f2(n) satisfies the inequality

gfz (g) < f2(n) (2:6)

then f(n) does not grow polynomially with n.

Proof. If f(n) is a polynomial function of n and since fi(n) is a polynomial
function of n by assumption, it follows that fo(n) must also be a polynomial

function of n. By Lemma 1, f5(n) is not a polynomial function of n, thus neither

is f(n).o

17 Construction of a special subset sum problem

In this section we will define a special subset sum problem K ; in Defini-
tion 3 and show that it can only be solved by solving n;y = n/2 subknap-
sacks (4, (di,n, ... dn,,n)) with different values of j;. We will use the denotation
ny = n/2 throughout this article for brevity.

Definition 3. Construction of K ; . We first make a knapsack where the
only solutions must satisfy the condition that exactly one ¢; must be 1 and the

others must be zero for k = ny + 1 to kK = n. Let us construct the values dy, ,,
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k=ni+1,...,nof Ky, for a given j,. Let C =22+! and
jnh:C .7_n s Jnd = Jn — Jn.h (31)
) C ) k]
be the high and low bit parts of j,,. Because of (2.2), j, n # 0. Let

Ayt kn = Jn,h + Qg (3.2)

2m1 1
n1

where 0 < ap < min{j, , } are distinct integers and there exists no solution

to the knapsack problem for the knapsack

(.71,7 (dl,na sy dn1,n))

where

J; = jn,l — a;. (33)

Let us also require that the computation time for j is at least as long as the
median computation time f(n1) for (4, (di,n,---,dn,,n)). We can select j; filling
this condition because half of the values j are above the median. Notice that we
compute the median only over values j that do not give a solution to the knapsack.
We will also assume that the j; are in the set corresponding to (2.2)-(2.3) for f(n1),
ie.,

jfe{C' +1,...,2m+ 1} (3.4)

satisfying the condition

-1
jl— u,,J > 2%+ (3.5)

n1
where C' = 272 1. We may assume so because there are enough values from

which to choose j}.

In (3.2) we select the numbers ay, in such a way that the dp, 1, satisfy the

size condition dp, 45,5 < QHT_I Because of the bound (2.3) we have an exponential

145



number of choices for a;. It is possible to find numbers j; such that there is no
solution since only for about half of the values of j there exists a solution for
(J, (dims--ydnyn))- If jny is too small and we cannot find values j., we take a
carry from j, 5 in (3.3) and reselect aj. Because of the lower bound on j in (2.2),
Jn,n is not zero and we can take the carry. Then j, j is decreased by the carry.
Exactly one ¢ must be 1 and the others must be zero for k = ny +1 to k = n.
There cannot be more values ¢, = 1 for k > nq because then the higher bits of
Jn are not matched. The unknown algorithm can try also other combinations but
these are the only possible combinations and the algorithm must also try them
(i-e., check these cases in some way unknown to us). The sum of the numbers dj, ,,
k < % is less than 25+ _ 1. Adding one ¢, can give a carry and there may not
be a solution to the knapsack because the high bits of j, do not match but this
is not an issue since we do not want solutions. We select the n-tuple so that there

are no solutions to the knapsack already because the lower bits do not match.

Lemma 3. The algorithm cannot stop to finding a solution because for every
Jn none of the 3 values of j; solve the knapsack problem. Every value j; gives at

least as long computation as the median computation time f(ni).

Proof. We have selected K ;, such that (ji, (di,n,- .- ,dn,,n)) has no solution for
any ji. Thus the algorithm cannot stop because it finds a solution. By construction
the values j! give at least as long computation time as the median for the tuple
at k = 1,...,ny. Since that tuple is the worst in the median tuple for ny, the

computation time for each j; is at least f(nq). o

Lemma 4. There is no way to discard any values j; without checking if they
solve the subknapsack from k =1 to k = ny. Any case of using the values of dj, ,,

in order to get the result is considered checking.

Proof. We can select any aj in such a way that there either exists a solution or

does not exist. Knowledge from other ¢; ,, (i # n1 +k) cannot give any information
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on how this a; was selected. Thus, the existence of a solution must be checked

using the value dp, y¢,n. O

Lemma 5. Several values of j; cannot be evaluated on the same run. The

median computation time of K ;, is at least

fi(n1) + nafa(m)

where f(n) = fi(n) + fa(n) is a lower bound for the computation time of one j}
and f1(n) is a polynomial function of n, the shared part of the computation time

of all j}.

Proof. As explained in Remark 1, a polynomial time algorithm cannot solve all
values of j; at the same run because it would require an exponential amount of
memory. As explained in Remark 2, we can assume that the algorithm is imple-
mented in a second generation computer language on a von Neumann machine and
its code has branching instructions, or it acts differently on different data in an
instruction (like add depends on the data), which has the same effect as a branch-
ing instruction: for a different j, there is needed a different run. These branching
instructions define a branching tree describing the execution of the algorithm for
any input data. The tree is fixed when the algorithm is selected. At each branch-
ing point the input data is divided into a finite number of classes. Because this
division is fixed, we can always find two values j; which are not executed by the
same polynomial time run. After finding two, we can continue to find three values
Jji which all are executed by different polynomial time runs of the algorithm. This
can be extended to 7 values ji: we can select j; in such a way that no two values
Jji are computed in the same run. The runs for different values j; can have parts
that are shared, as long as the shared parts are computed in polynomial time.
This is necessarily the case for practical algorithms: the runs must share at least
the beginning of the code before branch instructions are reached and this shared

part must take only polynomial time for the algorithm to make any sense. The
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shared part of the computation time can be described by a polynomial function
f1(n) and a lower bound for the nonshared computation time can be denoted by

a function fa(n). o

18 Proving the inequality (2.6)

Let the algorithm be chosen. We selected a tuple K j, for a chosen j,, and showed
in Lemma 5 that the computation time for the set of K ;, for the single value
Jn is at least as high as the left hand side of (2.6). We have obtained the left side
of the inequality (2.6) for an arbitrarily chosen algorithm solving the knapsack
problem. However, the set of K4 ;, is a (reasonably) hard problem only for the
chosen value j,. Let us call this j, with the name j,0. In the right side of (2.6) the
number j, must range over all values and we calculate the median computation
time over those values of j,, where there is no solution. In K ;_ it is very fast to
conclude that most values for j,, do not have a solution: it is usually enough just
to check the bits of j, in the most significant half of the number. If they do not
match the most significant bits of 7,0, then there is no solution.

We want to change the knapsack problem Kj ; , to another knapsack prob-
lem K5 (the problem K5 will be defined later in Definition 5) where j,, can range
over all numbers and for many values of j,, there is no solution and the knap-
sack problem is difficult. The knapsack problem K> has at most as long median
computation time as the worst in the median tuple for n because the worst is the
worst.

We will do the change in two steps. First we change K ;, , to K3, , where
the bits in the lower half of j, can vary. In the second step we change K3 ; , to
K, where also the upper half bits of j,, can vary. What we have to show is that
the computaton time of the set Ky j;,, with a single j, = jno is not larger than
the median computation time for K3 ;. . when j, can have any lower half bits.
In K3 j,, only one d; ,, the one with j = n, has the most significant bits of jyq.

Therefore ¢,,,, must be one in order to have a possibility of finding a solution for j,
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that has the high bits of j,o. We put some numbers to d; , for j =n;+1,...,n—1.
These numbers have zero high bits. There are more combinations that can give a
solution in K3 ;. than in K j ., thus it is easier (and faster) to find a solution,
provided that there is a solution for a chosen j,. The trick here is that in the
calculation of the median computation time we take only those j, where there is
no solution. Then the fact that there are more possible combinations only makes
it harder to conclude that there is no solution. We conclude in Lemma 6 that the
median computation time for K3 ;. , when the lower half bits of j, vary is larger

than the computation time of K j,,-

Next we have to show that K> gives a larger median computation time when
Jn varies over all numbers than K3 ; , when the bits of the lower half of j, vary.
It is a similar situation here: there are more combinations in K5 that can give
a solution for a given j,, but only those j, that give no solution are counted in
the median computation time. Therefore adding complexity makes the median
computation time longer. In K, we replace d,, , of K3 ;, , by a difficult knapsack
problem in the upper half bits. As this difficult knapsack problem in the upper
half has n numbers d; ,, and the bit length of each d; ,, is only n/2, there usually
always are solutions to the upper half knapsack problem. Looking at the upper
half knapsack problem does not help in finding values j,, that give no solution to
the knapsack problem K,. Because of this, the knapsack problem K, is not any

easier than the knapsack problem Ks ;, .-
Figure 1 shows the main idea.

In Figure 1 the set K; has the worst in the median ni-tuple in the left

1Jno
side and the right side has numbers from which it is necessary to select exactly
one in order to satisfy the high bits of j,o. This yields n; separate subset sum
problems and we get the computation time corresponding to the left side of (2.6).
The set K3 ;,, has only one element which has high order bits and it must always

be selected in order to satisfy the high bits of j,. Here the bits of the upper half

of j, are the same as in j,o. There is the same worst in the median n;-tuple and
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Kijn < Kgjn <= K <=

j
jh,n | | | | | | difficult Worst n
i Worst Worst ‘ ‘ Worst
" ni2 ‘ ‘| n/2 HH n/2 HH
n/2 values \ I
2V2), p+ay
l Same lower bits
n/2 knapsack problems for
&l
(NI2)f(n/2) = f(n)

Fig. 1. The idea of the proof.

the remaining n{ — 1 elements can be assigned in any way yielding of the order n?
knapsack problems. It is easier to find a solution than in K j  , but it is harder
to conclude that there are no solutions. Lemma 6 shows that the time of solving
K, ;, is not higher than the median computation time for K3 ;. for almost any

jn that does not yield a solution.

The n-tuple K5 has some difficult upper half knapsack problem which has
to be satistifed with the same values ¢ as the lower half knapsack. It is not of
any use to check if the upper half knapsack half has a solution when trying to
show that there is no solution to the whole knapsack since there almost always
are many solutions to the upper half knapsack problem. The algorithm must look
at all bits. As finding a solution in K requires looking at both the upper and
lower half bits, it should be more difficult to conclude that there are no solutions.

We will show that at least it is not faster. Finally, the inequality from K, to the
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worst in the median n-tuple is obtained directly by the definition of what the

worst means.

Definition 4. Construction of K3 ; .. Let j, be given and let us define a

n-tuple K3 ;. , as an n-tuple with elements (di,,,3,-..,dn n,3) by specifying the

1Jn0
elements
n
dk,n,3 = dk,n (k = 17.. ,5)
n 3n
dina = k=—+1,...,— 4.1
kng =€ (k=g + 7 (4.1)
dpn,3 = € (k:?iTn%—l,...,n—l)

dn,n,3 = jn(],h-

We select two nonnegative integers e; < 2"711:1’ i = 1,2. The selected e; and ey
are so small that if ¢,, = 0 the higher bits of j,, are not matched because there is
no carry. That is, the worst in the median knapsack for n; = n/2 is still in the left
side. The high bits of j,o are in d,, , 3. We choose some numbers to the elements

dipsfork=ny+1,...,n—1

This n-tuple has a simple upper half tuple. The sum of the numbers dj, 3,
k < 7 is less than 22+1 _ 1, It is always necessary to set ¢,, = 1 and this satisfies
the upper half bits of j,, when j, ranges over numbers that have the same upper

half bits as jno-

Definition 5. Construction of K>. We will define K5 as an n-tuple with
elements (d1,n,2,- .-, dn,n,2)- Let us remember that the n-tuple (di,,...,dn ) is

the worst in the median tuple for %. Let (do,1, .- -,do,n) be an n-tuple where each

do < =L We define

ni

dk,n,2 = Cdk,n,2 + dk,n (42)
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for k = 1,...,n1. The numbers e; and ey are as in K3 ; , and we define the

elements of Ko for k=n; +1tok=n as

d, = Cdop+er (h="41,...,°0
2 4
, 3n
dk:CdO’k-‘rez (k:I+1,,n—1) (43)
d,, = Cdy .

Thus, K> has the same lower half tuple elements as K3 ;, and in the upper half
there is the n-tuple (dg 1, . ., do,,). In this definition we do not specify the n-tuple
(do,1,---,don), but it will be chosen as a sufficietly difficult n-tuple.

In K3, our chosen algorithm may fast find a solution and stop for any jy,
but we are only interested at such j, that give no solution. The tuple K5 can be
split into two n-tuples: the lower half tuple with elements smaller than C' and the
upper half tuple that has the higher bit parts. In K the algorithm usually does
not stop to a solution of the lower half tuple since the upper half tuple is usually

not satisfied by ¢ that satisfy the lower half knapsack.

Lemma 6. The time for the chosen algorithm to solve K, ;. is not larger
than the median computation time for the algorithm for solving K3 ; , when j,
ranges over all values where jn 1, = jno,h-

(n+4)n

Proof. In K3 ;,, the indices k > n; give “— = values of j for a knapsack problem

in the indices k£ < n. Let us name these values j; where 7,7 =1,..., %.

In the indices ¥ = 1,...,n; there is the worst in the median n;-tuple. The
values j; that we get are a sample of all possible values j,, for the knapsack
problem for this worst in the median n;-tuple.

Half of all possible values of j,, yield a longer computation time than f(nq)
in the worst in the median knapsack problem for n; because f(n) is the median

computation time. If the values of j; that we get are a representative sample of all
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Jn1, then about half of the values of j; that do not give a solution yield a longer
computation time than f(nq).

We can select e; and e from an exponential set of numbers. Therefore we
can assume that the numbers j; are sufficiently well randomly distributed over
the possible range of the numbers j,, for the knapsack problem for n; = n/2 and
they are a representative sample of all numbers j,, .

Also, because the numbers j; are sufficiently randomly distributed over all
possible values of j,, we may assume that about half of the values j; are on the
range (3.4).

There are more values j. to check in K3 ;. than the n/2 in K; . If there is
no solution for some j,, then it is necessary to check all j; before the algorithm
can conclude that there are no solutions. Therefore the computation time of the
chose algorithm to solve K j , is not longer than the median computation time

for the algorithm to compute K3 when j, ranges over all numbers that have

1Jn0
Jn,h = Jno,h- O

The median computation time in (2.1) is calculated over the no instances only.
Thus, yes instances are ignored. It is sufficient that there are at least some no
instances so that (2.1) can be calculated. We give an argument that estimates the
number of solutions to the knapsack problem (j,, K3). The argument makes use
of averages but it is quite sufficient for showing that there are some no instances

for computation of (2.1) if the upper bits of K5 are selected in a suitable way,

indeed a random selection of these bits is likely to yield many no instances.

Lemma 7. There are in average 25 solutions possible choices of (c1,. .., cy,)

that give the same sum Y _,_; Cido k-

Proof. The number of combinations of ¢y is 2" and the sum Y ,_, d, x is at most
2% . There are fewer combinations that yield very small or large sums and most

sums are in the middle ranges. o
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Lemma 11. We can select the numbers d, in such a way that there are
in average about 2% solutions possible choices of (ci,...,cn,) that give the same

ni
sum 33"y crdo k-

Proof. Most random selections of the numbers d, , give this result. There are
fewer combinations that yield very small or large sums and most sums are in the

middle ranges. o

Lemma 12. The lower half tuple in the indices k = ny + 1,...,n has only

242 possible values j.

Proof. These numbers are

n

Jj= Z ck(dpmn,2 — Cdog) = kier + kaea (4.4)
k=n1+1

where 0 <k < Jand 0< ks < 7 —1.10

The elements in the worst in the median tuple for n; satisfy dj,, < 2";—1’1
because we only consider such values of dj, , when finding the worst in the median
tuple for nq. Also e¢; < 2";—1’1 Thus, there is no carry from the lower half tuple to

the upper half tuple.

Lemma 18. It is possible to compute the median (2.1) for K.

Proof. Let us assume that the values ¢ are fixed for the indices k& > ni + 1.
This fixes some value j that must be obtained from the knapsack in the indices
k = 1,...,n; as the subset sum. By Lemma 12 there are only ”T“% possible
values j. The upper half tuple yields about 2% possible solutions for a given j
in the indices k = 1,...,n; by Lemma 11. The worst in the median tuple in the
lower half tuple has % elements, thus 2% possible numbers can be constructed
as sums Y .-, cpd), in the lower half tuple. The set of the about 2% possible

solutions of the upper half tuple for a randomly selected j is a small subset of all

possible combinations of ¢ in the lower half tuple in the indices &k = 1,...,n;.
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The probability that any of the possible solutions from the upper half tuple is
a solution of the lower half tuple is only on the range of %2_%. The events
of selecting the upper half tuple, the lower half tuple, and the value j can all be
considered independent events. There are only a polynomial number of sums (4.4),
thus when j, is selected, there are only a polynomial number of possible values
for the lower half of j in (j, (d},...,d,, )). For a randomly selected j, there are
then only a polynomial number of ¢, & < nq, that satisfy the lower half bits of j,.
The choice of ¢, k < nq, fixes the upper half of j. We are left with an upper half
knapsack problem for the indices k = nqy +1, ..., n. In this knapsack problem the
elements have the size about 2! and there are n; elements. Thus, for a randomly
selected j, we expect about one solution. The solution is constrained by the
demand that the lower half bits give j, i.e., not all combinations are possible. We

conclude that we get at least some no instances for computation of (2.1) for some

choice of (do1,...,don)- 0

Lemma 14. The time for the chosen algorithm to solve K3 ;. . when j, ranges
over numbers satisfying jn.; = jno,n is not larger than the median computation

time for the algorithm for solving Ko when j, ranges over all values of jy,.

Proof. In K3 ;.. the upper bits are easily satisfied by selecting ¢, , = 1. In order
to find a solution to the subset sum problem for K, the algorithm must find a
common solution to two knapsacks, i.e., both the upper bits and the lower bits
knapsacks in K5 must be solved with the same numbers (¢1,...,¢,). We may
choose any difficult knapsack (dp 1, ..,do,,) to the upper bits of K».

The algorithm cannot conclude that there are no solutions to the whole knap-
sack problem because there are no solutions to the upper half knapsack problem.
This is so since there almost always are many solutions to the upper half knapsack
problem for any value of j: the upper half knapsack problem has n elements of
the bit length at most n/2. This means that there are 2" possible combinations

of ¢, and they are mapped to 27/2 different numbers j. Each number j is likely
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to come from many combinations of ¢; since in average 2"/? combinations give
the same j.

It is also not possible to the algorithm to check that none of the solutions
to the upper half knapsack problem give a solution to the lower half knapsack
problem. This is so because there are exponentially many (i.e., 2"/?) solutions to
the upper half knapsack problem. They cannot be checked in a polynomial time.

Because of these two reasons the median computation time of K3 ; , when
jn ranges over all j, that has the same high bits as j,o cannot be higher than
the median computation time for Ky where j, ranges over all numbers. In the
computation of the median time we only take cases of j,, where there is no solution
and a more complicated n-tuple must give a longer time for concluding that there

are no solutions. o

Lemma 15. The inequality (2.6) holds for the chosen algorithm.

Proof. By Lemma 6 the median computation time for K3 ;, , when the median is
taken over the set of j, having j,.n = jnon is at least as high as the time to solve
K j,,- By Lemma 13 we can calculate the median of computation times over cases
when there is no solution for K5. By Lemma 14 the median computation time for
K5 when j,, ranges over all values is not smaller than the median computation
time for K3 ;.. when the median is computed over the set j, where j, n = jno,h-
As K, is a fixed n-tuple it follows from the definition of the worst in the median

tuple that K, has at most as long median computation time as the worst in the

median tuple for n, i.e., f(n). Thus the inequality (2.6) holds. o

Theorem 1. Let an algorithm for the knapsack problem be selected. There

exist numbers B,a € IR, B > 1, a > 0 and a sequence

((]"7 (dl,n; ey dn,n)))nZ]
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of knapsacks satisfying
l0g, ju < Bn®, log, dn < Bn®,(1<k <n), (n>1)

such that the algorithm cannot determine in polynomial time if there exist binary

numbers ¢, 1 < k < n, satisfying

n
Jn = E ck,ndk,n-
k=1

Proof. The idea of this proof is to compare the computation time of the worst (in
some sense) knapsack of size n to the computation time of (in the same sense)
worst knapsack of Z. The computation time was defined in (2.4) and denoted by
f(n). By Lemma 15 the inequality (2.6) holds for an arbitrary chosen algorithm.
By Lemma 2 the arbitrarily chosen algorithm is not a polynomial time algorithm.

m]

Theorem 2. P does not equal NP.

Proof. The knapsack problem is well known to be in NP. o
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19 Annex

Lemma Al. Let B >1,a >0 and v > 0 be selected. Let r, > 0 and j, be

integers satisfying

Tn <n7, log, jn, < Bn® (n>1).
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There exist numbers C,3 € IR,C > 1, § > 0 and an algorithm that given any

sequence of knapsacks

((Jna (dl,na sy dn,n)))nZl

can determine for each n if there exist binary numbers ¢y, n, 1 < k < n, such that

G = Z Chndi,n  ( mod 1y). (A1)
k=1

The number N,, of elementary operations needed by the algorithm satisfies N,, <

CnP for every n > 1.

Proof. The bound on the logarithm of j, guarantees that modular arithmetic
operations on dy, , can be made in polynomial time since we can assume that
dk,n < jn. We can find the numbers ¢, by computing numbers sy j,, from the

recursion equations for k
Skyjn = Sk—1,4,;n + Sk—1,(j—di.n)( mod rm),n (A2)

50,j,n = 6j=07

where the index j ranges from 0 to r, — 1 and is calculated modulo r,,. The index
n is fixed and only indicates that the numbers are for the n*” knapsack. Here 6,
is an indicator function: §, = 1 if the statement z ( i.e., j equals 0 in (A2) ) is

true and 6, = 0 if x is false. Let

Tp—1

Grn(z) = Z Sk,jm®
=0

where |z] < 1. From (A2) follows

Tn—1 Tn—1 rn—1

E . el — E . E j
Sk,j,nT” = Sk—1,j,nT” + Sk—1,(j—dr,»)( mod rn),nx]-
Jj=0 Jj=0 Jj=0
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Changing summation to j' = j — dj,p, yields
’l‘n—l—dk,"
Gk,n(m) = kal,n(x) + Z Sk—1,5'( mod r"),nmj Hin,
J'=—dikn
Changing the order of summation of j' shows that
Tn—1
Grn(2) = Gr—1,n(x) + gen Z Sk—1,j',n®’ . (A3)

=0

Simplifying (A3) gives
Gin(2) = Gr-1n(2) + wdk’"kal,n(l‘).
As Go,n(z) = s0,0,n = 1, we get

Gnn(z) = JJ(1 +2%~).
k=1

Expanding the product shows that sj ;, # 0 if and only if there exist binary

numbers ¢, ¢y € {0,1}, 1 < m < n, satisfying

j= Z Cmdm,n ( mod ry,).
m=1

For j = j, and k = n we get the knapsack problem. This means that we can solve
the knapsack problem by computing all s, ; , form (A2). We do not actually need
the numbers sy ;,, but only the information if s, # 0. Therefore we will not
compute the terms sy ;, directly but calculate binary numbers b;; € {0,1} by
Algorithm A0 below. The number by ; calculated by A0 is zero if and only if the

number s ; , = 0 is zero.

Algorithm AO:
Loop from k = 0 to k = n with the step k:=k + 1 do {

Loop from j =0 to j =r, — 1 with the step j :=j+ 1 do
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bjr =0
}
boo =1
Loop from k =1 to k = n with the step k := k + 1 do {
M := min{r, — 1, an:l dmn}
Loop from j = 0 to j = M with the step j :=j + 1 do {
If (bg—1,; = 0 and by_1,(j—d,..)( mod r,) =0) do bjr:=0

else do b :=1
}
If by, ;, = 1 do result := TRUE else do result := FALSE

Algorithm AQ loops from k =0 to k =n and from j =0to j =7, —1 <n?.
Thus A0 needs a polynomial number of elementary operations as a function of
n in order to give the result TRUE or FALSE to the existence of a solution to
(Al). o

Lemma A2. Let B,a € IR, B > 1, a > 0 be fixed. There exist numbers

C,peR,C >1, >0 and an algorithm that for any sequence
((Jn, (dins - -5 dnn)))n>1
of knapsacks satisfying
Jn < Bnf, din < Jn (1<k<n),
can determine if there exist binary numbers ¢y n, 1 < k < mn, such that

n
jn = Z ck,ndk,n-
k=1

160



The number N,, of elementary operations needed by the algorithm satisfies N,, <

CnP for every n > 1.

Proof. The result follows directly from Lemma A1 by selecting r,, = > j_; dp.n <

NJp. O
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