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Physics, the science of change, has managed to discover and to explain a large number
of qualitative and quantitative aspects of a large number ofnatural changes, but change
itself remains unexplained since we first faced it, over twenty-seven centuries ago. This
paper proves, in terms of transfinite arithmetic, that change is inconsistent within the
infinitist framework of the spacetime continuum, were all solutions have been tried until
now. It then proposes a consistent solution within the finitist framework of the discrete
spacetimes of cellular automata like models, proving the factor that convert between
continuum and discrete spacetimes has the algebraic form ofthe relativistic factor of
Lorentz transformation, which could be reinterpreted as anoperator to translate between
a consistent discrete reality and an inconsistent continuous reality.

1 Introduction

Change is the most pervasive characteristic of our incessantly
evolving universe. But change is also the most elusive and
difficult question we have ever been faced with.* So elusive
that no one has been able to explain how a simple change in
position of a physical object occurs. So elusive that it could be
inconsistent, as claimed at least since the time of Parmenides.
But not only pre-Socratic authors as Parmenides, Zeno of
Elea or Mellisus claimed the impossibility of change [12],
modern authors as J.E. McTaggart also defended the impossi-
bility of change [11]; and Hegel its inconsistent existence[8,
p. 382]. If that were the case, the task of explaining the phys-
ical world in consistent terms would be impossible because
the physical world is, essentially, change. And being physics
the science of change, the science of the regular successionof
events in Maxwell’s words [10, p. 1], it should be concerned
with the solution of this fundamental step in the understand-
ing of physical reality.

It seems reasonable to assume that we model reality as
a continuous system because we perceive it as a continuous
system. The problem is that this perceived continuity is illu-
sory. In fact, our brain takes a time greater than zero (≈13
ms [13]) to process each visual image (the base of the well
knownα, β, γ andδ movements, and ofφ-phenomenon), so
thata continuumof visual images is physiologically impossi-
ble. The same illusory perception happens with motion when
observed in a film. And in the same way a film is a discon-
tinuous sequence of images, natural motion could also be a
discontinuous sequence of changes in position, which is per-
ceived as continuous by our brains and our physical instru-
ments. The discussion that follows addresses the problem a
change from this discrete (discontinuous) point of view, prov-
ing it is inconsistent from the continuous perspective, and
consistent from the discontinuous one. Surprisingly, the fac-
tor translating between both perspectives has the algebraic

* for a general background see [12], [14] and the particular view of H.
Bergson in [2], [3]).

form of the relativistic Lorentz factor, which open the door
to a discrete interpretation of special relativity, our main cur-
rent theory on the continuum spacetime, the scenario in which
change is so conflicting.

2 Canonical changes

For the sake of simplicity, and in order to avoid unnecessary
complications, we will discuss here the problem of causal
changes in physical macroscopic objects. So, ifO is one of
such macroscopic objects, we will sayO changes causally
from the stateSa to the stateSb (including changes in posi-
tion) if there is a set of physical lawsL such that, under the
same conditionsC and as a consequence of those laws and
conditions, the state ofO is Sa at instantta andSb at an ulte-
rior instanttb. In symbols:

Causal change















Sa 7→ Sb

L(Sa,C, ta) = (Sb, tb)
(1)

The causal changeSa 7→ Sb can be direct, without inter-
mediate states, in which case it will be saidcanonical. A
causal changeS1 7→ S f can also be the result of a sequence
of canonical changes:

S : S1 7→ S2 7→ S3 7→ · · · 7→ S f (2)

It is worth noting that every elementSn of S must have an
immediate predecessorSn−1 (except the first of themS1) so
thatSn can be causally derived fromSn−1:

∀Sn>1 : L(Sn−1,Cn−1, tn−1) = (Sn, tn) (3)

For this reason, a sequence of causal changes cannot be den-
sely ordered. In fact, assumeS is a densely ordered sequence
of changes, and letSλ be any element within the sequence.
It is impossible forSλ to result from a causal change of an
immediate predecessor because no element ofS has an im-
mediate predecessor: between any two elements of a densely
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ordered sequence infinitely many other elements do exist. So,
the causal change:

L(Sµ,Cµ, tµ) = (Sλ, tλ) (4)

is impossible, for allSλ,Sµ ∈ S. In what follow all changes
will be assumed to be causal changes as defined by (1), whether
or not referred to as such causal changes.

The objective of our discussion will exclusively be canon-
ical changes, be them or not forming part of a sequence of
canonical changes. We will just begin by proving that if they
form part of a sequence of canonical changes, that sequence
can only have a finite number of steps. And the distance tra-
versed, if any, by the corresponding object while performing
the change can only be finite (think of a change in position).
Indeed, letS1 7→ S f be a change that takes place through a
sequenceS of canonical changesS1 7→ S2 7→ S3 · · · 7→ S f .
This sequence has a first elementS1; a last elementS f ; each
elementSi has an immediate predecessorSi−1 (exceptS1)
and an immediate successorSi+1 (exceptS f ); no element ex-
ists between any two if its successive elementsSi , Si+1; and
any subsequenceS′ of S containing, for instance,Sv, will
contain a first element preceding all elements ofS′ in the or-
dering ofS, except itself: one of the elementsS1, S2,. . .Sv.
Therefore,S is a well ordered sequence to which an ordinal
numberφ can be assigned [5, p. 152]. The ordinalφ cannot be
the least transfinite ordinalω (the limit of all finite ordinals),
becauseω-ordered sequences have not a last element, while
S has a last elementS f . Therefore, if the ordinalφ of S were
a transfinite ordinal it would be greater thanω, in which case
there would be a first element succeeding all elementsS1, S2,
S3. . . indexed by the sequence of all finite ordinals 1, 2, 3,. . . ,
which can only beSω, the limit of all them [5, Theorem I,
p. 158]. In consequence, there would be a canonical change
Sv 7→ Sω. But this canonical change is impossible because
no finite ordinalv is the immediate predecessor ofω. So,φ
can only be finite. We can, therefore, state the following:

Theorem of the finite evolution.-In a consistent
universe, the state of any of its objects at any in-
stant of its past, present or future, can only be the
result of a finite sequence of canonical changes.

We will prove now, by an argument similar to the above one,
that in a consistent universe the distance between any two of
its points is always finite. Recall first that a necessary condi-
tion to divide a line into infinitely many segments (a partition)
is that the successive elements have a decreasing length. But
what if they have the same finite length, except at most the
last of them? Let us examine this possibility. Consider, for
this, any two pointsA andB, the straight lineAB, and the se-
quenceP of all points ofAB defined according to:∀Pi≥1: iff
Pi B ≥ AP1, take a pointPi+1 separated fromPi by a distance
AP1. Let QB be a segment ofAB whose length is justAP1.
It holds: ∀Pα ∈ P andPα ∈ AQ there is at least one point
Q′ ∈ QB such thatPαQ′ ≥ AP1. In consequence, there must

be in QB one pointPφ of P, otherwiseP would not contain
all pointsPi of AB such thatPi−1Pi = AP1, which is not the
case. So, the sequenceP has a last elementPφ. The endpoints
A andB and the sequenceP define inABa sequenceSof suc-
cessive adjacent segments:AP1, P1P2, P2P3... PφB of the
same lengthAP1, except at most the last onePφB ≤ AP1, all
of them left-open and right-closed, exceptAP1 that is closed.
In the orderingO of S, there is a first elementAP1; a last el-
ementPφB; each elementPiPi+1 has an immediate predeces-
sorPi−1Pi (or AP1), exceptAP1, and an immediate successor
Pi+1Pi+2 (or PφB), exceptPφB; no element exists between any
two of its successive elementsPiPi+1, Pi+1Pi+2; and any non-
empty subsequenceS’ of S, containing, for instance,PvPv+1,
will also contain an element that precedes in the orderingO
of Sall elements ofS’ except itself: one of the elementsAP1,
P1P2, P2P3, . . . PvPv+1. Therefore,S is a well ordered se-
quence, to which an ordinal number can be assigned [5, p.
152]. In addition,S cannot be non-denumerable [4]. The
ordinal of S cannot be the least transfinite ordinalω because
ω-ordered sequences do not have a last element, whileShas a
last elementPφB. So, if the ordinal ofSwere infinite, it would
be greater thanω, in which case there would be a first element
succeeding all elementsAP1, P1P2, P2P3, . . . indexed by the
sequence of all finite ordinals 1, 2, 3,... which can only be
the limit of all themPωPω+1 (or PωB) [5, Theorem I, p. 158].
Take inAPω a pointRat any given distance fromPω less than
AP1. R could only belong to a segmentPvPω immediately
precedingPωPω+1 (or PωB). But PvPω is impossible because
there is not a last finite ordinalv whose immediate successor
v+1 isω. Hence, the ordinal ofScannot be infinite but finite.
Scan only have a finite number of elements. And being finite
the sum of any finite number of finite lengths,ABhas a finite
length. This argument proves* the following:

Theorem of the finite distances.-In a consistent
universe, the distance between any two of its poi-
nts can only be finite.

3 The problem of change

Until now we have proved nothing on the possibility or im-
possibility for a canonical change to occur. We have only
proved they cannot form densely ordered sequences, but fi-
nite sequences through finite distances, if any. We will prove
now its most astonishing characteristic: canonical changes
can only be instantaneous, i.e. of a null duration. This is an
essential quality of change that is at the root of all classical
and modern discussions on the general problem of change.
And, as we will see, it is also the reason of its inconsistencyin
the spacetime continuum; and the reason of its consistency in
discrete spacetimes. Consider any canonical changeSa 7→ Sb

of any macroscopic objectO. Assume its duration ist > 0,
beingt any positive real number. For everyt′ in the real inter-
val (0, t), the state of our objectO will be eitherSa or Sb. If

* The above argument obviates some basic Euclidean reasonings.
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it wereSa then the change would not yet have begun and its
duration would be less thant. If it were Sb then the change
would have already finished and its duration would also be
less thant. But O must be in one of those two states because
Sa 7→ Sb is a canonical change. It could be argued that att′,
O is in a sort of mixed stateSa ∗ Sb, but this would pose the
problem of change in terms of the changeSa 7→ Sa ∗ Sb, or
in terms of a finite sequence of canonical changes of mixed
states, and mixed states of mixed states, and so on and on.
Although in this case, the ”on and on” has not the infinitist
escape of the ellipsis (. . . ) because, according to above theo-
rem of the finite evolution, a sequence of canonical changes
can only be finite. And being canonical, each of these finitely
many changes poses the same problem of its null duration.
Consequently, the duration of a canonical change is less than
any real number greater than zero. And being zero the only
real number less than any real number greater than zero, a
canonical change can only have a null duration, i.e. it can
only be instantaneous.

The above canonical changeSa 7→ Sb of the physical ob-
ject O would be instantaneous ifO changes fromSa at t to
Sb at t′, weret′ would be an hypothetical immediate succes-
sor of t, so that no time elapses betweent andt′. But in the
spacetime continuum this is impossible, because between any
two of its instantst andt′, whatsoever they be,a time greater
than zero always passes: t − t′ > 0,∀t′ ∈ (0, t). Therefore,
an instantaneous changeSa 7→ Sb in the spacetime contin-
uum implies thatSa and Sb can only be two simultaneous
states. In these conditions it would be inconsistent to estab-
lish a chronological order of precedence between both states,
so that none of them can be the cause of the other. We must
conclude it is impossible the existence of causal canonical
changes (1) in the spacetime continuum. That is to say:

Theorem of change.-Causal canonical changes
are inconsistent in the spacetime continuum.

Being change so omnipresent in the physical world, the above
theorem of change could be indicating that the spacetime con-
tinuum could be inappropriate to represent physical space and
time. Space and time could be, in fact, of a discrete nature.
And, as we will see in the next section, instantaneous changes
are possible in such discrete spacetimes.

4 A discrete model: cellular automata

Cellular automata like models (CALM for short) provide a
new interesting perspective to analyze the way the universe
could be evolving. It provides a discrete spacetime frame-
work that makes it possible a new analysis of some of the
apparently unsolvable problems and paradoxical situations in
modern physics, as the problem of change, or quantum en-
tanglement. In effect, as we will see in the next discussion,
twenty seven centuries after it was posed, the old problem
of change could find a first consistent solution in the discrete
spacetime of CALMs. In these models, space is exclusively

composed of indivisible minimal units called cells, here re-
ferred to asgeons. Time is also composed of a sequence of
successive indivisible units:chronons. No extension exists
between a geon and its immediate successor in any spatial di-
rection. Similarly, no time elapses between a chronon and its
immediate successor.

Each geon of a CALM can exhibit different states each of
them defined by the current values of a certain set of variables,
the same for all geons. The states of all geons of a CALM
change simultaneously at each successive chronon in accor-
dance with the laws driving the evolution of the automaton.
Once changed, the state of each geon remains unchanged for
one chronon (in what follows we will assume this is the case,
although in the place of one chronon, the state of each geon
could also remain unchanged for a certain (natural) number
of chronons). Letu, v, . . .z be the set of variables defining
the state of each geon of a certain CALMA. Let us repre-
sent thenth state of each geonγi by γi(un, vn, . . .zn), where
un, vn . . .zn are the particular values of the state variables at
thenth chronontn. Finally, letL be the set of laws driving the
evolution ofA. L determines the way in which each geonγi

changes from a chronontn to the next onetn+1 taking into ac-
count the state ofγi as well as the state of any other geon with
which it interacts, which may include all geons. All these
current states define the conditionsCi under which the laws
L of A operates and changes the state of each of its geonsγi .
The automaton engine changes the state of each geon at each
chronon and maintains it just for one chronon. Thus we can
write for each particular geonγi :

L(γi(ui,n . . . , zi,n),Cn, tn) = (γi(ui,n+1 . . . , zi,n+1), tn+1)

L(γi(ui,n+1 . . . , zi,n+1),Cn+1, tn+1) = (γi(ui,n+2 . . . , zi,n+2), tn+2)

L(γi(ui,n+2 . . . , zi,n+2),Cn+2, tn+2) = (γi(i, un+3 . . . , zi,n+3), tn+3)
...

This behaviour of a CALM resembles the way a computers
works, each chronon being a pulse of its clock and each geon
an indivisible position of its memory. Being both space and
time discrete, each chronontn has an immediate predecessor
tn−1 and an immediate successortn+1, so that no other chronon
elapses neither betweentn−1 and tn nor betweentn and tn+1.
Or in other words: no time passes between any two succes-
sive chronons. This simple characteristic of CALMs suffices
to solve the problem of change: in a discrete spacetime in-
stantaneous changes are possible. Indeed, the stateAn of the
CALM A at chronontn changes to the stateAn+1 at the next
chronontn+1 so that no chronon elapses betweentn andtn+1.
And this is possible because the state of each geon is updated
at each chronon and maintained just for one chronon. So, in
CALMs, the problem of change does not arise. Obviously, a
CALM is a simplified model of a discrete reality of which we
know practically nothing on its functioning. It would be new
paradigm of reality. But one in which change is consistently
possible, which makes it more attractive.

Antonio Leon. Physics and the Problem of Change 3



Preprint version

It seems convenient to recall at this point that our sensory
perception of the world is continuous. This is why we always
think in terms of a spacetime continuum. So far, our only way
of thinking about reality. All our models of the physical world
assume it is a continuous world. It is then almost inevitableto
extrapolate this way of thinking to any new discrete paradigm,
which would be catastrophic. To think in (physical) discrete
terms will surely require a long process of reeducation. The
state of an electron, for example, could beS1 at instantt1,
and S2 at a posterior instantt2, without ever being in any
intermediate state betweenS1 andS2 (quantum jump). It is
therefore a canonical change. In the spacetime continuum the
interval (t1, t2) must always be greater than zero, and during
that time the electron cannot be neither atS1 nor atS2, nor at
an intermediate state betweenS1 andS2. During that time the
electron could not exist. It must disappear att1 and reappear
at t2. In the digital spacetime of a CALM all we have to do
is to consider two successive chronons,t1 and t2. At t1 our
electron would be in the stateS1 and att2 in the stateS1. By
way of example, assume that:

- The universe has 2.66× 10185 geons (for example of a
Planck volume).

- The universe contains 1080 elementary particles.

- Each particle is defined byp variables

- Each particle is, somehow, present in each geon.

- Each geon is updated at each successive chronon (for
example of a Planck time duration).

Let U be a 3-dimensional CALM of 2.66× 10185 geons in
which the state of each geon is defined byp× 1080 state vari-
ables. If it were possible to simulateU, perhaps we could
observe the self-organizing and evolution of an object similar
to our universe, whenever we know the whole set of physi-
cal laws driving its evolution.U would be incomparable less
complex than, for instance, any matrix of infinite elements
(which are usual in mathematics and theoretical physics). Co-
lossal as it may seem, our CALM modelU would be a finite
object and then composed of a number of elements incompa-
rably less than the number of points (2ℵo) of, for example, a
lineal interval of Planck length in the spacetime continuum.
In addition, while points and instants of the spacetime con-
tinuum have no physical significance (they are primitive con-
cepts), each geon of ourUmodel would be plenty of physical
meaning: the current values of its defining variables, which
could be sufficient in order to define physical objects of any
size in terms of sets of linked geons that evolve and move
through the whole fabric ofU’s geons. On the other hand, to
simulate does not means to reproduce the exact history of the
universe: recursive interactions between geons and the result-
ing non-linear dynamics open the door to unexpectedness and
diverseness. At least, we could useU as a theoretical refer-
ence to grasp the essence, magnitude and possibilities of real
universes of a discrete nature in which change is consistently

possible.

5 Discrete relativity

We have developed several discrete (digital) geometries in
which the continuum space plays no significant role. We have
also developed computational geometry, whose main objec-
tive is the construction of algorithms oriented to represent
in graphic terms geometrical objects (see, for instance [7],
[6]). But we know nothing on the type of the discrete geome-
try required by a CALM. Notwithstanding, some elementary
conclusions can be logically drawn from the own concept of
discreteness. For instance, integer numbers should play in
CALMs the same role as the real numbers in the spacetime
continuum; the distance between two geons should be an in-
teger number of geons; the interval between two chronons an
integer number of chronons; the number of geons of the hy-
potenuse of a right triangle should be equal to the number of
geons of its greater leg (Pythagoras digital theorem); noth-
ing can move a distance less than one geon; nothing can last
less than one chronon; speed should be defined as the ratio of
the integer number of geons an object traverses to the integer
number of taken chronons; there would be a maximum speed
of one geon per chronon. In addition, if a CALM is isotropic,
as physical space seems to be, its geons should be anyway
isometric.

It is interesting and immediate to convert between contin-
uous and discrete hypotenuses. For this, letλ be the length of
a geon, andh, x andy the respective number of geons of the
hypotenuse and legs of a right triangle. Assumex < y. In the
discrete geometry of CALMs we will have:h = y. In classi-
cal Euclidean geometry the length of the hypotenuse will no
longer behλ but h′λ, beingh′ > h, because it is greater than
the lengthyλ of its greatest leg (note that whileh, x andy are
natural numbers,λ andh′ are real numbers). According to
classical Pythagoras theorem, we can write:

(h′λ)2
= (xλ)2

+ (yλ)2 (5)

y =
√

h′2 − x2 (6)

The ratio between the continuous and the discrete hypotenuse
can be written:

h′λ
hλ
=

h′

h
=

h′

y
=

h′
√

h′2 − x2
=

1
√

1− (x/h′)2
(7)

were the last term on the right side of (7) as the algebraic form
of the relativistic Lorentz factorγ. Let us rewrite it as:

h′λ
hλ
=

1
√

1− (xλ/h′λ)2
(8)

Assume now a photonφmoves through a vertical distanceyλ
in the rest frameRFo of its source. Ifφmoves the same verti-
cal distanceyλ from the perspective of another inertial frame
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RFv while RFo moves with respect toRFv the horizontal dis-
tancexλ at a uniform velocityv parallel toXv for a time tv,
thenφ moves along the hypotenuse of a right triangle whose
legs areyλ andxλ = vtv, We will haveh′λ = ctv. And then
(8) can be written:

h′λ
hλ
=

1
√

1− (xλ/h′λ)2
(9)

=
1

√

1− (vtv/ctv)2
(10)

=
1

√

1− (v/c)2
= γ (11)

which proves the ratio between the continuous hypotenuse
and its corresponding discrete alternative is the relativistic
Lorentz factorγ. This result suggests that a discrete interpre-
tation of special relativity could be possible. Special relativ-
ity could be, in fact, the consequence of explaining a discrete,
discontinuous, world in terms of the continuous mathemat-
ics the spacetime continuum. Or in other more expeditious
words: the result of explaining a consistent discontinuousre-
ality in terms of an inconsistent continuous reality. Strange as
the new discrete paradigm may seem, let us end by indicating
some of its possible advantages:

1. The problem of change would no longer be a problem,
and a consistent understanding of the physical world
would be possible, which until now is not the case.

2. The Second Principle of relativity would not be neces-
sary because in a discrete spacetime there is an insur-
mountable velocity of one geon per chronon.

3. The flow of time and its irreversible directional arrow,
enigmatic from a spacetime continuum perspective, is
naturally explained in CALM terms. The slippery con-
cept ofnow could also be easily explained in CALM
terms.

4. While points and instants of the continuum spacetime
are primitive concepts devoid of physical meaning, and
then hard to link with physical reality, geons and chro-
nons are plenty of physical significance.

5. All known physical objects and magnitudes, just ex-
cept spacetime, are discrete, with indivisible units. In
CALMs there is no exception, space and time are also
discrete.

6. Quantum entanglement and related questions could be
naturally explained in terms of the synchronized evolu-
tion of geons.

7. The incessant quantum activity of free space (vacuum)
could be better explained in terms of CALMs than it
is in terms of the points and instants of the assumed
spacetime continuum.

8. General relativity and quantum mechanics would have
a new discrete opportunity to meet each other [1].

9. Being finite in time and size, a CALM is simplest than
any other infinitist alternative, as the continuum space-
time.

10. Physics would no longer depend on the consistency or
inconsistency of the Axiom of Infinity. After all, an
axiom is an axiom, and in this case one suspicious of
being inconsistent [9]. Getting rid of (the teoplatonic)
infinities would be good news for everyone, particu-
larly for physicists.
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