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Abstract— This article introduces a new foundation for Euclidean geometry more productive than other classical and modern 

alternatives. Some well-known classical propositions that were proved to be unprovable on the basis of other foundations of 

Euclidean geometry can now be proved within the new foundational framework. Ten axioms, 28 definitions and 40 

corollaries are the key elements of the new formal basis. The axioms are totally new, except Axiom 5 (a light form of Euclid’s 

Postulate 1), and Axiom 8 (an extended version of Euclid’s Postulate 3). The definitions include productive definitions of 

concepts so far primitive, or formally unproductive, as straight line, angle or plane The new foundation allow to prove, 

among other results, the following axiomatic statements: Euclid's First Postulate, Euclid's Second Postulate, Hilbert's Axioms 

I.5, II.1, II.2, II.3, II.4 and IV.6, Euclid's Postulate 4, Posidonius-Geminus' Axiom, Proclus' Axiom, Cataldi's Axiom, 

Tacquet's Axiom 11, Khayyam's Axiom, Playfair's Axiom, and an extended version of Euclid's Fifth Postulate. 
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I.  INTRODUCTION  

After more than two millennia of discussions on Euclid's original geometry and at a time in which such discussions have 

been practically abandoned, this article introduces a new foundational basis for Euclidean geometry that includes productive 

definitions of concepts so far formally unproductive, as sidedness, betweenness, straight line, straightness, angle, or plane, 

among others (all of them properly legitimized either by axioms or by formal proofs). The result is an enriched Euclidean 

geometry, eu-geometry for short, in which it is possible to prove some propositions that were proved to be unprovable on 

other Euclidean geometry bases.  

Conventions and general fundamentals are the objectives of Section IV. Section V introduces the new foundational basis: 28 

definitions, 10 axioms (4 on lines, 1 on straight lines, 1 on planes, 1 on distances, 1 on circles, 1 on angles and 1 on polygons) 

and 40 corollaries. This foundational basis is then used in Section VI to introduce plane eu-geometry through 43 propositions 

and corollaries on triangles, orthogonality, parallelism, and convergence of coplanar straight lines. 

II. RELATED WORK  

Apart from the classical Euclid’s foundation of geometry [1], at least a couple of modern alternatives of general acceptance 

have been proposed since then: Playfair’s foundation [2] and Hilbert’s foundation [3]. These three foundations have been 

used by other authors, as Birkhoff and Beatley [4] to develop their own variations. The foundational basis proposed here is 

scarcely related to them. Most of its 28 definitions correspond to concepts so far primitive or formally unproductive in other 

foundational bases. The new definitions and axioms allow to prove a first set of 40 foundational corollaries, most of them 

implicit assumptions (hidden postulates) in other classical and modern Euclidean geometries. The inclusion of such a number 

of corollaries is also a distinctive feature of the present foundation of Euclidean geometry. 

III. METHODOLOGY 

The objective of this work is the construction of a new formal basis for Euclidean geometry more formally detailed and 

productive than other alternatives. In consequence, the discussion that follows can only be a rigorous application of the 

formal method, just inaugurated by Euclid himself more than 2300 years ago. The proofs of the propositions and corollaries 

have been meticulously detailed making explicit the corresponding formal supports (foundational elements and previous 

results) of each step of each proof through hyperlinks (blue underlined numbers/letters) that allows to easily test each of such 

steps of each of such proofs by going to the linked support and then by going backward to the link (Alt ←). 

IV. CONVENTIONS AND GENERAL FUNDAMENTS 

The nth axiom, corollary, definition, postulate and proposition will be referred to, respectively, as [Ax. n], [Cr. n], [Df. n], 

[Ps. n] and [Pr. n]. The same letters, for instance AB or BA, will be used to denote a line of endpoints A and B [Df. 1], as 

well as its length [Df. 8], and the distance between A and B [Df. 14] if AB is a straight line [Df. 10]. Unless otherwise 

indicated, different letters will denote different points, including endpoints. When convenient, lines will also be denoted by 

lower case Latin letters, whether or not indexed. Symbols as 0, +, -, =, ≠, ≤, etc. will be used conventionally. The expressions 

“point in a line,” and “point of a line” will be used as synonyms. The same goes for “line in a plane” and “line of a plane.” 

Closed lines [Df. 2] will be referred to as such closed lines, or by specific names, as circle [Df. 18]. As in classical Euclidean 
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geometry [p. 153, 1; p. 8, 2], in eu-geometry a straight line is a particular type of line. So, and in contrast with modern 

English, in eu-geometry “line” and “straight line” are not synonyms. Asterisked expressions as “for instance*”, “for 

example*”, “assume*” etc., will always indicate that only one of the possible alternatives in a proof will be considered and 

proved, because the other alternatives can be proved in the same way. The biconditional logical connective will be shortened 

by the term “iff”. And, unless otherwise indicated, the word “number” will always mean whole number. On the other hand, 

eu-geometry makes use of the following formal elements of general purpose: 

Definition A. A quantity to which a real number can be assigned is said a numerical quantity. Numerical quantities that can 

be symbolically represented and operated with one another according to the procedures and laws of algebra, are said operable 

values. 

Definition B. An operable value is said to vary in a continuous way iff for any two different operable values of the 

corresponding variation, the variation contains any operable value greater than the less and less than the greater of those two 

operable values. 

Definition C. Metric properties and metric transformations: properties (transformations) to which operable values that vary 

in a continuous way are univocally assigned: to each quantity of the property (transformation) a unique and exclusive 

operable value, even zero, is assigned. 

Definition D. To define an object is to give the properties that unequivocally identifies the object. Objects with the same 

definition are said of the same class. To draw objects, whether or not defined, is to make a descriptive representation of them 

by means of graphics or texts, or by both of them, without the drawing modifies neither their established properties nor their 

established relative relations, if any. 

Postulate A. Of any two operable values, either they are equal to each other, or one of them is greater than the other, and the 

other is less than the one. Symbolic representations of equal operable values, or of equal objects, are interchangeable in any 

expression where they appear.  

Postulate B. To be less than, equal to, or greater than, are transitive relations of operable values that are preserved when 

adding to, subtracting from, multiplying or dividing by the same operable value, the operable values so related. Metric 

properties (transformations) are algebraically operable through their corresponding operable values. 

Postulate C. Belonging to, and not belonging to, are mutually exclusive relations. Belonging to is a reflexive and transitive 

relation.  

Contrarily to, for instance, fuzzy set theory or non-Boolean logics, eu-geometry assumes [Ps. C], according to which it is not 

possible for an object to partially belong and partially not to belong to another object. 

 

V FOUNDATIONAL BASIS OF EU-GEOMETRY 

1 FUNDAMENTALS ON LINES  

Definition 1. Endedness.-A point at which a line ends is said endpoint. If such a point belongs to the line, the line is said 

closed at that end; if not, the line is said open at that end. Two endpoints, whether or not in the line, define two opposite 

directions in the corresponding line, each from an endpoint, said initial, to the other, said final. 

Definition 2. Collinearity.-A line is said through one or more given points iff such given points are points of the line. A line 

whose points belong, all of them, to a given line is said a segment of the given line. Points, or segments, or points and 

segments, are said collinear if they belong to the same line, and non-collinear if they do not belong to the same line. A line 

is said closed iff any two of its points are the endpoints of two, and only of two, of its segments, otherwise it is said non-

closed. Closed lines are also called figures. 

Definition 3. Commonness.-Two lines are said different from each other iff one of them has at least one point that is not in 

the other. Points and segments belonging to different lines are said common to them, otherwise they are said non-common 

to them. Non-collinear lines with at least one common segment are said locally collinear. Lines without common segments 

but with at least one common point are said intersecting lines, and their common points are also said intersection points. 

Intersecting lines are said to cut or to intersect one another at their intersection points. 

Definition 4. Adjacency.-Lines whose only common point is a common endpoint are said adjacent at that common endpoint 

iff no point of any of them is a non-common endpoint of any of the others. Lines containing all points of a given line, and 

only them, are said to make the given line. 

Definition 5. Sidedness.-Adjacent lines containing all points of a given line, and only them, whose common endpoint is a 

given point of the given line and whose non-common endpoints are the endpoints of the given line, if any, are said sides of 

the given point in the given line. 

Definition 6. Betweenness.-A point is said to be between two given points of a line, iff it is a point of the line and each of 

the given points is in a different side of the point in the line. 
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Definition 7. Uniformity.-Lines whose segments have the same definition as the whole line are said uniform. Two or more 

uniform lines are said mutually uniform iff any segment of any of them has the same definition as any segment of any of the 

others. 

Definition 8. Metricity.-Length (area) is a metric property of lines (figures) of which arbitrary units can be defined. Lengths 

(areas) are said equal iff their corresponding operable values are equal. Lines (figures) with a finite length (area) are said 

finite. If the sides of a point of a line have the same length, the point is said to bisect the line. 

Axiom 1. Point, line and surface are undefined geometrical objects, of each of which a number greater than any given number 

can be formally considered and drawn. 

Axiom 2. A line has at least two points, at least one point between any two of its points, and at most two endpoints, whether 

or not in the line. 

Axiom 3. Two adjacent lines make a line, and a point of a line can be common to any number of any other different lines, 

either collinear, or non-collinear, or locally collinear. 

Axiom 4. Except endpoints, each point of a non-closed line has two, and only two, sides in the line, whose lengths are greater 

than zero and sum the length of the whole line. 

Unless otherwise indicated, only non-self-intersecting and non-closed line that are closed at its endpoints, if any, will be 

considered. 

Corollary 1. The number of points of a line is greater than any given number. 

 Proof.-It is an immediate consequence of [Axs. 1, 2].  

Corollary 2. Each side of a point of a line, except endpoints, is a segment of the line and both sides make the line. 

Proof.-Except endpoints, a point P of a line l [Ax. 1, Cr. 1] has two, and only two, sides in l [Ax. 4], which are two lines 

adjacent at P [Df. 5] containing all points of l, and only them [Df. 5]. So, each side is a segment of the line [Dfs. 5, 2], and 

they make the line l [Ax. 3, Df. 4].  

Corollary 3. Any point of a line is in one, and only in one, of the two sides of any other point, except endpoints, of the line. 

Proof.-Except endpoints, a point P of a line l [Ax. 1] has two, and only two, sides in l [Ax. 4]. Any other point of l [Cr. 1] 

will be in one of such sides [Cr. 2], and only in one of them, otherwise both sides would not be adjacent at P [Df. 4], which 

is impossible [Dfs. 5, 4].  

Corollary 4. A point is in a line with two endpoints iff, being not an endpoint of the line, it is between the endpoints of the 

line.  

Proof.-If a point P is between the two endpoints of a line AB [Axs. 1, 2, 4, Df. 6], it is in AB [Df. 6]. If a point P is in a line 

AB [Cr. 1], it has just two sides in AB [Ax. 4], whose respective non-common endpoints are the endpoints A and B of AB 

[Dfs. 5, 4]. So, P is between them [Df. 6].  

Corollary 5. Any two points of a line are the endpoints of a segment of the line. And the line has a number of segments and 

a number of points between any two of its points greater than any given number. 

Proof.-Let P and Q be any two points of a line l different from its endpoints, if any [Ax. 1, Cr. 1]. Q has two sides in l [Ax. 

4], which are two lines adjacent at Q [Df. 5] that contains all points of l and only them [Cr. 2]. So, in one, and only in one, 

of such lines will be P [Cr. 3]. In turn, P has two sides in that side of Q [Df. 5, Ax. 4], the side PQ in which it is Q and the 

side in which it is not Q [Cr. 3]. PQ is a line [Df. 5] all of whose points belong to l [Df. 5]. Hence, PQ is a segment of l [Df. 

2]. Being P and Q any two of its points, l has a number of segments and a number of points between any two of its points 

greater than any given number [Crs. 1, 4].  

Corollary 6. A segment of a segment of a line, it is also a segment of the line. 

Proof.-Let RS be a segment of a segment PQ of a line l [Ax. 1, Cr. 5]. PQ is a line whose points belong to l [Df. 2]. RS is a 

line whose points belong to PQ [Df. 2], and then to l [Ps. C]. So, RS is a segment of l [Df. 2].  

Corollary 7. If a point is between two given points of a given line, it is also between the given points in any line of which 

the given line is a segment. 

Proof.-Let R be a point of a segment PQ of a line l' [Ax. 1, Cr. 5], which is a segment of another line l [Cr. 5]. Since PQ is a 

segment of l', it is also a segment of l [Cr. 6]. So, R is a point of a segment PQ of l [Df. 2], and then a point of l [Df. 2] 

between P and Q [Cr. 4].  

Corollary 8 (A variant of Hilbert's Axiom II.2). At least one of any three points of a line is between the other two. 

Proof.-Let P, Q and R be any three points of any line l [Ax. 1, Cr. 1]. At least one of them, for example* Q, will not be an 

endpoint of l [Ax. 2]. P can only be in one of the two sides of Q in l [Cr. 3]; R can only be in one of the two sides of Q in l 
[Cr. 3]. So, either P and R are in different sides of Q in l, or they are in the same side of Q in l. If P and R are in different 

sides of Q in l, then Q is between P and R in l [Df. 6]. If not, P and R are in the same side of Q in l, which is a segment l' of 
l [Cr. 2], one of whose endpoints is Q [Df. 5]. If R is an endpoint of l', P can only be between the endpoints Q and R of l' 

[Cr. 4], and then between Q and R in l [Cr. 7]. If R is not an endpoint of l', it has two sides in l' [Ax. 4]: the side RQ in which 

it is Q, and the side in which it is not Q [Cr. 3]. If P is in RQ, it is between R and Q in l' [Cr. 4], and then between R and Q 

in l [Cr. 7]. If P is in the side of R in l' in which it is not Q, then P and Q are in different sides of R in l', and R is between P 
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and Q in l' [Df. 6] and then between P and Q in l [Cr. 7]. So, in all possible cases [Ax. 4, Cr. 3] at least one of the three points 

is between the other two in l.  

Corollary 9 (Hilbert's Axioms II.3, II.1). One, and only one, of any three points of a line is between the other two. 

Proof.-Let P, Q and R be any three points of any line l [Ax. 1, Cr. 1]. At least one of them, for example* Q, will be between 

the other two, P and R, in l [Cr. 8], in which case Q is a point of PR [Cr. 4]. So, Q has two sides in PR [Ax. 4], which are 

two lines, QP and QR, adjacent at Q [Df. 5]. P cannot be between Q and R, otherwise it would be in QR [Cr. 4], QP would 

be a segment of QR [Cr. 5], all points QP [Cr. 1] would be points of QR [Df. 2], and QP and QR would not be adjacent at Q 

[Df. 4], which is impossible [Df. 5]. For the same reasons R cannot be between P and Q either. Therefore, one [Cr. 8], and 

only one, of any three points of a line is between the other two.  

Corollary 10 (a variant of Hilbert's Axiom II.4). Of any four points of a line, two of them are between the other two. 

Proof.-Let P, Q, R and S be any four points of a line l [Ax. 1, Cr. 1]. Consider any three of them, for instance* P, Q and R. 

One, and only one, of them, for instance* Q, will be between the other two, P and R [Cr. 9], and Q will be in PR [Cr. 4]. Of 

the other three points P, R and S, one, and only one, of them will be between the other two [Cr. 9]: if P is between R and S, 

it is in SR [Cr. 4], so that PR is a segment of SR [Cr. 5], Therefore, Q, which is in PR, is also in SR [Cr. 6]. So, Q and P are 

between R and S [Cr. 4]. For the same reasons, if R is between P and S then Q and R are between P and S; and if S is between 

P and R, then Q and S are between P and R. So, in all possible cases [Ax. 4, Cr. 3] two of the four points are between the 

other two.  

Corollary 11. Two segments can only be either collinear or non-collinear. And if a segment of a given line is non-collinear 

with another segment of another given line, then both given lines are also non-collinear. 

Proof.-Since belonging to is a reflexive relation [Ps. C] and segments are lines [Df. 2], any two segments l1 and l2 [Ax. 1] 

belong to a line, even if the line is the own segment itself [Df. 2]. So, l1 and l2 will be either collinear, or non-collinear, or 

collinear and non-collinear. If they were collinear and non-collinear they would be segments that belong to the same line l 
[Df. 2], and segments that do not belong to the same line l [Df. 2], which is impossible [Ps. C]. So, l1 and l2 can only be either 

collinear or non-collinear. Let now l'1 be a segment of a line l1 and l'2 another segment of a line l2 [Cr. 5], such that l'1 and l'2 

are non-collinear [Df. 2]. If l1 and l2 were collinear, they would be segments of the same line l [Df. 2], and being their 

respective segments l'1 and l'2 also segments of l [Cr. 6], l'1 and l'2 would also be collinear [Df. 2], which is not the case. 

Hence, l1 and l2 must also be non-collinear.  

Corollary 12. If two points of a line have a given property, and all points between any two points with the given property 

have also the given property, then the line has a unique segment whose points are all points of the line with the given property. 

Proof.-Let A and B be two points [Ax. 1, Cr. 5] with a given property (gp-points for short) of a line l such that all points of l 
between any two of its gp-points are also gp-points. So, l has a number of gp-points greater than any given number [Cr. 5]. 

Let a segment whose points are gp-points, except at most its endpoints, be referred to as gp-segment. Any gp-point C of l is 

at least in the gp-segment AC of l [Crs. 5, 4]. So, all gp-points of l are in gp-segments. If all gp-points of l were not in a 

unique gp-segment, they would be in at least two gp-segments DE and FG of l [Cr. 5], so that, being* E and F between D 

and G [Cr. 10], DG is not a gp-segment. If so, there will be at least one point P between D and G that is not a gp-point. P has 

two sides in DG, namely PD and PG [Ax. 4, Df. 5]. E must be in the side PD of P in DG in which it is D, otherwise it would 

be in the side PG of P in DG in which it is not D [Cr. 3], P would be between D and E [Df. 6], and it would be a gp-point of 

DE [Cr. 4], which is not the assumed case. So, DE is a segment of the side PD of P in DG [Crs. 5]. For the same reasons, FG 

is a segment of the other side PG of P in DG. Hence, P is between any gp-point of DE and any gp-point of FG [Df. 5]. It is 

then impossible for P not to be a gp-point, and for DG not to be a gp-segment.  

Corollary 13. The length of a finite line is greater than the length of each of the sides of any of its points, except endpoints, 

and it is greater than zero. The length of each side is equal to the length of the whole line minus the length of the other side. 

And the length of a segment of a line is less than the length of the whole line if at least one endpoint of the segment is not an 

endpoint of the line. 

Proof.-Let P be a point of a finite line AB [Df. 8, Axs. 1, 2]. Assume the length AP is not less than the length AB. It will be 

AP ≥ AB [Ps. A], and being AB = AP + PB [Ax. 4], it would hold AP ≥ AP + PB [Ps. A]. Hence, 0 ≥ PB [Ps. B], which is 

impossible [Ax. 4]. So, it must be AP < AB [Ps. A]. And for the same reasons PB < AB. Therefore, and being 0 < PB [Ax. 

4], it holds 0 < AB [Ps. B]. So, the length of any line is greater than zero. And from AP + PB = AB [Ax. 4], it follows 

immediately AP = AB - PB; PB = AB - AP [Ps. B]. Let now Q be any point of AB different from P [Crs. 1]. It will be in 

one, and only in one, of the sides of P in AB [Cr. 3], for instance* in AP. It has just been proved that AP < AB. If Q were 

the endpoint A of AP we would have QP = AP [Ps. A]. If not, and for the same reasons above, it will be QP < AP. So that 

we can write QP ≤ AP, and then QP < AB [Pss. B, A]. Therefore, the length of a segment of AB is less than AB if at least 

one if its endpoints P is not an endpoint of AB.  

 

2 FUNDAMENTALS ON STRAIGHT LINES  

Definition 9. Extensible lines.-To produce (extend) a given line by a given length is to define a line, said production 

(extension) of the given line, so that the production has the given length, is adjacent to the given line, and the production and 

the produced lines are of the same class as the given line. Lines that can be produced from any of its endpoints by any given 

length are said extensible. 
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Definition 10. Straight lines: extensible and mutually uniform lines that cannot be locally collinear nor have non-common 

points between common points. 

Definition 11. Straightness.-Three or more points are said to be in straight line with one another iff they are in the same 

straight line, whether or not produced. A point is said in straight line with a given straight line iff it is in straight line with 

any two points of the given straight line, whether or not produced. Collinear straight lines whose common line is a straight 

line, and only them, are said to be in straight line with one another. 

Axiom 5. Any two points can be the endpoints of a straight line, and only both points are necessary to draw the straight line. 

Corollary 14. A segment of a straight line is also a straight line. 

Proof.-It is an immediate consequence of [Ax. 5, Dfs. 10, 7].  

Corollary 15 (Strong form of Euclid's First Postulate). Any two points can be the endpoints of one, and only of one, straight 

line. 

Proof.-Assume two different straight lines l1 and l2 have the same endpoints A and B. At least one of them will have a point 

which is not in the other [Df. 3]. And they would have at least one non-common point between the two common points A 

and B, which is impossible [Df. 10]. So, any two points can be the endpoints of one [Ax. 5], and only of one, straight line.  

Hereafter, to join two points will always mean to consider and draw the unique straight line whose endpoints are both points. 

Corollary 16 (Strong form of Euclid's Second Postulate). There is one, and only one, way of producing a given straight line 

by any given length and from any of its endpoints, being the produced line a straight line; and the given straight line and its 

production are adjacent straight lines in straight line with each other. 

Proof.-Let AB be any straight line [Ax. 1, Cr. 15]. It can be produced from any of its endpoints, for example* from B, by 

any given length [Dfs. 10, 9] to a point C, so that BC and AC are straight lines [Dfs. 10, 9, D], and AB and BC are adjacent 

segments [Dfs. 10, 9]. Assume it can be produced from B by the same given length to another point C'. The straight lines 

AC, AC' [Dfs. 10, 9] would have a common segment AB [Cr. 5]; they would be collinear [Dfs. 10; 3]; and BC and BC' would 

be two segments of the same line l [Cr. 5], both adjacent at B to AB [Ax. 5, Df. 9]. Being C and C' different points, one of 

them, for example* C', would be between B and the other in l [Cr. 9], and we would have BC' < BC [Cr. 13], which is not 

the case. So, C' can only be the point C. And being BC a straight line [Dfs. 10, 9, D], it is the unique straight line joining B 

and C [Cr. 15]. So, there is a unique way of producing a straight line by a given length from any of its endpoints. And being 

segments of the produced straight line AC, the straight lines AB and BC are in straight line with each other [Df. 11].  

Corollary 17. Through any two points, any number of collinear straight lines of different lengths can be drawn. 

Proof.-It is an immediate consequence of [Df. 2, Crs. 15, 16].  

Corollary 18. Two straight lines with two common points belong to the same straight line. 

Proof.-All points between any two common points of two straight lines are also common points [Df. 10]. So, if two straight 

lines AB and CD have two common points, they have a unique segment PQ with all of their common points [Cr. 12]. PQ is 

a straight line [Cr. 14]. AB and PQ belongs to the same straight line l [Df. 2], and PQ and CD belong to the same straight 

line l [Df. 2]. Therefore, AB and CD belong to the same straight line l [Ps. C].  

Corollary 19. Any point between the endpoints of a given straight line can be common to any number of intersecting straight 

lines not in straight line with the given straight line, and that point is the only common point of those straight lines and the 

given straight line, even arbitrarily producing them and the given straight line. 

Proof.-Any point P between the endpoints of a straight line l [Ax. 1, Cr. 15] can be common to any number n of non-collinear 

straight lines [Ax. 3], which being non-collinear cannot be in straight line with the given straight line [Df. 11]. Assume there 

is a second common point Q of l and any one of those n intersecting straight lines l', whether or not producing l and l' [Cr. 

16]. Both straight lines would have a common segment PQ [Df. 10, Cr. 4] and they would be locally collinear [Df. 3], which 

is impossible [Df. 10]. Therefore, P is the only intersection points of l and each of those n intersecting straight lines, even 

arbitrarily producing l and any of the n intersecting straight lines.  

Corollary 20. There is a number of points greater than any given number that are not in straight line with any two given 

points, or with a given straight line. 

Proof.-Let A and B be any two points [Ax. 1]. Join A and B [Cr. 15], and let PC be a straight line that intersects AB at P [Cr. 

19]. P is the only common point of both straight lines even arbitrarily produced [Cr. 19]. So, PC has a number of points 

greater than any given number [Cr. 1] none of which, except P, is in straight line with A and B [Df. 11]. On the other hand, 

if AB is any straight line, it has just been proved there is a number greater than any given number of points that are not in 

straight line with A and B, and then with AB [Df. 11].  

Corollary 21. Each endpoint of a given straight line can be the common endpoint of any number of adjacent straight lines 

not in straight line with the given straight line. 

Proof.-Let AB be any straight line [Ax. 1, Cr. 15]. There is a number greater than any given number of points not in straight 

line with AB [Cr. 20]. Join each of them with, for instance*, the endpoint A of AB [Cr. 15]. Each of these straight lines are 

adjacent at A to AB [Df. 4]. If any of them, for instance* AP, were in straight line with AB, they would be segments of the 

same straight line [Df. 11], and P would be in straight line with AB [Df. 11], which is not the case.  

Corollary 22. If two adjacent straight lines are not in straight line, then no point of any of them, except their common 

endpoint, is in straight line with the other. 
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Proof.-Let AB and AC be two straight lines adjacent at A not in straight line with each other [Cr. 21]. Let P be a point of, 

for instance*, AB [Cr. 1]. A, P and B belong to AB. So, if P were in straight line with AC, it would be in straight line with 

A and C [Df. 11], P, A and C would belong to the same straight line [Df. 11], and then A, P, B and C would belong to the 

same straight line [Ps. C], which is not the case.  

 

3 FUNDAMENTALS ON PLANES  

Definition 12. Plane: a surface that contains at least three points not in straight line and any straight line through any two of 

its points. A line is said in a plane iff all of its points are points of the plane. Lines in a plane are said plane lines. Points, or 

lines, or points and lines in the same plane are said coplanar. 

Definition 13. Sides of a given straight line in a plane: parts of the plane that contain all points of the plane, and only them, 

each part with at least two common points and at least two non-common points, where a point is said common, or common 

to all parts, if it is in straight line with the given straight line; and non-common if it is not, being said non-common of a part 

iff it is in that part. Any other straight line is said to be in one of those parts iff all of its points between its endpoints are non-

common points of that part. 

Axiom 6. Any three points lie in a plane, in which any straight line has just two sides. Any other straight line is in one of 

such sides iff its endpoints are in that side. 

Corollary 23 (A variant of Hilbert's Axiom I.5). A plane has a number of points greater than any given number, any two of 

which can be joined by a unique straight line in that plane. And any given straight line is at least in a plane, in which it can 

be produced by any given length. 

Proof.-Let P, Q and R be any three points not in straight line [Cr. 20], and Pl a plane in which they lie [Ax. 6]. Pl has at least 

the points P, Q and R and all points of any straight line [Cr. 1] through any two of its points [Dfs. 12, Ax. 5, Cr. 17]. So, Pl 
has a number of points greater than any given number [Cr. 1]. Let, then, A and B be any two points of Pl. Join A and B [Cr. 

15], and produce AB from A and from B by any given length to the respective points A' and B' [Cr. 16]. Since A'B' is a 

straight line [Cr. 16] through two points A and B [Df. 2, Cr. 17] of Pl, A'B' is in Pl [Df. 12], so that all points of A'B' are in 

Pl [Df. 12], and then all points of its segment AB are in Pl [Df. 2, Cr. 5]. Hence, Pl contains the unique straight line joining 

any two of its points A and B [Crs. 14, 15]. Let now AB be any straight line [Ax. 1, Cr. 15], and P and Q any two of its points 

[Cr. 1]. There is a plane Pl containing A, P and Q [Ax. 6], and the straight line AB through P and Q is in Pl [Df. 12]. Produce 

AB from A and from B by any given length to any two points A' and B' respectively [Cr. 16]. Since the produced straight 

line A'B' is a straight line [Cr. 16] through two points A and B [Cr. 17] of Pl, it is a straight line of Pl [Df. 12].  

Corollary 24. A point of a plane can only be either common to both sides of a straight line in that plane, or non-common of 

one, and only of one, of such sides. 

Proof.-Let A and B be any two points of a plane Pl [Ax. 6]. Join A and B [Cr. 15]. AB is in Pl [Cr. 23]. Let P be any point 

of Pl. Either P belongs to AB, whether or not produced [Cr. 16], or it does not [Ps. C]. If P belongs to AB, whether or not 

produced, P is a point common to both sides of AB [Ax. 6, Df. 13]. If P does not belong to AB [Df. 13], whether or not 

produced, P cannot be in both sides of AB [Df. 13], and being a point of Pl, it can only be in one, and only in one, of the 

sides of AB [Df. 13, Ax. 6]. So, it is a non-common point of that side, and only of it [Df. 13].  

Corollary 25. There is a plane containing any two adjacent straight lines not in straight line, being each of them in the same 

side of the other. And there is a plane containing any two intersecting and non-adjacent straight lines. 

Proof.-Let AB and AC be two straight lines adjacent at A and not in straight line with each other [Cr. 21]. A, B and C are 

not in straight line, otherwise they would be in the same straight line [Df. 11], which is not the case [Df. 11]. So, there is a 

plane in which lie A, B and C [Ax. 6] and the adjacent straight lines AB and AC [Cr. 23]. B is not in straight line with AC 

[Cr. 22], so it is a non-common point of one of the sides of AC [Df. 13]. Therefore, AB is in that side [Ax. 6]. For the same 

reasons AC is in one of the sides of AB. Let now l1 and l2 be any two non-adjacent straight lines that intersect at a unique 

point P [Cr. 19], Q a point of l1, and R a point of l2 [Cr. 1]. There is a plane containing P, Q and R [Ax. 6], the straight line 

l1 through Q and P [Cr. 17, Df. 12], and the straight line l2 though R and P [Cr. 17, Df. 12].  

Corollary 26. All points between two points of a straight line in the same side of a given straight line lie in that side of the 

given straight line, and that side has a number of non-common points greater than any given number. 

Proof.-Let P and Q be any two non-common points in the same side Pl1 [Df. 13] of a straight line l in a plane Pl [Cr. 23]. 

Join P and Q [Cr. 15]. PQ is in Pl1 [Ax. 6]. All points between P and Q are non-common points of Pl1 [Df. 13]. Therefore, l1 

has a number of non-common points greater than any given number [Cr. 1].  

Corollary 27. In a plane and in each side of a straight line in that plane, there exists a number greater than any given number 

of straight lines, whether or not adjacent, none of which is in straight line with any of the others. 

Proof.-Let A, B and C be any three points not in straight line [Cr. 20], and Pl a plane in which they lie [Ax. 6]. Join A and B 

[Cr. 15] and let Pl1 and Pl2 be the two sides of AB in Pl [Ax. 6]. C will be a non-common point [Df. 13] of, for example*, 

Pl1 [Cr. 24]. Join C with A and with B [Cr. 15]. CA and CB are not in straight line, otherwise A, C and B would be in straight 

line [Df. 11], which is not the case. Join each of any number n of points between C and A with a different point between C 

and B [Crs. 5, 15], and let DE and FG be any two of such straight lines, D and F in CA, and E and G in CB. DE and FG 

cannot be in straight line with each other, otherwise they would be segments of the same straight line [Df. 11], and D, E, F 

and G would be in that straight line [Df. 2], so that D would be in straight line with E and G, and then with CB [Df. 11], 



 

                                                                                                    7 

which is impossible [Cr. 22]. The same argument applies to the n straight lines joining the same point H between A and C 

with n different points between C and B [Crs. 5, 15], being all of these straight lines adjacent at H [Df. 4]. And being CA 

and CB in Pl1 [Ax. 6], all of these straight lines in Pl have their respective endpoints on Pl1 [Df. 13], so that all of them are 

in Pl1 [Ax. 6].  

Corollary 28. The intersection point of two intersecting straight lines has its two sides in each of the intersecting straight 

lines in different sides of the other intersecting straight line in the plane that contains both straight lines. 

Proof.-(Fig. 1.) Let P be the unique intersection point of two straight lines [Cr. 19] AB and CD 

in a plane Pl [Cr. 25]. Since the only points of Pl common to both sides of CD in Pl are the points 

in straight line with CD [Df. 13], and P is the only common point of AB and CD, even arbitrarily 

produced [Cr. 19], P is the only point of AB in straight line with CD [Df. 11], and then the unique 

point common to both sides of CD in Pl [Df. 13]. Therefore, the endpoints A and B can only be 

non-common points of the sides of CD in Pl [Df. 13, Cr. 24]. So, if PA and PB were in the same 

side of CD in Pl, the endpoints A and B would be non-common points of that side [Ax. 6], and being P between them [Cr. 

4], P would also be a non-common point of that side [Cr. 26], which is impossible because it is a common point of both sides 

[Cr. 24]. Therefore, PA and PB cannot be in the same side of CD in Pl. So, they must be in different sides of CD in Pl. The 

same argument proves PC and PD can only be in different sides of AB in Pl.  

Corollary 29. The straight line joining any two non-common points, each in a different side of another given coplanar 

straight line, intersects the given straight line, or a production of it, at a unique point. 

Proof.-(Fig. 2.) Join any two non-common points A and B [Cr. 15] respectively in the sides Pl1 

and Pl2 of a straight line l in a plane Pl [Cr. 23]. AB is in Pl [Cr. 23]. Except A and B, all points 

of AB are between A and B [Cr. 4]. If all points between A and B were non-common points of 

Pl1, AB, including B, would be in Pl1 [Df. 11, Ax. 6], which is not the case. So, AB contains 

points of Pl2 other than B and, for the same reason, points of Pl1 other than A. So, AB has at 

least two points in each side of l. Since all points between two points of a straight line in the 

same side of another coplanar straight line are also in that side [Crs. 26], AB has a segment AC whose points are all points 

of AB in Pl1 [Cr. 12]. And for the same reasons it also has a segment BD whose points are all points of AB in Pl2 [Cr. 12]. 

If C and D were different points, all points of AB between them [Cr. 5] would be in no side of l in Pl, which is impossible 

because all points of AB are points of Pl [Df. 12], and all points of Pl are points either of Pl1, or of Pl2, or of both of them 

[Df. 13]. So, C and D are the same point. Since all points between A and C are in Pl1, AC is in Pl1 [Df. 13], and C is also in 

Pl1 [Ax. 6]. For the same reasons D is in Pl2. Since C and D are the same point, and this point belongs to Pl1 and to Pl2, it is 

a point of l whether or not produced [Df. 13]. So, it is an intersection point of AB and l [Df. 3] whether or not produced. And 

it is the unique intersection point of AB and l, otherwise the non-common point A of Pl1 would be in straight line with at 

least two points of l and it would be a common point of Pl1 and Pl2 [Dfs. 13, 11], which is impossible [Cr. 24].  

Corollary 30. A plane contains at least two non-intersecting straight lines, which can be intersected by any number of 

different coplanar straight lines. 

Proof.-Let l be a straight line in a plane Pl [Cr. 23]; Pl1 and Pl2 the two sides of l in Pl [Ax. 6]; A, B any two non-common 

points of Pl1; and C, D any two non-common points of Pl2 [Cr. 26]. Joint A with B; and C with D [Cr. 15]. AB is in Pl1, and 

CD in Pl2 [Ax. 6]. AB and CD cannot intersect with each other because the intersection point would be a common point of 

Pl1 and Pl2 [Df. 13] while all of their points, even endpoints, are non-common points of Pl1 and of Pl2 respectively [Df. 13, 

Ax. 6]. On the other hand, AB and CD can be intersected by any number n of straight lines in Pl, each joining each of any n 

points of AB with a point of CD [Crs. 1, 15, 23].  

 

4 FUNDAMENTALS ON DISTANCES  

Definition 14. Distance between two points: length of the straight line joining both points. If both points are the same point 

or a couple of common points, the distance between them is said zero. 

Definition 15. Distance from a point not in a given line to the given line: the shortest distance between the point and a point 

of the given line, or of a production of the given line if the given line is a straight line and the point is not in straight line with 

it. 

Definition 16. Distancing direction and relative distancing.-Two non-common points in the same side of a given coplanar 

straight line and at different distances from the given straight line define a distancing direction in the straight line joining 

both points: from the nearest to the farthest of them. The difference between the distances to the given straight line from the 

endpoints of a segment of another straight in the same side of the given straight line is called relative distancing of the 

segment with respect to the given straight line. 

Definition 17. Parallel straight lines.-A straight line is said parallel to another coplanar straight line, iff all of its points are 

at the same distance, said equidistance, from the second straight line. 

Section VI proves the existence of parallel straight lines. According to [Df. 14], the length of a straight line AB and the 

distance from A to B will be used as synonyms. 

Axiom 7. The distances from the points of a line to a fixed point or to another line vary in a continuous way. 



 

                                                                                                    8 

Corollary 31. The distance between any two given points is unique. 

Proof.-It is an immediate consequence of [Cr. 15, Df. 14].  

 

5 FUNDAMENTALS ON CIRCLES  

Definition 18. Circle: a closed plane line whose points are all points of the plane, and only them, at the same given finite 

distance, said radius, from a fixed point of that plane, said centre of the circle. A straight line joining any point of the circle 

with its centre is also said a radius of the circle. Two radii of a circle in straight line with each other are said a diameter of 

the circle, and the endpoints of a diameter are the common endpoints of two segments of the circle called semicircles. 

Coplanar circles, and their corresponding segments, with the same centre are said concentric. The centre and any coplanar 

point at a distance from the centre less than its radius are said interior to the circle; if that distance is greater than the radius 

of the circle, the coplanar point is said exterior to the circle. 

Axiom 8. Any point of a plane can be common to any number of coplanar lines and the centre of any number of circles of 

any finite radius. 

Corollary 32. A circle has interior points, other than its centre, and exterior points. And any point coplanar with a circle is 

either in the circle, or it is interior or exterior to the circle. 

Proof.-Let O be the centre of a circle c in a plane Pl [Ax. 8], and A any point of c [Df. 18]. Joint A with O [Cr. 15]. Produce 

OA from A by any given finite length to a point A' [Cr. 16]. OA' is in Pl [Cr. 23]. Let P be any point of OA [Cr. 5]. Since 

OP < OA and OA < OA' [Cr. 13], P is interior and A' is exterior to c [Dfs. 14, 18]. Join now any point R of Pl [Cr. 23] with 

O [Cr. 15]. It holds RO ⋛ OA [Ps. A], and R will be either in c (RO = OA), or it will be interior (RO < OA) or exterior (RO 

> OA) to c [Dfs. 14, 18].  

Corollary 33. A line intersects a coplanar circle at a point between its endpoints iff it has points interior and exterior to the 

circle. 

Proof.-Let O be the centre and AO the finite radius of a circle c [Ax. 8] in a plane Pl; BC a line in Pl [Ax. 8], and P and Q 

two points of BC [Cr. 1] such that P is interior and Q exterior to c [Cr. 32]. Being P interior to c, its distance to O is less than 

AO [Df. 18]. Being Q is exterior to c, its distance to O is greater than AO [Df. 18]. Therefore, there will be at least one point 

R in PQ, and then in BC [Cr. 1, 2], whose distance to O is just AO [Ax. 7, Df. B]. And R will also be in c [Df. 18]. So, R is 

an intersection point of BC and c [Df. 3]. On the other hand, if all points of a line BC are interior (exterior) to c, none of its 

points is at a distance AO from O [Df. 18], and then no point of BC is in c [Df. 18]. Therefore, c and BC have no point in 

common, and they do not intersect with each other [Df. 3].  

 

6 FUNDAMENTALS ON ANGLES  

Definition 19. Rigid transformations of lines: metric and reversible displacements of lines that preserve the definition and 

the metric properties of the displaced lines, each of whose points moves from an initial to a final position along a fixed finite 

line called trajectory, in any of the two opposite directions defined by the endpoints of the trajectory. If all points of the 

displaced line, except at most one, move around a fixed point and their trajectories are segments of concentric and coplanar 

circles whose centre is the fixed point, the rigid transformation is called rotation.  

Definition 20. Superpose two adjacent lines: to place them with at least two common points by means of rotations around 

their common endpoint. Lines with at least two common points are said superposed. 

Definition 21. Angle.-Two straight lines are said to make an angle greater than zero iff they are adjacent, one of them can 

be superposed on the other by two opposite rotations around their common endpoint, and the other can be superposed on the 

one by the same two rotations, though in opposite directions. The least of the rotations, of both if they are equal, is said 

(convex) angle, the greater one is said concave angle. The angle is said zero iff both straight lines are superposed. The angle 

is said to be in the side of one of the adjacent straight lines where the other adjacent straight lines lies. The straight lines and 

their common endpoint are said respectively sides and vertex of the angle. A side is said to make an angle with the other at 

their common vertex. A point is said interior to an angle iff it is a point of a straight line that subtends the angle, which is 

any straight line joining one point of each side of the angle; otherwise it is said exterior to the angle. 

Definition 22. Adjacent angles and union angle.-Two angles are said adjacent iff they have a common vertex; a common 

side; the first angle superposes its non-common side on the common side, and the second angle superposes the common side 

on its non-common side, both angles in the same directions of rotation. The angle that superposes the non-common sides of 

both angles in the same direction of rotation of both angles is their union angle, which can be concave. If two adjacent angles 

are equal to each other, they are said to bisect their union angle. 

Definition 23. Straight angle.-Except endpoints, the two sides of any point of a straight line, and only them, make with each 

other at that point an angle said straight angle. 

Definition 24. Acute, obtuse and right angles.-If a straight line cuts another given straight line and makes with it at the 

intersection point two adjacent angles that are equal to each other, both angles are said right angles, in which case, and only 

in it, the two sides of each angle are said perpendicular to each other, and the first straight line is also said perpendicular to 

the given one. Angles less (greater) than a right angle are said acute (obtuse). 
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Definition 25. Interior and exterior points and angles.-If two given coplanar straight lines are intersected by another coplanar 

straight line, said common transversal, a point of this transversal, different from the intersection points, is said interior to the 

given straight lines if it is between the intersection points of the transversal with both given straight lines; otherwise it is said 

exterior to them. Of the angles that the common transversal makes with the two given coplanar straight lines at their 

intersection points, those whose sides in the transversal have only exterior points are said exterior angles; and those whose 

sides in the transversal have interior points are said interior angles. 

Definition 26. Alternate, corresponding and vertical angles.-Of the angles that a common transversal makes with two 

coplanar straight lines, the angles of a couple of non-adjacent angles are said alternate if they are both interior, or both 

exterior, and they are in different sides of the transversal; and corresponding if they are in the same side of the transversal, 

being the one interior and the other exterior. Of the angles that two intersecting straight lines make with each other at their 

intersection point, the couples of angles with no common side are said vertical angles. 

Axiom 9. It is possible for two adjacent straight lines to make any angle at their common endpoint. 

Corollary 34. Two straight lines make an angle greater than zero iff they are adjacent, being equal and unique the angle that 

each of the straight lines make with the other at their common endpoint, though both rotations are in opposite directions. 

Proof.-Each of two coplanar adjacent straight lines [Cr. 25], and only them, makes with the other the same angle greater than 

zero at their common endpoint, though in opposite directions [Df. 21, Ax. 9]. And that angle is unique [Df. 19, C].  

Corollary 35. The superposition by rotation of two adjacent straight lines around their common endpoint is a unique straight 

line. 

Proof.-It is an immediate consequence of [Df. 20, Cr. 18].  

Corollary 36. An angle does not change by producing arbitrarily its sides from their non-common endpoints. 

Proof.-Let AB and AC be two adjacent straight lines [Cr. 25] that make an angle α > 0 at A [Cr. 34]. Produce AB from B 

and AC from C by any given length respectively to B' and C' [Cr. 16]. The rotation α superposes at least two points of AB' 

and AC', because it is the least rotation that superposes at least two points of AB and AC [Df. 21] and all points of AB and 

AC are points respectively of AB' and AC' [Cr. 16, Df. 2]. On the other hand, if a rotation α' less than α superposes AB' on 

AC' but not AB on AC, the non-superposed (non-common) points of AB and CD would be between then common point A 

of AB' and AC' and any other superposed (common) point of AB' and AC' [Df. 20], which is impossible [Df. 10]. So, AB' 

and AC' also make at A an angle α.  

Corollary 37. Three adjacent straight lines define three angles at their common endpoint. And two intersecting straight lines 

define with each other at most four angles at their intersection point. 

Proof.-Three coplanar straight lines AB, AC and AD adjacent at the same point A [Cr. 27] define three couples of coplanar 

straight lines adjacent at that point: AB, AC; AB, AD; and AC, AD [Df. 4]. So, AB, AC and AD define three angles at that 

point [Cr. 34]. For the same reason, two intersecting straight lines define at most four angles whose two sides are not in the 

same straight line.  

Corollary 38. Three straight lines adjacent at the same point define a couple of adjacent angles at that point. 

Proof.-Three straight lines r1, r2, r3 adjacent at V define three angles α,  and  at V [Cr. 37], and then three couples of angles: 

α and ; α and ; and  and . Being only three sides, the two angles of each of such couples must have a common side. The 

angles of such couples that superpose their common side on their respective non-common sides can only be rotations either 

in the same or in opposite directions. In the second case, both angles are adjacent because any of them also superposes, in 

the opposite direction, its non-common side on the common side [Dfs. 21, 22]. In the first case both rotations, for instance* 

α and , will be different [Dfs. 21, 19, C], and one of them, for instance* α, will be less than the other [Ps. A]. Assuming* α 

superposes r1 on r2, and  superposes r1 on r3 in the same direction of rotation,  can only be the angle that superposes r2 on 

r3. Hence, α and  are adjacent [Df. 22].  

 Corollary 39. Two adjacent straight lines make a straight line iff they make a straight angle at their common endpoint. 

Proof.-If two adjacent straight lines l1 and l2 [Cr. 25] make at their common endpoint P a straight angle, they are the two 

sides of the point P in a straight line l [Df. 23], so that l1 and l2 make the straight line l [Cr. 2]. If two straight lines l1 and l2 

adjacent at P make a straight line l, l1 and l2 are the sides of their common endpoint P [Df. 5] in l, so that they make a straight 

angle at P [Df. 23].  

 

7 FUNDAMENTALS ON POLYGONS 

Definition 27. Polygon: three or more finite coplanar straight lines, called sides, each of which is adjacent at each of its two 

endpoints, called vertexes, to just one of the others, being not in straight line with each other, and being their common 

endpoints their only intersection points, are said to make a polygon. Two sides of the same or of different polygons are said 

equal iff they have the same length. Two polygons are said adjacent iff they have a common side; opposite iff they have two 

opposite angles at a common vertex; and similar iff the angles of the one are equal to the angles of the other. Polygons with 

at least one concave angle are said concave. The angle each side makes with the production of another adjacent side is said 

exterior. A straight line joining two vertexes not in the same side of a polygon is a diagonal of the polygon. A diagonal 

bisects a polygon iff it is the common side of two adjacent polygons with the same area. 
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Definition 28. Triangles and quadrilaterals. A polygon of three (four) sides is a triangle (quadrilateral). A triangle 

(quadrilateral) is said equilateral if its three (four) sides are equal to one another. A triangle is said isosceles if it has two 

equal sides; and scalene if the three of them are unequal. If one of its angles is a right angle, it is said a right-angled triangle. 

A rectangle is a quadrilateral all of whose angles are right angles. An equilateral rectangle is a square. And a parallelogram 

is a quadrilateral with two couples of parallel sides. Polygons with more than four sides are named pentagons, hexagons, 

heptagons etc. 

Axiom 10. A straight line joining two points of different sides of a polygon, defines two adjacent polygons whose areas are 

greater than zero and sum the area of the polygon. 

Corollary 40. Any two adjacent sides of a polygon make an angle greater than zero at their common endpoint, and the 

polygon has as many angles as sides. 

Proof.-Being coplanar all sides of a polygon [Df. 27], each couple of its adjacent sides makes a unique angle greater than 

zero at their common endpoint [Cr. 34]. So, the polygon has as many angles as couples of adjacent sides. Since each couple 

of adjacent sides is defined by two adjacent sides, and each side defines two of such couples, one at each of its two endpoints 

[Df. 27], the polygon has as many angles as sides.  

 

VI  INTRODUCING PLANE EU-GEOMETRY 

In this section, all points and lines will be coplanar and, unless otherwise indicated, all angles will be greater than zero. For 

the sake of brevity, three of the first 16 propositions of Euclid's Elements (Book I) will be used in this section, they will be 

referred to as [EBI, n], where n is the proposition number [1]. The proofs of these Euclid's propositions make use of other 

two Euclid's propositions not proved here either. The definitions, common notions and postulates (first, second and third) 

used in the proofs of these 5 Euclid's propositions are also formal elements of the foundational basis of eu-geometry (Section 

V). So, they can also be proved within it, even in different and more formally detailed forms. They will be assumed to follow 

[Cr. 41] and to precede [Pr. 10]. 

 

1 PRELIMINAR PROPOSITIONS  

Proposition 1 (Euclid's Proposition 3 extended). To take a point in a finite straight line, produced if necessary, at any given 

finite distance from a given point of the straight line, and in any given direction of the two opposite directions of the straight 

line. 

Proof.-Let AB be a finite straight line [Cr. 23]; P the given point of AB [Cr. 5]; CD the given finite distance [Df. 14]; and 

the given direction, for example,* the direction from B to A [Ax. 2, Df. 1]. Produce AB from A by the given distance CD to 

a point A' [Cr. 16]. With centre P and radius CD draw the circle c [Ax. 8]. P is interior to c [Df. 18], and being PA' > AA' 

[Cr. 13] and AA' = CD, it holds PA' > CD [Ps. B]. Therefore, A' is exterior to c [Df. 18]. Hence, there is an intersection point 

Q of c and BA' [Cr. 33]. Q is in AB [Df. 3], whether or not produced, at the given finite distance CD from the point P of AB 

[Df. 18]; and in the given direction from B to A.  

From now on, to take a point in a straight line at a given finite distance from one of its points will always mean to take the 

point in that straight line produced if necessary [Pr. 1]. And the distance between two points will always be finite, which is 

founded on the following set theoretical proposition. 

Proposition 2. The length of a straight line with two endpoints is always finite. And the distance between any two given 

points is always finite. 

Proof.-Let A and B be any two points [Ax. 1]; AB the unique straight line joining them [Cr. 15]; and P1 a point of AB at any 

finite distance AP1 from A [Pr. 1]. Let P be the sequence of all successive points P1, P2, P3... of AB defined according to: 

Pi ≥ 1: iff PiB ≥ AP1, take a point Pi+1 in PiB separated from Pi by a distance AP1 [Pr. 1]. Consider the closed segment QB 

whose length is also AP1 [Pr. 1, Cr. 5]. It holds: Pα  P and Pα  AQ, there is a point Q'  QB such that PαQ' ≥ AP1 because 

if PαQ < AP1 then PαB > AP1 [Cr. 13]. In consequence, there must be in QB a point P of P (and only one because QB=AP1), 

otherwise P would not contain all points Pi of AB such that Pi-1Pi = AP1, which is not the case. So, the sequence P has a last 

element P. The endpoints A and B and the sequence P define in AB a sequence S of successive adjacent segments: AP1, 

P1P2, P2P3... PB [Cr. 5, Df. 4] of the same length AP1 [Df. 14], except at most the last one PB ≤ AP1, all of them left-open 

and right-closed, except AP1 that is closed. In the ordering O of S, there is a first element AP1; a last element PB; each 

element PiPi+1 has an immediate predecessor Pi-1Pi (or AP1), except AP1, and an immediate successor Pi+1Pi+2 (or PB), except 

PB; no element exists between any two of its successive elements; and any non-empty subsequence S' of S, containing for 

instance* PvPv+1, will also contain an element that precedes in the ordering O of S all elements of S' except itself: one of the 

elements AP1, P1P2, P2P3... PvPv+1. Therefore, S is a well ordered sequence, to which an ordinal number can be assigned [p. 

152, 5]. In addition, S cannot be non-denumerable [6]. The ordinal of S cannot be the least transfinite ordinal ω because the 

sequences whose ordinal is ω (as the sequence of all finite ordinals 1, 2, 3,...) have not a last element, which is not the case 

of S. So, if the ordinal of S were infinite, it would be greater than ω, in which case there would be a first element succeeding 

all elements AP1, P1P2, P2P3... indexed by the sequence of all finite ordinals 1, 2, 3,... which can only be the limit of all them 

PωPω+1 [Theorem I, p. 158, 5]. Take in AB a point R at any given distance from Pω less than AP1, and in the direction from 

Pω to A [Pr. 1]. R could only belong to a segment PvPω immediately preceding PωPω+1 (or PωB) [Cr. 13]. But PvPω is impossible 
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because there is not a last finite ordinal v whose immediate successor v + 1 is ω. Hence, the ordinal of S cannot be infinite 

but finite. S can only have a finite number of elements. And being finite the sum of any finite number of finite lengths [Dfs. 

C, A, Ps. B], AB has a finite length. And the distance between any two given points is always finite [Df. 14, Crs. 15, 31].  

Proposition 3. All straight angles are equal to one another. 

Proof.-Let P and Q be any two points respectively of any two straight lines AB and CD [Crs. 1,27], and σ and σ' the respective 

straight angles that PA makes at P with PB, and QC makes at Q with QD [Cr. 39]. Assume σ' ≠ σ. In such a case a straight 

line PE adjacent at P to PA and making an angle σ' at P with PA is possible [Ax. 9]. Being each angle unique [Cr. 34] and σ 

≠ σ', PE and PB will not be superposed [Df. 21] and they will be adjacent at P [Dfs. 20, 4]. PA and PB are the two sides of 

σ; and PA and PE the two sides of σ'. Being σ and σ' straight angles, AB and AE are straight lines [Cr. 39]; and AP a common 

segment of them [Cr. 5]. Consequently, AB and AE are collinear [Df. 10], and A, P, B and E are in the same line [Df. 2]. So, 

it is impossible for PB and PE to be adjacent at P. The assumption σ' ≠ σ is, then, impossible. And it can be concluded that 

all straight angles are equal to one another.  

Proposition 4. The union angle of two adjacent angles is the sum of both adjacent angles and is greater than each of them. 

Proof.-Let r1, r2 and r3 be three straight lines adjacent at their common endpoint V [Cr. 27], where they make a couple of 

adjacent angles α and  [Cr. 38]. Assume* α superposes r1 on r2, and  superposes r2 on r3 in the same direction of rotation 

[Df. 22]. The rotation α around V superposes r1 on r2 [Df. 21] in a unique straight line [Cr. 35], and then the rotation  around 

V superposes r1 on r3 in a unique straight line [Df. 21, Cr. 35]. So, the rotation υ = α +  [Ps. B] around V in the same 

direction of rotation of α and  superposes the non-common sides r1 and r3 of α and . It is, then the union angle of α and  

[Df. 22]. And being α > 0,  > 0 [Ax. 9], it holds α +  > ;  + α > α [Ps. B], and then υ > ; υ > α [Ps. A].  

Proposition 5 (A variant of Euclid's Proposition 13). If a straight line makes with another straight line two adjacent angles, 

these angles can be either equal or unequal to each other, and they always sum a straight angle. 

Proof.-(Fig. 3.) Let D be the unique intersection point of two straight lines AB and DC [Crs. 19, 25]. 

DA, DC and DB are straight lines [Cr. 14] adjacent at D [Df. 4]. So, DA makes at D with DC, and DC 

at D with DB two adjacent angles α and  [Cr. 38] of which D is the common vertex and DC the 

common side [Df. 22]; α and  can be either equal or unequal to each other [Ps. A], and their union 

angle σ is the rotation α +  around D [Pr. 4] that in the same direction of rotation of α and  superposes 

the non-common sides DA and DB respectively of α and  [Df. 22], and being DA and DB the two 

sides of D in the straight line AB [Df. 5, Ax. 4], σ is a straight angle [Cr. 39, Df. 23]. Therefore, α and  sum a straight angle 

[Pr. 4].  

Proposition 6 (Euclid's Proposition 15). The two angles of any couple of vertical angles are equal to each other. 

Proof.-(Fig. 4.) Let P be the unique intersection point of two straight lines AB and CD [Crs. 19, 25]. 

PA, PC, PB and PD are straight lines [Cr. 14] adjacent at P [Df. 4]. PC makes at P with AB two 

adjacent angles α and  that sum a straight angle [Pr. 5]. PB makes at P with CD two adjacent angles 

 [Cr. 34] and  that sum a straight angle [Pr. 5]. PD makes at P with AB two adjacent angles  [Cr. 

34] and  that sum a straight angle [Pr. 5]. Therefore, α +  =  +  =  +  [Pr. 3]. Consequently α = 

 and  =  [Ps. B].  

2 ON TRIANGLES  

Proposition 7. Three points not in straight line define a triangle. And any non-common endpoint of one of the sides of a 

given straight line defines a triangle with any two points of the given straight line, whether or not produced. 

Proof.-Let A, B and C be any three points not in straight line [Cr. 20]. There is a plane Pl that contains them [Ax. 6]. Joins 

A with B; B with C; and C with A [Cr. 15]. AB, BC and AC are in Pl [Cr. 23]. And none of them is in straight line with any 

of the others, otherwise A, B and C would be in straight line [Df. 11], which is not the case. B is the only common point of 

AB and BC, otherwise they would be in straight line [Cr. 18] and A, B and C would be in straight line [Df. 11], which is not 

the case. So, AB and BC are adjacent at B [Df. 4]. For the same reason BC is adjacent at C to AC, and AC adjacent at A to 

AB. So, each of them is adjacent at each of its two endpoints to one, and only to one, of the others [Df. 4]. Therefore, A, B 

and C define a triangle ABC [Dfs. 28, 27]. On the other hand, if P is any non-common point of one of the sides of a straight 

line l in Pl, it cannot be in straight line with any couple of points Q and R of l, even arbitrarily produced [Df. 13], so P, Q 

and R define a triangle, as it has just been proved.  

Proposition 8. If two triangles have equal one of its sides and the two angles whose respective vertexes are the endpoints of 

that side, then the other two sides of each triangle are also equal to the corresponding two sides of the other. 

Proof.-(Fig. 5.) Let ABC be a triangle [Pr. 7] with an angle α at A and an angle  at B [Cr. 40]. 

Assume it is possible a triangle ABC' with a side AB, an angle α at A, and an angle  at B, and 

the side BC' of  different from BC, for instance* BC' < BC [Ps. A]. C' is not in straight line 

with AC [Cr. 22, Dfs.27, 28], and AC'C is a triangle [Pr. 7]. Being ABC, ABC' and AC'C 

triangles, AB, AC' and AC are adjacent at A [Df. 28] where they make the adjacent angles α1 

and α2 [Df. 22, Cr. 38] whose union angle is the angle α that AB makes at A with AC [Pr. 4], 

and α1 < α [Pr. 4]. So, it is impossible a triangle with a side AB, an angle α at A, an angle  at B 

and a side BC' ≠ BC. The same argument applies to the side AC.  
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Proposition 9 (Hilbert's Axiom IV.6). If two triangles have equal one of their angles and the two sides of that angle, then 

they have also equal their corresponding other two angles. 

Proof.-(Fig. 6.) Let ABC be a triangle [Pr. 7], and α,  and  its corresponding angles at A, B and C 

[Cr. 40]. A triangle ABC' with an angle α at A, a side AB, a side AC and an angle ' at B is different 

from  is impossible because, being  unique [Cr. 34], ' will not superpose BA on BC but on BC', 

where C' is a point of AC, whether or not produced, different from C [Df. 20], otherwise BC and 

BC' would be the same straight line [Cr. 15]. So, AC' ≠ AC [Cr. 13]. For the same reasons it is 

impossible a triangle with a side AB, a side AC an angle α at A and an angle ' at C such that ' ≠ . 

 

Corollary 41 (Euclid's Proposition 4). If two triangles have equal one of their corresponding angles and the two sides of that 

angle, then they have also equal their corresponding other two angles and their corresponding third side. 

Proof.-It is an immediate consequence of [Prs. 9, 8].  

Proposition 10 (Euclid's Proposition 8). If the three sides of a triangle are equal to the three sides of another triangle, then 

the three angles of the one are also equal to the three angles of the other. 

Proof.-(Fig. 7.) Let ABC and ABC' be two triangles [Pr. 7] with a common side AB and such that 

BC = BC'; AC = AC'. Assume ' ≠ . The angle ' will not superpose BA on BC but on BC' [Cr. 34], 

where C' can only be different from C [Cr. 34]. Join C and C' [Cr. 15]. C' cannot be in straight line 

with A and C, otherwise it would be a point of AC, whether or not produced [Df. 11, Cr. 16], different 

from C, and then AC ≠ AC' [Cr. 13], which is not the case. So, AC'C is an isosceles triangle [Cr. 7, 

Df. 28]. For the same reasons, BC'C is an isosceles triangle. Since ABC', AC'C and BC'C are triangles 

[Pr. 7], C'B, C'A and C'C are adjacent at C' [Dfs. 28, 27]. Since ABC, AC'C and BC'C are triangles 

[Pr. 7], CA, CB and CC' are adjacent at C [Dfs. 28, 27]. So, ' + ' > ' and  +  >  [Cr. 38, Pr. 4]. 

On the other hand, in BC'C it holds ' + ' =  [EBI, 5], and in AC'C:  +  = ' [EBI, 5]. In 

consequence, ' >  and  > ' [Ps. A], which is impossible [Ps. A]. Therefore, the initial assumption is false, and the same 

rotation  that superposes AB on BC superposes AB on BC' [Df. 20], so that  = ' [Df. 21]. And the other two angles of 

ABC' are equal to the angles α and  of ABC [Cr. 41].  

Proposition 11 (Euclid's Propositions 18 and 19). A side is the greatest of a triangle iff it subtends its greatest angle. 

Proof.-(Fig. 8, top.) Consider any two sides AB and AC of a triangle ABC [Pr. 7], and 

assume* AB < AC [Ps. A]. On AC take a point D such that AD = AB [Pr. 1] and join D with 

B [Cr. 15]. No point of AC is in straight line neither with AB nor with BC [Cr. 22, Dfs. 27, 

28]. So, ABD and DBC are triangles. ABD is isosceles [Df. 28] and then  = ' [EBI, 5]. It 

also holds  >  [EBI, 16]. Since ABC, ABD and DBC are triangles, BA, BD and BC are 

adjacent at B [Dfs. 28, 27],  is the union angle of ' and  [Df. 22, Pr. 4]; and  > ' [Pr. 4]. 

From  > ', ' =  and  > , it follows  >  [Ps. B]. Being AB and AC any two sides of 

ABC, it can be concluded that in a triangle the greatest side subtends [Df. 21] the greatest 

angle. Let now  and φ (Fig. 8, bottom) be any two angles of a triangle EFC [Pr. 7] and assume 

 > φ [Ps. A]. EG cannot be equal to EF, otherwise  = φ [EBI, 5], which is not the case. Nor 

can it be less than EF, because in such a case the least side would subtend the greatest angle, which is impossible, as just 

proved. Therefore, EG must be greater than EF [Ps. A]. Being  and φ any two angles of a triangle, we conclude that the 

greatest angle is subtended by the greatest side.  

Proposition 12 (Euclid's Proposition 20). In a triangle the sum of the lengths of any two of its sides is greater than the length 

of the remaining one. 

Proof.-(Fig. 9.) Let ABC be a triangle [Pr. 7]. Produce AB from A [Cr. 16] to a point D such that 

AD = AC [Pr. 1]. Join D and C [Cr. 15]. C is not in straight line with A, B and D [Dfs. 11, 27, 28], 

so that DAC and DBC are triangles [Pr. 7], and being DAC isosceles [Df. 28], it holds  = ' [EBI, 

5]. Since ABC, DBC and DAC are triangles, CB, CA and CD are straight lines adjacent at C [Dfs. 

28, 27];  is the union angle of  and ' [Df. 22, Pr. 4]; and  > ' [Pr. 4]. Hence,  >  [Ps. A]. In 

consequence DB > BC [Pr. 11], and then AB + AD > BC; AB + AC > BC [Ps. A]. The same argument 

proves the sum of the lengths any couple of sides of ABC is greater than the length of the remaining 

one.  

 

3 ON PERPENDICULARS AND DISTANCES  

Proposition 13. The length of straight line joining any two points interior to a circle is less than the 

sum of lengths of two radii of the circle. 

Proof.-(Fig. 10.) Let c be a circle with a centre O and a finite radius OA [Ax. 8], and P and Q any two 

points interior to c [Cr. 32]. It must be OA < OA + OA, otherwise OA ≥ OA + OA [Ps. A], and 0 ≥ OA 

[Ps. B], which is impossible [Cr. 13]. Join O with P and with Q, and join P with Q. [Cr. 15]. If O, P and 

Q are in straight line, one of them will be between the other two [Cr. 9]. If O is between P and Q then 
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PQ = OP + OQ [Cr. 13]. And being OP < OA, OQ < OA, it holds: OP + OQ < OA + OQ; OQ + OA < OA + OA [Ps. B]. 

Therefore, OP + OQ < OA + OA, PQ < OA + OA [Pss. B, A]. If P is between O and Q it holds PQ < OQ [Cr. 13] and being 

OQ < OA [Df. 18] and OA < OA + OA, it must be PQ < OA + OA [Ps. B]. The same argument applies if Q is between O 

and P. If O, P and Q are not in straight line they define a triangle OPQ [Pr. 7] in which it holds PQ < OP + OQ [Pr. 12]. 

Being OP < AO; OQ < AO [Df. 18], and for the same reasons above, PQ < OA + OA [Ps. B]. In consequence, the length PQ 

is always less than the sum of the lengths of two of its radii.  

Proposition 14 (Euclid's Proposition 11). Through a given point of a given straight line to draw a perpendicular to the given 

straight line. 

Proof.-(Fig. 11.) Let AB be a straight line [Cr. 23] and P a point of AB [Cr. 1]. Assume* 

PB < PA. Take a point C in PA such that PC = PB [Pr. 1]. With centres C and B and 

the same radius CB draw the respective circles c1 and c2 [Ax. 8]. Since CP < CB [Cr. 

13], P is interior to c1 [Df. 18]. Produce AB from P in the direction from B to A by a 

distance CB + CB [Ps. B] to a point A'. Since P is interior to c and PA' = CB + CB, A' 

cannot be interior to c1 [Pr. 13]. So, it will be either a point of c1, or exterior to c1 [Cr. 

32]. In both cases there will be an intersection point D between BA' and c1 [Cr. 33]. 

Being CD and CB two radius of c1 in straight line with each other [Df. 11], DB is a 

diameter of c1 [Df. 18] and its endpoints B and D define two semicircles s1 and s2 [Df. 

18]. Being D exterior to c2, because DB > CB [Cr. 13], and B interior to c2 [Df. 18], 

both semicircles intersect c2 [Cr. 33]. So, let Q [Cr. 33] be the intersection point of s1 and c2. Q cannot be in straight line with 

AB, otherwise it would be either the point C or the point B, because QC = CB = QB, and the centre of a circle, for instance* 

the centre C of c1, would be a point Q of c1 [Cr. 31], which is impossible [Df. 18]. Join Q with C, with P and with B [Cr. 15]. 

QCP and QPB are triangles [Pr. 7], with a common side PQ, and also QC = QB; PC = PB. Therefore, ρ = ρ' [Pr. 10]. And 

being their sides PC, PQ and PB adjacent at P [Dfs. 27, 28], P is their common vertex and PQ their common side. So, they 

are adjacent angles [Df. 22, Cr. 38], and then right angles [Df. 24], and PQ is perpendicular to CB [Df. 24], and then to AB 

[Cr. 36].  

Proposition 15 (A variant of Euclid's Proposition 12). From a given point not in straight line with a given straight line, to 

draw a perpendicular to the given straight line, produced if necessary. 

Proof.-(Fig. 12.) Let AB be a straight line [Cr. 23] and P a point not in straight line with 

AB [Cr. 20]. Take any point Q in AB [Cr. 1]. Join P and Q [Cr. 15] and produce PQ from 

Q by any given length to a point R [Cr. 16]. With centre P and radius PR draw the circle c 

[Ax. 8]. Since PQ is less than PR [Cr. 13], Q is interior to c [Df. 18]. In AB, and in the 

direction from B to A, take a point A' at a distance PR + PR from Q [Pr. 1]. Being QA '= 

PR + PR and Q interior to c, A' cannot be interior to c [Pr. 13]. So, it will be either a point 

of c or exterior to c [Cr. 32], and in both cases there will be an intersection point D of c and 

QA' [Cr. 33, Df. 3]. The same argument applied to the direction from A to B proves the 

existence of another intersection point E of AB, produced from B if necessary, and c. Join 

P with D and with E with [Cr. 15], bisect DE at S [EBI, 10], where S could also be the point Q, and join S with P [Cr. 15]. 

Being not P in straight line with AB, it is not in straight line with any two points of AB [Df. 11], whether or not produced 

[Cr. 16]. So, PDS and PSE are triangles [Pr. 7] with a common side PS, being also PD = PE [Df. 18], and SD = SE [Df. 8]. 

So, ρ = ρ' [Pr. 10], and being ρ and ρ' defined by the adjacent straight lines SD, SP and SE [Dfs. 28, 27] at their common 

point S [Df. 4] they are adjacent angles [Cr. 38] whose common vertex is S and whose common side is SP [Df. 22]. Therefore, 

they are right angles [Df. 24], and SP is the perpendicular from P to AB [Df. 24], produced if necessary.  

Proposition 16 (Euclid's Postulate 4) All right angles are equal to one another. 

Proof.-(Fig. 13.) Let DC be a straight line perpendicular to another straight line AB at any point D of 

AB [Pr. 14], and let ρ1 and ρ'1 be the respective adjacent right angles [Df. 24] that DC makes at D with 

DA, and DC at D with DB [Cr. 38]. Since DA, DC and DB are adjacent at D [Cr. 34], the union angle 

of ρ1 and ρ'1 is the angle that, in the same direction of rotation of ρ and ρ'1, superposes the non-common 

sides DA and DB respectively of ρ1 and ρ'1 [Df. 22], which are the sides of the straight angle σ1 that DA 

makes at D with DB [Df. 23], and then σ1 = ρ1 + ρ'1 [Pr. 4]. So then, any two adjacent right angles sum 

a straight angle [Pr. 3]. Let ρ2, ρ2' be any other couple of adjacent right angles. As just proved, they sum 

a straight angle σ2. Since σ1 = σ2 [Pr. 3], it holds ρ1 + ρ1' = ρ2 + ρ2' [Ps. B]. Assume ρ1 < ρ2. We will have 

ρ1 + ρ1' < ρ2 + ρ1' [Ps. B], and being ρ1 + ρ1' = ρ2 + ρ2' [Pr. 3], we can write ρ2 + ρ2' < ρ2 + ρ1' [Ps. A], and 

then ρ2' < ρ1' [Ps. B]. And being ρ1' = ρ1 and ρ2' = ρ2 [Df. 24], we get ρ2 < ρ1 [Ps. A], which contradicts 

our assumption. So ρ1 cannot be less than ρ2. The same argument applied to the assumption ρ1 > ρ2 

proves ρ1 cannot be greater than ρ2 either. So, it must be equal to ρ2 [Ps. A]. Hence, all right angles, 

whether or not adjacent, are equal to one another.  

Corollary 42. Two right angles sum a straight angle. 

Proof.-It is an immediate consequence of [Prs. 5, 16, Df. 24].  
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Corollary 43. If one of the four angles that two intersecting straight lines make with each other at their intersection point is 

a right angle, then the other three angles are also right angles; the two sides of each angle are perpendicular to each other; 

and each straight line is perpendicular to the other. 

Proof.-It is an immediate consequence of [Df. 24, Prs. 16, 6].  

Corollary 44. The two opposite rotation that superpose the two sides of a straight angle are equal to each other. 

Proof.-It is an immediate consequence of [Crs. 42, 43].  

Proposition 17 (Euclid's Proposition 17). Any two angles of a triangle sum less than two right angles.  

Proof.-(Fig. 14.) Let ABC be a triangle [Pr. 7]. Produce the side BC from C by any given 

length to a point D [Cr. 16]. CB and CA are adjacent at C [Dfs. 27, 28]; CB and CD are 

adjacent at C [Cr. 16]; C is the only common point of AC and BD, otherwise CB and CA 

would be in straight line [Cr. 18], which is not the case [Df. 28]. So, CA and CD are adjacent 

at C [Df. 4] Consider the exterior angle  [Df. 27]. It holds  <  [EBI, 16]. Hence,  +  < 

 +  [Ps. B]. And being  +  a straight angle [Pr. 5], which equals two right angles [Cr. 42], 

we conclude that  and  sum less than two right angles. The same argument proves that any 

other couple of angles of ABC sum less than two right angles.  

Proposition 18. From a point, whether or not in straight line with a given straight line, only one perpendicular can be drawn 

to the given straight line. 

Proof.-(Fig. 15.) Let AB be a straight line [Cr. 23] and P any point not in straight line with AB [Cr. 20]. P will be a non-

common point of one of the sides, for example Pl1 of AB [Ax. 6, Df. 13]. A 

perpendicular PQ from P to AB can be drawn [Pr. 15]. Assume a second perpendicular 

PR from P to AB can be drawn. We would have a triangle PQR [Pr. 7] with two right 

angles, ρ and ρ', which is impossible [Pr. 17]. PR is then impossible. Let now E be any 

point of AB, whether or not produced. Draw the perpendicular EF to AB from E [Pr. 

14] and assume a second perpendicular EG from E to AB can be drawn in the same side 

Pl1 of AB [Cr. 27]. They will adjacent at E where they make and angle α > 0, if not they 

would be superposed in a unique straight line [Df. 21, Cr. 35]. Being EF, EG and EB 

straight lines adjacent at E [Cr. 34], α and ρ'1 are adjacent [Cr. 38] and ρ1 is the union 

angle of them [Df. 22, Pr. 4]. Therefore, ρ1 > ρ'1 [Pr. 4], which is impossible [Pr. 16]. 

So, the second perpendicular EG to AB in Pl1 is impossible. A perpendicular EH from E to AB in Pl2 can only be adjacent 

at E to EF because all points of EF and EH, except E, are non-common points respectively of Pl1 and Pl2 [Ax. 6, Df. 13]. So, 

EF, EB and EH can only be three adjacent straight lines [Cr. 34] that make at their common endpoint E two adjacent angles 

ρ1 and ρ2 [Cr. 38] whose union angle is the straight angle ρ1 + ρ2 [Cr. 42]. So then, EF and EH make a unique straight line 

[Cr. 39]. Therefore, from a point, whether or not in straight line with a straight line, only one perpendicular to the straight 

line can be drawn.  

Proposition 19. The distance from a given point not in straight line with a given straight line to the given straight line is the 

length of the perpendicular from the given point to the given straight line, produced if necessary. And that distance is unique. 

Proof.-(Fig. 16.) Let AB be a straight line [Cr. 23] and P a point not in straight line with AB [Cr. 20]. From P draw a 

perpendicular PQ to AB [Pr. 15]. Let R be any point of AB, whether or not produced, different 

from Q [Cr. 1]. Join P and R [Cr. 15]. P is not in straight line with R and Q [Df. 11]. Therefore, 

P, R and Q define a triangle PRQ [Pr. 7]. Since ρ is a right angle [Df. 24], ρ is the greatest 

angle of PRQ [Pr. 17]. And the side PR is greater than the side PQ [Pr. 11]. Since the distance 

between two points is unique [Cr. 31], R is any point of AB, whether or not produced, different 

from Q, and PQ is less than PR, PQ is the shortest of the distances [Df. 14] between P and any 

point in AB, whether or not produced. So, the length of the perpendicular PQ is the distance from the point P to the straight 

line AB [Df. 15], and this distance is unique [Pr. 18, Cr. 31].  

Hereafter, a perpendicular to a straight line drawn from a point that is not in straight line with that straight line, will be drawn 

by producing the straight line if necessary [Pr. 15]. And, unless otherwise indicated, when considering more than one 

perpendicular to a given straight line, all of them will be assumed to be in the same side of the given straight line [Ax. 6, 15]. 

 

4 ON PARALLELS  

Proposition 20. To draw two points in the same side and at the same distance greater than zero from a given straight line, 

and a straight line non-parallel to the given straight line. 

Proof.-Through two points C and D of a straight line AB [Cr. 1] draw the perpendiculars CE and DF to AB [Pr. 14]. Take 

any point P in CE [Cr. 1]; in DF take a point Q such that DQ = CP [Pr. 1]; and in DQ take any point R [Cr. 1]. It holds DR 

< DQ [Cr. 13]. Join P and R [Cr. 15]. P and Q are equidistant from AB [Pr. 19], and PR is not parallel to AB [Df. 17, Pr. 19]. 

 

From now on, all of points equidistant from a straight line, whether or not in another straight line, will be assumed to be in 

the same side of the straight line and at a distance from the straight line greater than zero. 
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Proposition 21 (Khayyam-Cataldi's Axiom extended). All segments of a given straight line in the same side of a second 

straight line have the same distancing direction with respect to the second straight line as the given straight line. And if the 

endpoints of the given straight line are equidistant from the second straight line then the given straight line is parallel to the 

second straight line, being all points of the given straight line non-common points of the same side of the second straight 

line. 

Proof.-(Fig. 17, top.) Let l be a straight line in a plane Pl [Cr. 23], and A and B any two non-common 

points in the same side of l in Pl [Cr. 26]. Draw the perpendiculars AP and BQ respectively from A 

and B to l [Pr. 15], and assume* AP < BQ. Join A and B [Cr. 15]. The points A and B define a 

distancing direction, from A to B, [Df. 16] of AB [Df. 1] with respect to l [Df. 15]. All segments of 

AB must have the same distancing direction with respect to l as AB, otherwise there would be at 

least one segment whose distancing direction with respect to l would be opposite to that of AB [Dfs. 

16, 1]. And then, either the endpoints of that segment are given before drawing AB, which is not the 

case [Ax. 5, Cr. 15], or they are unknown before drawing AB, in which case they could only be a 

consequence of the operation, as such an operation, of drawing AB, which is impossible [Df. D, Ax. 

1, Cr. 15]. Assume now (Fig. 17, bottom.) that A and B are equidistant from l [Pr. 20]. Join A with 

B [Cr. 15]. Let R be any point between A and B [Crs. 5, 4], and assume its distance to l [Pr. 19] is 

different from the equidistance of A and B. The segments AR and RB [Cr. 5] would have different 

distancing directions with respect to l [Df. 16, Pr. 19], So, either the point R and the distancing directions of AR and of RB 

with respect to l are given before drawing AB, which is not the case [Ax. 5, Cr. 15], or they are unknown before drawing 

AB, in which case they could only be a consequence of the operation, as such an operation, of drawing AB, which is 

impossible [Df. D, Ax. 1, Cr. 15]. Therefore, R can only be at the same distance from CD as A and B. Therefore, AB is 

parallel to l [Df. 17]. And being A and B non-common points in the same side of l, all points of AB are non-common points 

of the same side of l [Ax. 6, Df. 13].  

Though a straight line could be considered parallel to itself by a zero equidistance, hereafter only parallel straight lines whose 

equidistance is greater than zero will be considered. 

Proposition 22 (A variant of Tacquet's Axiom 11). If a straight line is parallel to another straight line, then the perpendicular 

from any point of any of the two straight lines to the other straight line is also perpendicular to the first straight line. 

Proof.-(Fig. 18.) Let AB be a straight line parallel to another straight line CD [Pr. 21]. All 

points of AB are at the same distance greater than zero from CD [Df. 17]. From a point P 

of AB draw the perpendicular PE to CD [Pr. 15]. Draw the perpendicular from E to AB 

[Pr. 15] and assume it is not EP but EF. From F draw the perpendicular FG to CD [Pr. 15]. 

It will be different from FE, otherwise there would be two perpendiculars to CD from the 

same point E, namely PE and FE, which is impossible [Pr. 18]. Consider the triangle FGE 

[Prs. 21, 7]. The right angle ρ [Df. 24] is the greatest angle of FGE [Pr. 17]. So, EF is 

greater than FG [Pr. 11], and FG is equal to PE because AB is parallel to CD [Df. 17]. In consequence, the shortest distance 

from E to AB would not be the length of the perpendicular EF, but that of EP [Ps. B], which is impossible [Pr. 19]. Hence, 

EP is also perpendicular to AB. Let now Q be any point in CD. Draw the perpendicular QH to AB [Pr. 15]. Assume the 

perpendicular from H to CD is not HQ but HJ. It has just been proved that HJ is also perpendicular to AB. So, there would 

be two different perpendiculars, HJ and HQ, to AB from the same point H, which is impossible [Pr. 18]. Therefore, the 

perpendicular QH is also perpendicular to CD.  

Proposition 23. A straight line parallel to another given straight line can only be produced as a straight line parallel to the 

given straight line. 

Proof.-(Fig. 19.) Let AB be a straight line parallel to another straight line CD [Pr. 21], 

and PQ any given finite distance [Df. 14, Pr. 2]. Draw the perpendicular BE from B to 

CD [Pr. 15]. In CD and in the direction from C to D take a point F such that EF = PQ 

[Pr. 1]. From F draw the perpendicular FG to CD [Pr. 14]. Take a point B' in FG such 

that B'F = BE [Pr. 1]. Join B and B' [Cr. 15]. BB' is parallel to CD [Pr. 21]. And BE is 

perpendicular to AB and to BB' through their common endpoint B [Pr. 22]. AB and BB' 

are, then, the two sides of a straight angle [Cr. 42] and they make the straight line AB' 

[Cr. 39], which is parallel to CD [Pr. 21]. Assume now BB' ≠ EF, for instance* BB' > EF 

[Ps. A]. Take a point H in BB' such that BH = EF [Pr. 1]. Join H and F [Cr. 15]. BE is parallel to HF [Pr. 21]; CF is 

perpendicular to HF [Pr. 22]; and HF is perpendicular to CF [Cr. 43]. So, if BB' ≠ EF there would be two different 

perpendiculars, B'F and HF, to CF from the same point F, which is impossible [Pr. 18]. In consequence BB' = EF. So, BB' is 

the only production of AB from B with the given length EF = PQ [Cr. 16], and it is parallel to CD [Pr. 21]. The same 

argument applies to the endpoint A.  

Corollary 45 (Posidonius-Geminus' Axiom). If two points of a given straight line are equidistant from a second straight line, 

then the given straight line is parallel to the second straight line. 

Proof.-Let AB and CD be two straight lines such that two points P and Q of AB are equidistant from CD [Pr. 21]. The 

segment PQ, which is the only straight line joining P and Q [Cr. 15], is parallel to CD [Pr. 21]. If PA were not parallel to 
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CD, the straight line PQ [Cr. 14] could be produced from Q [Cr. 16] by a length PA as a straight line PA non-parallel to CD, 

which is impossible [Pr. 23]. The same applies to QB. AB is then parallel to CD.  

Proposition 24. If a straight line is parallel to another straight line, this second straight line is also parallel, and by the same 

equidistance, to the first straight line. 

Proof.-Let AB be a straight line parallel to another straight line CD [Cr. 45]. Let E and F be any two points in CD [Cr. 1]. 

From E and from F draw the respective perpendiculars EG and FH to AB [Pr. 15]. These perpendiculars are also 

perpendicular to CD [Pr. 22]. So, the distance from E to AB is the same as the distance from G to CD [Pr. 19]; and the 

distance from F to AB is the same as the distance from H to CD [Pr. 19]. Since AB is parallel to CD, the distances to CD 

from G and H are equal to each other [Df. 17]. Hence, the distances to AB from E and F are also equal to each other [Ps. B]. 

E and F are, then, two points in CD at the same distance from AB. Therefore, CD is parallel to AB [Cr. 45], and by the same 

equidistance GE.  

Proposition 25. To draw a straight line parallel to a given straight line through a given point not in straight line with the 

given straight line. 

Proof.-Let CD be a straight line [Cr. 23], and P a point not in straight line with CD [Cr. 20]. From P draw the perpendicular 

PQ to CD [Pr. 15]. Take any point R in CD different from Q [Cr. 1]. From R draw the perpendicular RS to CD [Pr. 14]. And 

in RS take a point T such that RT = QP [Pr. 1]. Join P and T [Cr. 15] and produce PT respectively from P and from T to any 

two points A and B [Cr. 16]. The straight line AB has two points, P and T, equidistant from CD. Therefore, AB is a parallel 

to CD [Cr. 45] through the point P.  

Proposition 26 (Playfair's Axiom 11). Through a given point not in straight line with a given straight line, one, and only 

one, parallel to the given straight line can be drawn. 

Proof.-Let CD be a straight line [Cr. 23] and P a point not in straight line with CD [Cr. 20]. Through P a parallel AB to CD 

can be drawn [Pr. 25]. Assume that through P more than one parallel to CD can be drawn. From P draw the perpendicular 

PQ to CD [Pr. 15]. PQ is also perpendicular from P to each of the assumed parallels to CD [Pr. 22]. And each of these 

assumed parallels would be a different perpendicular to PQ through the same point P [Cr. 43], which is impossible [Pr. 18]. 

Therefore, through a given point not in straight line with a given straight line, one [Pr. 25], and only one, parallel to a given 

straight line can be drawn.  

Corollary 46. For any given straight line and through different points, a number of parallels to the given straight line greater 

than any given number can be drawn. 

Proof.-Let AB be a straight line [Cr. 23] and CD another straight line that intersects AB at any point P of AB [Crs. 19, 25]. 

CD has a number of points greater than any given number n [Cr. 1], none of which, except P, is in straight line with AB, 

even arbitrarily producing AB and CD [Cr. 19]. Through each of those n points of CD one, and only one, parallel to AB can 

be drawn [Prs. 25, 26].  

Proposition 27. If two straight lines have a common perpendicular, then they are parallel to each other. 

Proof.-Let AB be a straight line in the same side of another straight line CD [Cr. 27]. From a point P of AB draw the 

perpendicular PQ to CD [Pr. 15]. If PQ is also perpendicular to AB then AB must be parallel to CD, otherwise through P a 

parallel EF to CD could be drawn [Pr. 25], PQ would be perpendicular to EF [Pr. 22], and EF would be perpendicular to PQ 

[Cr. 43], and there would be two perpendicular to PQ, namely AB and EF, through the same point P, which is impossible 

[Pr. 18].  

Proposition 28. Two parallel straight lines cannot intersect. 

Proof.-Assume two parallel straight lines AB and CD [Cr. 46] intersect at a point P. From a point Q of AB different from P 

[Cr. 1] draw the perpendicular QR to CD [Pr. 15]. QR is also perpendicular to AB [Pr. 22]. PQ and PR would be two 

perpendiculars to QR [Cr. 43] through the same point P, which is impossible [Pr. 18].  

Proposition 29. If a common transversal cuts two straight lines and makes with them equal the angles of a couple of alternate 

angles, or of corresponding angles, the two angles of each couple of alternate angles, and of corresponding angles, are also 

equal. And the interior angles of the same side of the transversal sum two right angles. If the interior angles of the same side 

of the transversal sum two right angles, the two angles of each couple of alternate angles, and of corresponding angles, are 

equal to each other.  

Proof.-(Fig. 20.) Let AB and CD be two straight lines that are intersected by a common 

transversal EF [Df. 25, Cr. 30] at P and Q respectively. On the one hand we have: αi = 

αe; i = e; i = e; i = e [Pr. 6]. On the other, and being ρ a right angle: ρ + ρ = αe + 

e = αi + i = i + i = e + e = αe + i = e + αi = i + e = i + e [Pr. 5]. So, if αi = i, 

and being αi = αe and i = e, we immediately get αe = e; αi = e; αe = i [Ps. A]. A 

similar argument proves that the two angles of any other couple of alternate angles, or 

of corresponding angles [Df. 26], are equal to each other. In addition, from αi + i = ρ 

+ ρ [Pr. 5], αi = i and i = i, it follows i + i = ρ + ρ; αi + i = ρ + ρ [Ps. A]. On the 

other hand, if αi + i = ρ + ρ, and being ρ + ρ = i + i [Pr. 5], we immediately get αi + 

i = i + i [Ps. B]. Therefore, αi = i [Ps. B], and the same argument above proves that the two angles of each couple of 

alternate angles, and of corresponding angles, are equal.  
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Proposition 30. A common transversal makes with two parallel straight lines equal the two angles of each couple of alternate 

angles and of corresponding angles. 

Proof.-(Fig. 21.) Let AB and CD be any two parallel straight lines [Cr. 46]. 

And EF any common transversal [Df. 25, Cr. 30] that cuts them at P and Q 

respectively [Cr. 30]. If EF is perpendicular to AB, it is also perpendicular to 

CD [Pr. 22], and the eight angles it makes with AB and CD at its corresponding 

intersection points are right angles [Cr. 43], in which case the two angles of 

each couple of alternate and of each couple of corresponding angles are equal 

[Pr. 16, Df. 26]. If EF is not perpendicular to AB, draw the perpendicular PR 

to CD [Pr. 15], which is also perpendicular to AB [Pr. 22], and AB and CD are 

perpendicular to PR [Cr. 43]. Therefore, ρ1 and ρ2 are right angles [Df. 24]. Take a point S in PB such that PS = RQ [Pr. 1]. 

Join S and Q [Cr. 15]. SQ and PR are parallel [Cr. 45, Pr. 24]. Hence, AB and CD are perpendicular to SQ [Pr. 22], and SQ 

is perpendicular to AB and to CD [Cr. 43]. Therefore, ρ3 and ρ4 are right angles [Df. 24, Cr. 43]. And being AB parallel to 

CD, it holds PR = SQ [Df. 17]. Consider the triangles PRQ and PQS [Prs. 21, 7]. The three sides of PRQ are equal to the 

three sides of PQS. So, α = α' [Pr. 10]. Therefore, the two angles of any other couple of alternate angles, and of corresponding 

angles [Df. 26], are also equal [Pr. 29].  

Proposition 31. If a common transversal makes with two straight lines equal the angles of a couple of alternate angles, then 

both straight lines are parallel to each other. 

Proof.-(Fig. 22.) Let EF be a common transversal [Df. 25, Cr. 30] that 

intersects two straight lines AB and CD respectively at P and Q, where EF 

makes with AB and CD equal the two angles of a couple of adjacent angles α 

and α'. The interior angles on the same side of EF will sum two right angles 

[Pr. 29], so that AB and CD cannot intersect with each other [Pr. 17], and 

each one is in the same side of the other [Cr. 29]. If α and α' are right angles, 

EF will be perpendicular to AB and to CD [Cr. 43], and AB and CD will be 

parallel [Pr. 27]. If α and α' are not right angles, EF is not perpendicular to AB nor to CD [Df. 24]. In this case, draw the 

perpendicular PR from P to CD [Pr. 15]. On PB take a point S such that PS = RQ [Pr. 1]. Join S and Q [Cr. 15]. PR and SQ 

are parallel [Cr. 45, Pr. 24], and then CD is perpendicular to SQ [Pr. 22], and SQ is perpendicular to CD [Cr. 43]. PRQ and 

PQS are triangles [Pr. 7]. They have a a common side PQ, and also PS = RQ, and α = α'. Therefore, PR = SQ [Cr. 41]. Since 

PR and SQ are perpendicular to CD, P and S are at the same distance from CD [Pr. 19]. So, AB and CD are parallel to each 

other [Cr. 45, Pr. 24].  

Proposition 32. Two straight lines are parallel to each other iff a common transversal makes with them two interior angles 

in the same side of the transversal that sum two right angles. 

Proof.-If a common transversal EF makes with two straight lines AB and CD [Df. 25, Cr. 30] two interior angles α and  

[Df. 25] on the same side of the transversal [Df. 21] that sum two right angles, then the two angles of any couple of alternate 

angles are equal to each other [Pr. 29] and both straight lines are parallel [Pr. 31]. If a transversal cuts two parallel straight 

lines [Df. 25, Cr. 30], it makes with them equal the two angles of each couple alternate angles [Pr. 30] and then the interior 

angles of the same side of the transversal [Df. 21] sum two right angles [Pr. 29].  

Proposition 33 (Proclus' Axiom). If a first straight line is parallel to a second straight line and a third straight line is parallel 

to the second straight line, then the first straight line is also parallel to the third straight line. 

Proof.-Let AB be a straight line parallel to another straight line CD [Cr. 46], and let EF be 

another straight line parallel to CD [Cr. 46]. Assume first that AB and EF are in different sides 

of CD [Ax. 6] (Fig. 23, top). From any point P of CD draw the perpendicular PQ to AB and 

the perpendicular PR to EF [Pr. 15]. PQ and PR are also perpendicular to CD [Pr. 22]. So, ρ1, 

ρ2, ρ3 and ρ4 are right angles [Df. 24]. PQ and PR cannot be two different perpendiculars to 

CD from P [Pr. 18]. So, QR is a unique straight line, which is a common transversal of AB and 

EF, and makes with them in the same side of QR two interior angles ρ1 and ρ3 [Df. 25] that 

sum two right angles. Therefore, AB is parallel to EF [Pr. 32]. If AB and EF are in the same 

side of CD [Cr. 27] (Fig. 23, bottom), then draw the perpendicular PQ from any point P in AB 

to EF, and from Q the perpendicular QR to CD [Pr. 15]. So, ρ1 and ρ2 are right angles [Df. 24]. 

Since EF is parallel to CD, QR is also perpendicular to EF [Pr. 22], and ρ3 is a right angle [Df. 

24]. And, for the same reasons above, PR is a unique perpendicular to EF through Q. And 

being perpendicular to CD, PR is also perpendicular to AB [Pr. 22], and then ρ4 is a right angle 

[Df. 24]. In consequence, PQ is a transversal of AB and EF that make two interior angles, ρ1 

and ρ4 [Df. 25], on the same side of PQ that sum two right angles. So, AB is also parallel to EF [Pr. 32].  

 

5 ON CONVERGENCE  

Proposition 34. If a common transversal makes with two straight lines two interior angles in the same side of the transversal 

that sum less (more) than two right angles, the interior angles in the other side of the transversal sum more (less) than two 

right angles. 



 

                                                                                                    18 

Proof.-(Fig. 24.) Let EF be a common transversal of two straight lines AB and CD [Df. 25, Cr. 

30] that cuts them at P and Q and makes with them the interior angles α and  [Df. 25] on the 

same side of EF [Ax. 6, Df. 21] so that α +  < ρ + ρ, where ρ is a right angle [Pr. 16]. AB and 

CD are not parallel [Pr. 32]. Let  and  be the interior angles that AB and CD make with EF on 

the other side of EF [Df. 21]. On the one hand we have: α +  =  +  = ρ + ρ [Pr. 5], so that α + 

 +  +  = ρ + ρ + ρ + ρ [Ps. B]. On the other hand,  +  ≠ ρ + ρ, otherwise AB and CD would 

be parallel [Pr. 32]. But if  +  < ρ + ρ, we would have  +  + ρ + ρ < ρ + ρ + ρ + ρ [Ps. B]; 

and being α +  < ρ + ρ, we also have α +  +  +  < ρ + ρ +  +  [Ps. B]. Therefore, α +  +  

+  < ρ + ρ + ρ + ρ [Ps. B], which is not the case. So, it must be  +  > ρ + ρ. A similar argument applies to the case α +  

> ρ + ρ.  

 

Proposition 35. All segments with the same length of a given straight line have the same distancing direction and the same 

relative distancing with respect to any other non-parallel straight line in the same side of the given straight line. 

Proof.-Let AB be a straight line in the same side of another straight line CD 

[Cr. 27] to which it is not parallel [Pr. 20]. All segments of AB have the same 

distancing direction, for instance* from A to B with respect to CD [Pr. 21]. 

Let P, Q and R be any three points of AB [Cr. 1]. Assuming* Q is between 

P and R [Cr. 9], take in AB a point S at a distance PQ from R in the direction 

from A to B [Pr. 1], so that PQ = RS. If AB were perpendicular to CD (Fig. 

25, left) the relative distancing of any segment of AB [Df. 16] with respect 

to CD would be the length of the segment [Cr. 13, Pr. 19]. So, PQ and RS 

would have the same relative distancing. Assume AB is not perpendicular to 

CD (Fig. 25, right). From P, Q, R and S draw the perpendiculars PE, QF, RG 

and SH to CD [Pr. 15]. And from P and R draw the perpendiculars PT to QF, and RU to SH [Pr. 15]. PT is parallel to CD 

[Pr. 27] and Q is not in straight line with PT, otherwise it would be a point of a parallel, whether or not produced [Pr. 23], to 

CD [Df. 11]; AB would have two points P and Q equidistant from CD; and AB would be parallel to CD [Cr. 45], which is 

not the case. So, QPT is a triangle [Pr. 7]. For the same reason SRU is also a triangle. PT and RU are parallel to CD [Pr. 32], 

and then they are parallel to each other [Pr. 33]. Therefore, α = α' [Pr. 30]. QF and SH are parallel to each other [Pr. 27], and 

then  = ' [Pr. 30]. The triangles QPT and SRU verify: α = α';  = ' [Pr. 30], and PQ = RS. Consequently, QT = SU [Pr. 

8]. Being PE = TF [Df. 17] and QT = QF - TF [Cr. 13], it will be QT = QF - PE [Ps. A]. QT is, then, the relative distancing 

of the segment PQ with respect to CD [Df. 16]. For the same reasons SU is the relative distancing of the segment RS with 

respect to CD. Since QT = SU, and PQ and RS are any two segments of AB with the same length, we conclude that all 

segments of AB with the same length have the same relative distancing with respect to CD [Df. 16] in the same distancing 

direction [Pr. 21].  

Proposition 36 (Khayyam's Axiom) Two non-parallel straight lines, produced if necessary by a finite length, intersect with 

each other at a unique point. 

Proof.-Let AB and CD be any two non-parallel [Pr. 20] and non-

intersecting straight lines [Cr. 30]. If one of them has its two endpoints in 

different sides of the other, then it intersects the other or a finite production 

of the other [Cr. 29, Pr. 2]. Assume, then, the two endpoints of each straight 

line are non-common points of the same side of the other [Cr. 27]. Each 

straight line will be in the same side of the other [Ax. 6]. Assume the 

distancing direction of AB with respect to CD [Df. 16] is, for instance*, 

from B to A [Pr. 35]. In this case, draw from A the perpendicular AE to 

CD [Pr. 15]. If AB were a segment of AE then AB intersects CD at E [Df. 

24] at a finite distance BE [Pr. 2] (Fig. 26, left). If AB is not a segment of AE (Fig. 26, right), draw though A the parallel 

AQ to CD [Pr. 25]. AB is not parallel to AQ, otherwise AB would be parallel to CD [Pr. 33], which is not the case. Take in 

AB any point P1, and draw the perpendicular P1Q1 to AQ [Pr. 15]. P1Q1 is the relative distancing of AP1 with respect to AQ 

[Df. 16, Pr. 19]. Being AE and P1Q1 finite [Pr. 2], there will be a natural number n ≥ 1 such that n times P1Q1 is greater than 

AE, otherwise there would be an impossible last natural number. On AB, produced if necessary [Cr. 16], and from P1, take 

just n - 1 (4 in Figure 26) successive points P2, P3, P4... Pn [Cr. 1] each separated from the previous one by the same finite 

distance AP1 [Pr. 1]. Since the distances to AQ from the successive P1, P2, P3... Pn increase in the same direction [Pr. 21] and 

by the same distance P1Q1 [Pr. 35], and n times P1Q1 is greater than AE, the distance to AQ from Pn is greater than AE, and 

being zero the distance from A to AQ [Df. 14], there is a point F in APn whose distance to AQ is just AE [Ax. 7]. And F is 

unique, if not APn would be parallel to AQ [Cr. 45], which is not the case. D is a non-common point of one side of AB and 

then of APn [Dfs. 13, 11]. So, join D and F [Cr. 15]. DF is parallel to AQ [Cr. 45], and it must be a production of CD from 

D to F [Cr. 16], otherwise there would be two different parallels, CD and DF to AQ from the same point D, which is 

impossible [Pr. 26]. So, AB and CD can be produced respectively from B and from D to the point F. Since A is a point of 

the parallel AQ to CD, it is not in straight line with CD [Pr. 21, Df. 13]. So, A, E and F define a triangle AEF [Pr. 7], of 

which ρ is the greater angle [Pr. 17] and AF the greater side [Pr. 11]. AF is finite because it is equal or less than n times the 
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finite length AP1. And DF < EF; BF < AF [Cr. 13]. Therefore, the lengths of the productions DF and BF respectively of CD 

and of AB are both finite, and AB and CD intersect at a point F at a finite distance from their corresponding endpoints B and 

D [Df. 14]. In consequence, and considering that AB and CD are any two non-parallel and non-intersecting straight lines, 

we conclude that any two non-parallel and non-intersecting straight lines can be produced by a finite length so that they 

intersect with each other at a unique point.  

Proposition 37 (Euclid's Postulate 5 extended). If a common transversal makes with two given non-intersecting straight lines 

two angles in the same side of the transversal that sum less than two right angles, then the given straight lines can be produced 

in that side of the transversal by a finite length to a unique point where they intersect with each other. 

Proof.-(Fig.27.) Let AB and CD be any two non-intersecting straight lines [Cr. 30]. 

Each of them will be in the same side of the other [Cr. 28]. Let EF be a common 

transversal of AB and CD [Df. 25, Cr. 30] that makes with AB and CD at its 

respective and unique intersection points P and Q [Cr. 19] two interior angles α and 

 [Df. 25] on the same side of EF [Ax. 6, Df. 21] whose sum is less than two right 

angles [Df. 24]. AB and CD are not parallel to each other [Pr. 32]. Therefore, they 

can be produced [Cr. 16] by a finite length to a unique intersection point R [Pr. 36]. 

P, R and Q define a triangle PRQ [Pr. 7] and R can only be a point in the side of EF 

where EF makes the angles α and  respectively with AB and CD, because in the 

other side [Ax. 6] the interior angles sum more than two right angles [Pr. 34], and 

PRQ would have two angles whose sum is greater than two right angles, which is impossible [Pr. 17].   

 

VII CONCLUSIONS  

The above short introduction to plane eu-geometry illustrates that, in fact, the new foundational basis of Euclidean geometry 

proposed in this work is clearly more productive than other classical and modern alternatives. Many other problems of 

classical Euclidean geometry, as for instance the uniqueness of the plane containing any three points, or of the circle passing 

through any three points, or even Gauss problem on triangles of arbitrary sizes, can surely be solved within this new formal 

framework. 
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