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According to non-dualistic interpretation of quantum mechanics, the initial/

global/overall phase associated with a quantum state vector is related to a par-

ticular eigenstate of an observable. This phase gives raise to a “tube” like geomet-

rical structure, associated with the state vector and the tube branches into several

smaller tubes. The total number of smaller tubes is equal to the total number of

eigenstates of the observable; each branch is associated with a particular eigenstate.

The cross-sectional area of the initial tube is equal to the sum of cross-sectional areas

of all tubes, resulting in the Born rule and also in the conservation of probability in

quantum mechanics.
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I. INTRODUCTION

Quantum mechanics is one of the most successful scientific description of Nature, espe-

cially in the context of microscopic systems. Yet, at the fundamental level, what kind of

physical reality is being revealed by it seems to be mysterious. Various interpretations are

proposed to make sense of quantum formalism and to uncover the quantum mysteries [1–14].

Recently, the present author also proposed a new ‘wave-particle non-dualistic interpretation

of quantum mechanics at a single-quantum level [15–23].

In Section-II, the Stern-Gerlach measurements on a spin-1
2

particle, in the context of

non-duality, is briefly revised. In Section-III, the construction of “phase-tube” associated

with any quantum state vector is explained with suitable diagrams and also shown how this

construction naturally yields the Born rule in quantum mechanics. Section-IV contains the

conclusions and discussions.

II. NON-DUALITY OF SPIN-12 PARTICLE IN THE STERN-GERLACH

EXPERIMENT

Consider a spin-1
2

particle, initially filtered ‘up along Y-axis’, |Sy :↑>, say by a filter FUy,

and subjected to the Stern-Gerlach measurement along Z-axis [24, 25], SGZ , as shown in the

FIG. (1). The complex vector space of SGZ is spanned by the eigenstates of the Z-component

of spin operator, Ŝz, and is having an unit operator Îz = |Sz; ↑>< Sz; ↑ |+ |Sz; ↓>< Sz; ↓ |.

Representation of |Sy :↑> in SGz’s space results in the following superposition state:

|Sy; ↑> = |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eiβ

= |Sz; ↑> .
1√
2
.eiα + |Sz; ↓> .

1√
2
.eiβ, (1)

where, < Sz; ↑ |Sy; ↑>= 1√
2
eiα, < Sz; ↓ |Sy; ↑>= 1√

2
eiβ and | < Sz; ↑ |Sy; ↑> | = | <

Sz; ↓ |Sy; ↑> | = 1√
2
. Now, according to the principle of minimum phase introduced in

non-dualistic interpretation, the particle in |Sy; ↑> will enter into either |Sz; ↑> or |Sz; ↓>,

depending on whether |α| < |β| or |α| > |β|, respectively; here, |α|+ |β| = π. For example,

let |α| < |β|, then the particle will be in |Sz; ↑>, while |Sz; ↓> remains as an ontological

empty state - see FIG. (1).

Another spin state passing through FUy will differ from the previous one only by an
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FIG. 1. Schematic Diagram for the Stern-Gerlach Apparatus: A source emits a charged

spin-12 particle, whose initial state is filtered ‘up along Y-axis‘, |Sy; ↑>, by a filter FUy. Then the

particle is subjected to the Stern-Gerlach measurement along Z-axis. For the case of |α| < |β|,

the particle enters into |Sz; ↑> and the state, |Sz; ↓>, remains without a particle. During the

observation, the particle contributes a point to | < Sz; ↑ |Sy; ↑> |2, while the empty mode, |Sz; ↓>,

contributes nothing.

overall phase as,

|Sy(φ); ↑>= eiφ.|Sy; ↑> . (2)

The SGz feels |Sy(φ); ↑> as,

|Sy(φ); ↑>= |Sz; ↑> .R.ei(α+φ) + |Sz; ↓> .R.ei(β+φ). (3)

Depending on whether |(α+ φ)| < |(β + φ)| or |(α+ φ)| > |(β + φ)|, the particle enters into

either |Sz; ↑> or |Sz; ↓>, respectively. Therefore, it’s sufficient to notice in Eq. (1) that, the

values of α and β are different for different ‘up along Y’ spin states.

III. PHASE-TUBE STRUCTURE OF QUANTUM STATE VECTOR

In this section, any quantum state state is shown to fall into a phase-hole, PH , which

sweeps a phase-tube, PT , along the direction of particle’s motion. If the quantum state

becomes a superposition of, say, two orthogonal eigenstates of some observable, then the
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phase-tube branches into two smaller tubes as shown in FIG. (2). This kind of geometrical

structures exist only in the complex vector space, where, the actual quantum phenomena

happen.

A. Phase-Hole Representation of Quantum State Vector

As considered in Eq. (1), various spin states, filtered through FUy, can be written as

given below:

|Sy(α); ↑>= |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eiβ, (4)

where, α is a discrete and random variable depending on the nature of source. Notice that,

different |Sy; ↑> states can be characterized either by α or β, because, α and β are always

related as shown in section-II; here, α is chosen. The following set of vectors,

PH = {|Sy(α); ↑> |α ∈ [0, 2π]}, (5)

can be plotted on a complex-plane as shown in FIG. 2(a). The tips of all vectors lie on the

circumference of a circle of unit radius, since, |Sy(α); ↑> is normalized to unity. Therefore,

any vector belonging to PH always passes through the FUy. In other words, in the perspective

of quantum particle, our perspective of single direction in FUy appears as hole (PH). In a

nutshell, the unit vector |Sy; ↑> is actually a phase-hole, PH , for the quantum particle. In

reality, there is nothing special about the vector |Sy; ↑>. Hence, any arbitrary state vector

encountered by a quantum particle can always be regarded as a corresponding phase-hole

associated with that vector.

B. Superposition of Eigenstates with Equal Amplitudes

Consider |Sy(α); ↑> in Eq. (4) as a superposition of Ŝz’s eigenstates with equal amplitudes

as given below:

|Sy(α); ↑>=

(
1

2

) 1
2

eiα|Sz; ↑> +

(
1

2

) 1
2

eiβ|Sz; ↓> . (6)

However, according to non-duality, as already shown earlier, |Sy(α); ↑> lies in a circular

phase-hole, PH , of unit radius. By the same token, |Sz; ↑> and |Sz; ↓> can also be said to lie

in the corresponding circular phase-holes, say PUH and PDH , each with (1
2
)
1
2 as radius; here,
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PUH and PDH correspond to up-hole and down-hole as shown in the FIG. 2(b), respectively.

Notice that, PUH ∩ PDH = {}, because, any vector from PUH is orthogonal to any vector in

PDH . As the particle moves, PH sweeps a tube, say PT , which branches into PUT and PDT ;

here, PUT and PDT are phase-tubes generated by PUH and PDH , respectively. Also notice

that, every particle state in PUT has a corresponding empty state in PDT and vice versa (see

FIG. 2(b) & 2(c)).

When a huge number of particles, say N , enters PT , then some of them, say NU , moves

through PUT and the remaining, say ND, through PDT . Obviously, one has N = NU +ND.

Also, NU = (AU/A)N and ND = (AD/A)N ; here, A, AU and AD are the areas of cross-

section of PT , PUT and PDT , respectively. Therefore, one has,

NU

N
+
ND

N
=
AU
A

+
AD
A

= 1 = RU +RD, (7)

where, Ri = Ni/N = Ai/A, corresponds to the relative frequency of detection or Born’s

probability; here, i = U,D. Therefore, it’s clear that, the conservation of total number of

particles implies the conservation of the total of area of cross-sections of the phase-tubes,

which yields the Born rule in Eq. (7). Hence, one has,

A = AU + AD =⇒ π =
π

2
+
π

2
. (8)

The above equation implies the spitting of the interval, [0, π], as,

[0, π] = [0, π/2] ∪ [π/2, π], (9)

and the physical phenomenon in the interval, [π, 2π], is exactly identical to the one in [0, π].

Therefore, depending on whether |α| ∈ [0, π/2] or |α| ∈ [π/2, π], the quantum particle enters

into either PUT or PDT , respectively.

C. Superposition of Eigenstates with Unequal Amplitudes

Consider |Sy(α); ↑> in Eq. (4) as a superposition of Ŝz’s eigenstates with unequal am-

plitudes as given below:

|Sy(α); ↑>=

(
1

4

) 1
2

eiα|Sz; ↑> +

(
3

4

) 1
2

eiβ|Sz; ↓> . (10)

All phase-tube details of the above equation is identical to the one given in section-II(b)

for Eq. (6), except for how the interval, [0, π], splits. Notice that, the phase-tube structure
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FIG. 2. Schematic Diagram of Phase-Tubes: (a) All initial states, |Sy(α); ↑>, are plotted

with a common origin on a complex plane. The tips of all vectors lie on a circle of unit radius,

which is named as ‘Phase-Hole’, PH ; here, α occurs discretely and randomly. (b) & (c) PH sweeps

a ‘Phase-Tube’, PT , in the direction of particle’s motion. PT branches into ‘up-phase-tube’, PUT ,

and ‘down-phase-tube’, PDT , because, any vector from PUH is orthogonal to any vector in PDH ;

here, PUH and PDH are up-phase-hole and down-phase-hole, respectively. For convenience, the

state vectors are drawn symmetrically, which is not true in reality due to the nature of α. See

main text for the details of equations.

given in FIG. 2(c) can be obtained from the one in FIG. 2(b) by uniformly shrinking and

stretching the PUT and PDT , respectively.

By making use of the conservation of total cross-sectional area, one has from Eq. (10),

A = AU + AD =⇒ π =
1

4
π +

3

4
π, (11)

implying the spitting of [0, π] as,

[0, π] = [0, π/4] ∪ [π/4, π], (12)

Therefore, depending on whether |α| ∈ [0, π/4] or |α| ∈ [π/4, π], a quantum particle enters

into either PUT or PDT , respectively.

D. General Case of Superposition of Ŝz’s Eigenstates

The above analysis can be straightforwardly applied to the generic case given in Eq. (4),

|Sy(α); ↑>= |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eiβ, (13)
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as follows:

By making use of the conservation of total cross-sectional area, one has,

A = AU + AD =⇒ π = | < Sz; ↑ |Sy; ↑> |2π + | < Sz; ↓ |Sy; ↑> |2π = RUπ +RDπ, (14)

where, RU = | < Sz; ↑ |Sy; ↑> |2 and RD = | < Sz; ↓ |Sy; ↑> |2, implying the spitting of [0, π]

as,

[0, π] = [0, RUπ] ∪ [RUπ, π], (15)

Hence, depending on whether |α| ∈ [0, RUπ] or |α| ∈ [RUπ, π], the quantum particle enters

into either PUT or PDT , respectively.

Consider the detection of a single particle in the SGz apparatus for the case |α| ∈ [0, RUπ].

According to non-duality, the state |Sy(α); ↑> induces its dual-state and interacts at the

detector screen according to the inner-product:

< Sy(α); ↑ |Sy(α); ↑> = | < Sz; ↑ |Sy; ↑> |2 + | < Sz; ↓ |Sy; ↑> |2

Detection−−−−−−→
|α|∈[0,RUπ]

| < Sz; ↑ |Sy; ↑> |2, (16)

resulting in the detection of eigenvalue, +1
2
; the particle itself contributes a point to | <

Sz; ↑ |Sy; ↑> |2, while | < Sz; ↓ |Sy; ↑> |2 receives zero contribution [see Fig. 1]. When a

large number of particles are sent through FUy, either one at a time or all at once, then the

particles from both intervals in Eq. (15) contribute:

< Sy(α); ↑ |Sy(α); ↑>= | < Sz; ↑ |Sy; ↑> |2 + | < Sz; ↓ |Sy; ↑> |2, (17)

which is the same result as in Eq. (14) modulo π.

IV. CONCLUSIONS AND DISCUSSIONS

According to the non-dualistic interpretation of quantum mechanics, the initial/ global/

overall phase associated with a quantum state vector is related to a particular eigenstate of

an observable. It’s shown that this initial phase gives raise to a “phase-tube” associate with

the state vector. This phase-tube branches into smaller phase-tubes corresponding to the

eigenstates in the superposition representing the original state vector. The total number of

smaller phase-tubes is exactly equal to the number of eigenstates of an observable. The total

area of cross-section of the phase-tube at any location is always equal to the the total area of
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cross-section at any other location, implying the conservation of the total of cross-sectional

areas, which immediately results in the Born rule and the conservation of probability in

quantum mechanics. Though the present analysis is done for the case of an observable

with two eigenstates, the same can also be straightforwardly extended to the general case of

an observable with infinite number of eigenstate, both discrete and continuous. The results

obtained in the present article may become useful in realizing the deeper mysteries of Nature

at the fundamental level.
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