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1 Introduction

Let P = {p1,p2,...|p; is a prime, pj11 > p; > 1,5 > 1} be the set of all primes
larger than one. In [1] an elliptic curve C over the field of rational numbers @ is

a curve defined by the Weierstrass equation
v =z4+azx+b

where a,b € Z and z,y € @. The discriminant of the cubic equation is A =
—16(4a® — 27b%) # 0. Let N, denote the number of solutions to y* = z* + az +
b mod p; and let a,; = p; — Np,.

The incomplete L-function of the curve C' is

L(C,s) = H (1—ap;p;”° +pi72%)7L, (1)
JjEAC

where

Ac ={j € IN,j > 0,p; does not divide A}.

The Euler product (1) converges absolutely at least if Re{s} > 2 because |ap| <

2p. This upper bound for < a,| is obvious since = takes p values and y can take
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two values for each z. Hasse’s statistical bound |a,| < 2p? improves the area of
absolute convergence to Re{s} > 3/2 and [1] gives this area. The problem state-
ment [1] tells that L(C, s) has a holomorphic continuation to the whole complex

plane, thus it does not have poles.

The Birch and Swinnerton-Dyer conjecture says that the Taylor expansion of

L(C,s) at s = 1 has the form
L(C,s) =¢(s—1)" + higher order terms (2)

with ¢ # 0 and r the rank of C. The rank of an elliptic curve is defined as the rank
of the group of solutions in the rational numbers. The number r in the Taylor
expansion of L(C,s) is called the algebraic rank of the curve. The conjecture is

thus that the rank and the algebraic rank are equal.

Let p > 2 be prime, Z, the cyclic group of integers modulo p, and Z; =

{1,...,p — 1}. The set of quadratic residues modulo p is the set
QR, = {z € Z,|3y € Z, such that y?> =z (mod p)}
and the set of nonresidues modulo p is
QNR, ={z € Z,|z ¢ QR,}.
If g is a primitive root of Z}, then
Zy={¢", 9", 6" %}
The set QR,, is the subset where g has even powers:

QRP = {907927 .- }



Thus, #QR, =#QNR,, the sets QR, and QN R, have equally many elements.
If the integer a divides integer b it is written as a|b. For brevity, we write y = =

as a shorthand of y = z (mod p) when there is no chance of confusion.

There is a recursion formula for deriving rational solutions from a rational
base point (x,y)
Tip1 =57 = 2%i ,Yit1 = Yi + Si(@ig1 — 25) @)

_a+3ax?
2y;

i

This recursion gives a new rational solution in the following way:
Yo = Y5 + 2uiSi(iv1 — 3) + S} (@ip1 — 23)°

=2} + az; + b+ 2y:Si(Ti1 — i) + SF (Tig1 — 75)°
= mfﬂ +aziy1 +b

yielding
231 + Tig1Ti + 27 +a =298 + (Tig1 + 22:) (Tig1 — 75)

which gives

322 + a = 2y;S;.

The recursion may end or it may generate an infinite number of rational solutions.

An example where the recursion ends is the following:

We define the curve C) by a Weiestrass form with a = 33 and b = —26. As
the base point we take £o = 3 and yo = 10. The recursion (3) shows that 1 = xo,
y1 = yo- It follows that recursion generates only one solution (3,10). The curve
() is a special case of

T = 3s” yo=9s>+s (4)



a=27s* + 65> b=s2—27s°

with s = 1. For every nonzero integer value s the solution (4) gives z; = o,

y1 = yo- These solutions are found by setting 1 = z¢ in (3).

The rank of an elliptic curve is the number of independent base points from
which the recursion derives an infinite number of rational solutions. For C; the
recursion gives only finitely many points, but for that special elliptic curve there
may be other base points that give infinitely many different points. An example
of an elliptic curve having infinitely many rational solutions is y? = z® — 52z. This
is known since 5 is a congruent number. If d is a noncongruent number, such as

r? for any integer r there are only three solutions: (0,0) and (£d, 0).

The recursion formula (3) has a corresponding operation in integers modulo p
in the form

Tip1 = S? — 2z; (mod p) (5)
S; = (s +3z7)(2t;)~" (mod p)

t; = 2> +az + b (mod p).

If (z4,91) is a solution in Z; then the recursion formula in Z, gives another

solution (i11,Yi+1), Tit1,Yir1 € Z,, where

Y711 = tip1 (mod p).

The operation also takes a pair (z;,t;) where t; € QN R, into a pair (41, tit1)
where t;11 € QNR,,. Iterating the operation gives classes of pairs (z;,y;). If there
is a solution in @), then all of the iterated solutions map to the same set of (z;,y;)
in Z,.

The claim that the Birch and Swinnerton-Dyer conjecture should hold seems
to be based on the idea that an infinite number of solutions in rationals for an

elliptic curve C' would give more solutions in the modular case. This is a very



strange idea because there are very many solutions for a modular equation e.g.
in knapsack problems and it is very difficult to find integer solutions to knapsack
problems. The modular problem and the integer problem are quite different issues.
The same should be the case with the modular problem and the rational problem
in elliptic curves. The natural expectation is that these problems are very different
and one does not give information of the other.

Two elliptic curves over rationals are known to have very high rank (one

exactly or rank 20 and the other of rank at least 28). They are of the form

V4ry+y=a®—22 -0

where b € IN. Writing this curve in the Weierstrass form gives

49 2149

3_ .3, (2 _2149
yi =21+ (=)o + (o= = b)
1 5
y1=y+5($+1) =205

and in the form where coefficients are integers is

ys = 9z — 1472, — 2149 — 576

5
yo = 24y + 122 + 12 m2:4x—§

As a and b in the Weierstrass form are not integers in these elliptic curves, they

are not elliptic curves considered in [1] and in this paper.

2 Calculation of a,, for y*> = 2* — d*z

Lemma 1. Let p > 2 be prime and a an integer. Assume —1 € QNR, and

a #0 (mod p). The number N, of solutions to the modular equation

y? =2 4+ ax (mod p) (6)



is N, = p.

Proof. Let

A={z€Z}|ti EQRyt; = z(2® + a) (mod p)},
B={z € Z}|t € QNR,, t1 = z(2* + a) (mod p)},

and m; =#A, mo =#B. We can write

-1
A ={z= 1,...,p |t1 € QR,, t; = z(2® + a) (mod p)},

2
Ay ={z = 1%1,...,1)— 1t: € QR,, t1 = 2(z® +a) (mod p)},
B, ={z= 1,...,p;1|t1 € QNR,, t; = z(2* + a) (mod p)},
By ={z = 1%1,...,1)—1|t1 € QNR,,t; = z(2* + a) (mod p)},

and mq,; =#A;, ma; =#DB;, i = 1,2. The sets A; and A, are disjoint and

A = A; U As. Similarly, the sets By and B, are disjoint and B = B; U Bs.

Calculating
+1 :
Ay ={-z = _pT,...,—p— 1|t1 € QR,, t1 = 2(2* + a) (mod p)}
p+1
={_x=p_T77p_p+1|tlleQRp

) =p—t = (~2)((~2)* +a) (mod p)}
= (o =1,..., 2} € @Ryt = (~a)((~2)? + ) (mod p)}.

If it were true that —1 € QR,, then there would exists € such that —1 = €2. Then
for any y holds —y? = (ey)? € QR,. But as we require that —1 € QNR,, it is

not possible that —y? = h? for any h because if it is —1 = (y~'h)?> € QR,. Thus,



—y? € QNR, for every y. Therefore
Ay ={2' = 1,...,;%1#'1 € QNR,,t}, = '(2"* + a) (mod p)} = By.
Similarly, A; = Bs. It follows that
mi=my1+ M2 =m11+ M2,

Mo = Ma1+ M2z =M21 +M11.

Thus, m1 = m». Let a € QR,. Then there are two values z € Z; that yield
t; =0 (mod p). Therefore
p—3

mi+me=p—3 :>m1:T.

Every z € A yields two solutions y,p — y to (6). Every = giving t; = 0 (mod p)
yields one solution y = 0 to (6). The number of solutions is

-3

Ifa€e QNR, then m; + my =p—1 and

~1
Np:2pT+1:p.

The lemma, is proved. o

Let us give an example of Lemma 1. Let d = 1 and p = 11. Then QR;; =
{1,3,4,5,9}. When z ranges from 0 to 10 the values of z(z* —1) give the sequence
0,0,6,2,5,10,1,6,9,5,0. Removing zeros from this sequnce as they are neither
in QRp nor in QN R, we notice that —6 = 5. Because —1 € QNR, we have
6 € QNR, and =5 € QR,. Likewise —2 = 9,50 2 € QNR, and 9 € QR,;
—10 = 1. The same is with —1 =10 € QNR, and 1 € QR,,. We get 2(p—3)/2 =8



solutions: (4,4), (4,7), (6,1), (6,10), (7,3), (7,8), (9,4), (9,7), that is, for each z
there are two y values. Additionally we have the zeros. They give three solutions
(1,0) and (10, 0) from z2—1 = 0 and (0, 0) is a solution. Together there are 11 = p

solutions.

Lemma 2. Let p > 2 be prime. The number of solutions y? to the equation

y —c=2"

(mod p) (7)

satisfying y*,x* € Z3 is

25 if —1 € QR, and c € QR,,
3 if —1 € QNR,,

=l if —1 € QR, and c € QNR,,.

Proof. Let us assume that (7) holds. Thus there exists 2 € Z; such that the

modular equation

y - =(y-2)(y+r)=c

can be written as

Then

y=2"tz (22 +e), z=2""21(2% —¢).

Let +e denote the two roots of 22 = —1if —1 € QR,. If —1 € QNR,, there are

no such roots.

If ce QNR, and —1 € QR,, there are no solutions to the equations



In this case we let z range over the p — 1 numbers in Z7 in the equation for y. If

two values z; and 22 give the same y, then
zfl(zf +c¢) = z{l(zg +c¢)

ie.,

-1 _ -1

Z1tcz] =z2+czg,
— (.1 -1

z21—za=c(zy —21).

Multiplying by 2122
z122(z1 — 22) = zlzzc(zgl - zfl) = c(z1 — 22)

and 2122 = ¢, i€, 29 = cz; L. When z ranges over all values in Z7 the number y
gets all values it can get and exactly two values z map to the same y. The number

of different y is therefore ”T_l.

If some value of z gives y, another value of z gives —y. As +y yield the same

y? the number of different y? is half of the numbers of y, that is, ”%1.

If c € QR, and —1 € QR, then there are two solutions z to both of the

equations in (8). These four values of z are all different. Removing them gives

p — 5 values for the range of 2. The number of different values y? is %.

If c € QR, and —1 € QN R, there are two solutions for 22 = ¢ but no solutions
p—3

to 22 = —c. The number of different y? is 2=,

If c € QNR, and —1 € QNR, there are no solutions for z? = ¢ but two

solutions to z2 = —c. The number of different y? is ”4;3. o

Lemma 3. Let p > 2 be prime and a an integer. Let —1 € QRp, a #
0 (mod p) and g a primitive root of Z;. The number N, of solutions to the
modular equation

y? =2 4+ ax (mod p) (9)
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is

Np =8ny + 7 if —a = ¢g* and i is even,

N, =2p—8n; — 7if —a = ¢g* and i is odd,
N, = 8n, + 3 if —a = g**! and i is even,

N, =2p—8n, — 3 if —a = g?**! and i is odd.

Here n. is the number of solutions y* € Z, yielding y*—c€QRy,c=1or

B={z'€ Z;|t' € QR,,t' = 2" + az' (mod p)}. (10)

If —a = g*® we insert t = g% and z = g~ 'a'. Then t' = z'3 + az' changes

to g% = ¢33 — ¢%'gix, ie., to t = 2 — 2. We reduced —a to ¢ = 1.
If —a = g?"*! we insert the same t and = as above. Then ¢ = z'® +az' changes
3i,3 _ 2+l

to g3 = ¢33 — ¢?1gix, ie., to t = 2% — gx. We reduced —a to c = g.

We write both of these cases as t = 2° —cx wherec=1if —a=g¢* andc=g
if —a = g%+,
Let

A={z € Zj|ti € QRp,t, = 2® — cx (mod p)} (11)
A'={z € Z}|t, € QNR,,t; = 2* — cx (mod p)}.

If i is even then g% is in QR, and in the substitution ¢t = ¢®!#' holds: if t € QR,
then t' € QR,. If i is odd, then t € QR, implies that t' € QN R,,. Thus, for even
i B = A while for odd i B= A'.

Let us write the sets A and A’ differently
A={g"g"(¢** —¢c) € QR,,k=0,...,p—2} (12)

AI = {gk|gk(92k —C) € QNRpak = 07'-'7p_2}
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and let us divide them into subsets of even and odd indices of k

-3
A = {g2k|g2k(g4k —-c) € QR,, k :0""’1)7}

p—3
Ay = {g2k|g2k+1(g2(2k+6) —¢) €QRy k= 0"”’7}

~3
Al = {g® g2k (g% —¢) € QNR,, k=0,..., pT}

c p_'?’
AL = {gzk+1|gzk+1(gz(2k+ ) —¢) €QNR, k= 0""’T}'

Then A= A, U Ay, #A =#A,+#4, and A’ = A, U A}, #A =# A +#AL.

We also define sets that do not have the z = g¥ term in t = z(2? — ¢).

~3
C:{gzk|g2k—CGQRp,kZO,...,pT} (13)

—3
C' = {g®g% —ce QNRp,kzo,...,pT}

and divide these sets into subsets where a set with a running index 2k is divided
into two sets with running indices 4k and 4k + 2:

-1 -3
Ci = {g4k|g4k —ceE QRpag4k < pT;k:(]aapT} (14)

~1 -3
02 = {g4k+2|g4k+2 —cCcE QRP,g4k+2 S pTak = 03 sy p?}a

p—1 p—3
C{ = {g4k|g4k_ceQNRp7g4k S 9 7k=07"'7 2 }7

-1 —
Cy = {g"**|g""** —c € QNR,, g+ < Fo= k=0, . Fo= 3.

The rule g** < 251 and g*+2 < 22! removes half of the values of the running
index. Then C = Cy UCsy, #C =#C1+#C2 and C' = C{UCY, #C' =#C{+#C5.

The idea is to map the solutions of t = g*(g?* — ¢) bijectively to solutions
of ' = g?* — c. Clearly, if g* € QNR,, multiplying with it changes t' € QR,, to

t € QNR, and if gk e @R, multiplying by it does not change the set. This is
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why we divided the sets to 4;, A%, i = 1,2. In i = 2 sets g* € QNR,, so if an
element of C} is multiplied by g* we get an element of A,. Likewise, Cy and A}
correspond to each other.
The following relations hold
#A =#2C1+#2C)
#A =#2C1+#2C,
#Cy =#C—#C
#Cy =#C'—#C1.
Solving # A yields
#A = 2#Cy + 2#C)
= 2#C1 + 2#C" — 2#C].
The value a is used in the proof of this lemma in two places only. One is in
(10): if —a = ¢g* or —a = ¢***! and the index i is even, then B = A. If i is odd,

then B = A’. The other place is in Lemma 2 where the numbers of solutions in
the different cases depend on if whether —a = g% or —a = g?"*!, ie., ifc=1or
c=g.

Case 1: —a = g%, i even. Then ¢ = 1 and the relation

#C' =23 _4C.

holds. In this relation we have counted the values of k in C'UC" and excluded
the one value of k that gives g?* — 1 = 0 (mod p) because 0 ¢ QR, U QNR,,
Thus, the number of valid indices k is one less than the number % of indices

k=0,...,22 in (13). The correct value of valid indices 252.

Counting indices k in C; U C] in (14) gives
#C| = B2 —#C).
In this relation we have excluded the solution to g>* —c = 0 (mod p). In Cy and
C] the counted element is not the number of indices k. It is the number of values
p=5

¢**. This number must be reduced by one. The result follows as % —1=E2.

Calculating # A gives
#A=2#C1 +p—3—2#C — B35 + 240,
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= 4#C) — 2#C + 2L

Writing #C7 = n, and inserting from Lemma 2 the case —1 € @R, and

¢ € QR, where #C = ”4;5 yields
#A=4dn; — 25 + 2L = dn; + 2.

In Case 1 holds N, = 2#A + 3 because if there is a solution y? = z(z* — 1),
then it is satisfied by two y values, +y, and there are three solutions where y = 0,
namely z = 0, z2 = +1. Thus N, = 8nq + 7.

Case 2: —a = g*, i odd. Then B = A'. Thus

#A =2#C] +2#C,
= B2 240 + 2#C — 2#Cy
:"2;5—4n1+%=p—4n1—5
In Case 2 N, = 2#A’ + 3, thus N, =2p —8nq — 7.

Case 3: —a = g***!, i even. The differences to Case 1 are

N, =2#A+1
#C' = Sl—C
#C1 = B2 %0

#C =132

because ¢ = g and g?* — g = 0 is not possible.

We denote #C7 = ngy and insert from Lemma 2 the case —1 € QR, and
¢ € QNR, where #C = ”4;1. Making these changes to the calculation of Case 1
gives N, = 8n, + 3.

Case 4: —a = ¢**!, i odd. Analogically with Cases 2 and 3 we get N, =
2p — 8ng — 3.

The definition of C; is a bit complicated as the running index k loops over
twice as many indices than are needed and the set has a test to discard half of
the values values k because in this way C is clearly the union of C; and Cs. It is

good to notice that the set C; has as many members as the set

{v*ly* — c € QR,}
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where ¢ = 1 for Cases 1 and 2 and ¢ = g for Cases 3 and 4.
The proof of the lemma is completed. o

Let us look at an example of Lemma 2. Let a = —d? for d = 1 in (9) and
p = 13. As g we choose 2, which is a primitive root for Z;;. Then 1 = 20, 2 = 21,
3=244=9225=296=25,7=2,8=2%9=28% 10=219 11 = 27 and

12 = 26. The sets are
A — {23’29} AI — {21’22,24,25’27’28,210’211}

A =10 Ay = {2329}
Al ={22,24,28 2101 Al = {2' 25 27 2!}
C={2".2°} O ={2%2%2"2%
Ci=0 Cy={2"2%}
i ={2%2"  C={2"}

There is a direct correspondence between C; and the first half of Ay, as there
is between C and the second half of A}. This is because if g**(g** — 1) € QR,
then ¢g** —1 € QR, and if g** — 1 € QR, then +¢?*(g** — 1) € QR, since
—1 € QR,. There is also a direct correspondence between C and the first half of
Ay, as there is between Cy and A}. This is because if g?#+1(g?(?*+1) — 1) € QR,
then ¢g??k+1) — 1 € QNR, as g € QNR,, and if g??*+1) — 1 € QNR, then

+g2kt+1(g22k+1) _ 1) € QR, since —1 € QR,. This gives the relations between

the sizes of the sets.

The case of Lemma 1 covers half of all p because of Lemma 4.
Lemma 4. The following statements hold:

(i) —1 € QR, if and only if 4|(p — 1)
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(ii) The number of p < N such that 4|(p — 1) approaches half when N grows

to infinity.

Proof. Let g be a primitive root of Zy. If 4|(p — 1), then a = ¢"T isin Z* and
a’* = —1.If -1 € QR,, then —1 = g* for some 4,0 < i < p—2. Since —1 # 1 holds
2i 20 (mod (p—1)). Thus 2i #0 and 2i Zp—1. As (=1)2 =1 = gP~! = g%
holds 4i = k(p—1) for some k where k has the possible values 1,2, 3. If k = 2, then
—1 = g% = gP~! = 1, which is impossible. Thus, k¥ € {1,3}. Then gcd(4,k) = 1
and therefore 4|(p — 1). This proves the claim (i).

Claim (ii) is shown true by considering the Sieve of Eratosthenes. In this
algorithm primes are found by reserving a memory vector for all numbers and
marking the place of 1 as full and all other places empty at the beginning. On
each step the first unmarked place is taken as the next prime p. The place of p
is marked and all multiples of p are marked. In this algorithm the first step takes
p = 2 and marks all multiples of 2. The unmarked numbers are all odd. The
next prime is p = 3, the first unmarked number. All multiples of 3 are marked.
The numbers that are marked for p, i.e., multiples of p, are are all odd and
equally distributed modulo 4. Consequently, the numbers that remain unmarked
are all odd and equally distributed modulo 4. This continues in each step, thus
the numbers that remain unmarked are all odd and equally distributed between

1 (mod 4) and 3 (mod 4).

In each step the first unmarked number is the next prime p. It is selected
as the smallest number in a set of unmarked numbers that are always odd and
distributed equally between two sets 1 (mod 4) and 3 (mod 4). The next prime
p has half a chance in belonging to either set. The number p — 1 is always even
and if p = 1 modulo 4, then 4|(p — 1). This is so in half of the cases when N

approaches infinity. o
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3 The Birch and Swinnerton-Dyer conjecture

The original reason why Birch and Swinnerton-Dyer formulated their conjecture

was that the function
" N,
log H ez
=1 Pi
was growing approximatively linearly for some values of d for elliptic curves of

the type y? = z(2® — d?), while for some other values of d the function did not

tend to infinity when n grows.

The function they studied in [2] can be written as

= —log H apjpJ -1

n n n
=Y log(l—app;') == app;' + Y app;” +
=1 =1 =1

1
As a,; is on the range of p; by the Hasse bound, the higher terms converge. The

first two terms may diverge at s = 1.

The function studied can be completed into a complex function that is evalu-

ated at s = 1:

-1 -1

-1
(I—app;’ ) —
1 J

(1 - apjpj_s)

—
—

1

J

Let the sum to be over the set A
LZ(CJ S) = H (1 - apjp;S)_l'
jeA
The difference with this function and L(C, s) in (1) is that the term p1 5 in (1)
is missing.
We will derive a small result. Let f(s) be holomorphic in the whole complex

plane with the exception of isolated poles and let f(s) have an Euler product
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expression

fo)=T[a-fen™

JjEA
which converges absolutely when Re{s} is sufficiently large. When the product

converges absolutely we have

7)™ = i) = =3 Tin(1 - )

ds
jeA

Let us define

91(s) =D fi(s)fi(s)

jEA

hs) = 3 £(9)

JEA

In the area where g»(s) converges absolutely holds

F'(8)f(s)™" = g2(5) = h(s) + ga(s)-

If the function f(s) has a zero or a pole at sg, then the function h(s) + g1(s) has
a simple pole at so. The residue of a pole of h(s) + g1(s) is always an integer and

all poles of h(s) + g1(s) are simple poles.

For Ly(C, s) the function f;(s) = ap;p~* and h(s) has the expression

h(s) = hi(s) = Y _ fi(s) = = D ap, In(py)p;°.

JEA jeA
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The sum diverges at s = 1 and h(s) may have a simple pole at s = 1. The function
g1(s) is

91(s) = = _ In(p;)a,p; >*.
JjEA

The part of the sum expression of g;(s) diverging at s =1 is

91,1(5) = g1(s).

The sum diverges at s = 1 and g;,1(s) may have a simple pole at s = 1.

For L(C, s) the function f;(s) = a,,;p~* — p*~2* and h(s) has the expression
h(s) =" fi(s) == (ap, In(p;)p;® — 2In(p;)p}~>*) = ha(s) + ha(s).
JjEA JjEA
The sum diverges at s = 1 and h(s) may have a simple pole at s = 1. The function
91(s) is
g1(8) = — Z ln(p]-)af)jpj_% + Z In(p;)ap, (Bp}_gs - 2p?_4s) .
jeA jEA

The part of the sum expression of g (s) diverging at s = 1 is

g1.1(s) = Z ln(pj)af,jpj’zs.
JEA
The sum diverges and g1 ,1(s) may have a simple pole at s = 1.
Thus, the (possibly) divergent part g1,1(s) of g1(s) is the same for Ly(C,s)
and for L(C, s), but the function h(s) for L2(C,s) lacks the second part ha(s) in
h(s) for L(C,s). This missing function has a first order pole and residue one at

s =1 as the following lemma shows.

Lemma 4. Close to s =1 holds

1
ha(s) =2 Z ln(pj)p}_28 =1 + finite terms.
jeEA
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Proof. The Riemann zeta function ((s) has a simple pole of residue 1 at s = 1.

Thus, close to s =1 zeta is

1
C(S) = H(l _pj_s)71 = s——l + finite terms.

pPj

Derivating gives h(s) for the zeta function:

Q;((j)) - _ G _1 It 5 I ! + finite terms = h(s) + g(s).

Calculating from the infinite product we get

d

75 10(C(s)) = h(s) + g(s)

where

h) = =Y n(p,)p;”

g(s) = — Zln(w)p}“ e

and g(s) converges when Re{s} > 1. Thus, the divergent part is

1
Z In(p;)p;° = Py + finite terms
J

close to s = 1. Changing —s = 1 — 2z yields

1
2 Z ln(pj)p}_zz = 2m + finite terms
J

that is
1
2 Zln(pj)p}_% =21 + finite terms.
i

Since A excludes only those values of p; that divide A, the sum over A gives the

same result. o
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The Theorem on page 4 in [1] states that it is proven that if the elliptic curve
C has rank zero then the L-function L(C,s) has the algebraic rank zero. There
is a conflict: Theorem 1 proves that Theorem on page 4 in [1] is in contradiction
with the initial experiments of Birch and Swinnerton-Dyer, assuming they have

been correctly described in the literature:

Theorem 1. Assuming that Lo(C,s) satisfies the Birch and Swinnerton-
Dyer conjecture for rank zero, then L(C, s) cannot satisfy the conjecture for rank

zero.

Proof. Birch and Swinnerton-Dyer studied elliptic curves of the form y? = z(z?% —
d?) with several values of d including values d = 1 and d = 5. These curves have
rank zero if d = k2 for some integer k. Assuming that Birch and Swinnerton-Dyer
concluded that the function they studied, L,(C, s), has a finite nonzero value at
s = 1 for d = 1, then it follows that h(s) + g1,1(s) must be finite at s = 1 for
d = 1. For L2(C, s) holds h(s) = hi(s), thus hi(s) + g1,1(s) must be finite for
d=1.

Consequently, if Lo(C, s) fills the conjecture for rank zero, then the function

L(C, s) cannot have a finite nonzero value at s = 1 for elliptic curves with a =

—d? = —1 and b = 0. The function hy(s) has a pole at s = 1 and is of the form

1
ha(s) = pom ] + finite terms.
Therefore

hi(s) + ha(s) + g1,1(s) = S—L]. + finite terms.

Because of this pole, the function L(C, s) has a zero at s = 1. Thus, for an elliptic
curve of rank zero the L-function L(C, s) has a zero at s = 1 and has the algebraic
rank one. o

Errors happen, but if Theorem on page 4 in [1] (and the literature results that

it is based on) is correct, then Birch and Swinnerton-Dyer were a bit mixed up:
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they thought that a pole of Lo(C,s) at s = 1 for d = 1 is a nonzero value of

Ly(C, s) and that a nonzero value of Ly(C,s) at s =1 for d = 5 is a zero.

Though it seems that the problem as stated in [1] is solved in negative without
any use of Lemmas 1-4 simply because it contradicts what Birch and Swinnerton-
Dyer found in [2], these lemmas were given for the purpose of solving the problem
statement in [1]. Thus, we will assume that the problem statement [1] is correct
in its claims and show that it leads to a contradiction without referring to the

results of Birch and Swinnerton-Dyer in [2].

The problem statement [1] says that L(C,s) is analytic in the whole plane
implying that it does not have a pole at s = 1 for any d. Theorem on page 4 in
[1] says that for rank one and zero the Birch and Swinnerton-Dyer conjecture is

true.
The function hs(s) has a pole with residue 1 at s = 1.

Let us consider the values a = —d? with d = 1, d = 5 and d = 19 for the
simple elliptic curves that Birch and Swinnerton-Dyer studied: thus a = —d? and
b = 0. The numbers 1 and 19 are noncongruent numbers and give an elliptic curve
with zero rank, while d = 5 is a congruent number and gives an elliptic curve with

rank one.

The value d; = 1 is a square number and picks up only the first case with
¢ = 0 in Lemma 3. Thus, a, = N, —p = 8n; + 7 — p. The other two values of d
give a choice of the two first cases in Lemma 3: if d € QR,, then ap, 4 = ay, 1,
while if d € QN R,, then ay; ¢ = —ay; 1.

The divergent part g1,1(s) of g1(s) has a square of a,; and therefore it is the

same function for all three values of d. Let the residue of the (possible) pole of

91,1(s) at s = 1 be r. That is, if there is no pole, then r = 0.

The function hq (s) is different for different values of d. Let us write hq q(s) for
the function hq(s) for the value d. We will denote the value of the residue of the

(possible) pole of hy 4(s) at s =1 by —rg. If there is no pole, then r4 = 0.
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Assuming that the conjecture holds for ranks zero and one, the (possible) poles
of h(s) = h1,1(s)+h2(s) and g1,1(s) must cancel at s = 1. We have —r1 +1+7r = 0.
For d = 5 the function hq 5(s) + h2(s) +91,1(s) has a simple pole with residue one.

Thus —r5 + 1+ = 1. These two equations give

rs =11 — 1 <rq. (15)

The value d = 19 is a noncongruent number. Since Theorem on page 4 in [1] says

that the conjecture holds, the value d = 19 must give zero algebraic rank. Thus,

T19 =T71. (16)

Theorem 2. If statistical arguments of the distribution of prime numbers
are not allowed in the proof, then the problem statement in [1] is not well-defined
and cannot be answered. If statistical arguments of the distribution of prime
numbers are allowed in the proof, then the Birch and Swinnerton-Dyer conjecture

for L(C, s) fails in rank one.

Proof. The Hesse bound is a statistical bound and requires treating prime num-
bers in a statistical manner. If statistical arguments are not allowed, then the
problem statement should not use the Hesse bound. As it does make an argument
with the Hesse bound, the problem statement is not well formulated and a poorly
formulated problem statement cannot be answered.

No statistical arguments are needed in Lemmas 1-3 and Lemma 4 claim (i). In
Lemma 4 claim (ii) there is a statistical argument using the Sieve of Eratosthenes.
Prime numbers can be deterministically generated by the Sieve of Eratosthenes.
Because of the construction of this sieve we can make some statistical observations,
such as the claim (ii) in Lemma 4.

The number of solutions for y> — 1 € QR, is (p — 5)/4 for the case —1 € QR,

according to Lemma 2. Exactly half of the numbers y are in Q R, and half are in
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QNR,. We will now make a statistical argument: for a randomly chosen prime p
(about) half of the solutions y?> — 1 € QR,, have y € QR, and if p; ranges over
all values, the probability that y € QR, is exactly 0.5. Thus, the expectation
value for n; is (p — 5)/8 where the expectation value means that the number
p is randomly chosen. It follows that the expectation value of a,; for d = 1 is
Elap,] = pj — 5+ 7—p; = 2. Because the mean of a,, is 2, the function hy ;(s)

for diverges at s = 1. It has a simple pole with residue —ry for some r1 > 0.

We will make another statistical assumption: the prime d, where d = 5 or
d = 19, does not have any special relationship with a randomly chosen large prime
pj- Therefore the expectation value of a,; is 2 if the randomly chosen prime p; is
chosen from the set satisfying d € QR,. Likewise, the expectation value of a,, is

2 if the randomly chosen prime p; is chosen from the set satisfying d € QN R,,.

We need another statistical assumption: because the prime d, where d = 5
or d = 19, does not have any special relationship with a randomly chosen large

prime p;, the probability that d € QR,, for a randomly chosen p; is 0.5.

If these statistical assumptions are accepted in a proof, then we can make the

following observations. Let a,,; 4 denote the number a,,; for the value d.
By Lemma 1, if -1 € QN R,, then a, = N, — p = 0 for every d.

By the claim (ii) in Lemma 4 holds —1 € QNR,, for half of the randomly
chosen primes p;. It follows that a,, 4 is zero for every d for half of the randomly

chosen primes p;.

For the other half of the randomly chosen primes p; holds —1 € QR,,. Of
these values half have d € QR,, for d # 1 and then a,; 4 = ap, 1. The rest (i.e.,

half) have d € QN R, and thus ap, g = —ap, 1. Let d € {1,5,19} and

Al,d = {.7 S Ald S QRpja_]- € QRPJ'}

Aza={j € Ald € QNRy;, —1 € QRy,}.
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The statistical assumptions mean that for d € {5,19} we have

Z Qp;.ap ° = Z ap; 1p ° (17)

JEA1 4 JEA11
—8 _ —8
Z : apj ’dp - : : apj 71p
JE€A2,q JE€A21
—8 _ —8
z : apj 7dp - = z : apj ’dp °
jEAl,d jEAQ,d

Therefore for d = 5 we get

h1’5(8) = Z apjaE‘p_S + Z apj75p_s = 0

JEALs JEA25

and 75 = 0. Thus, by (15) follows r; = 1 and thus r = 0.
But by the same argument, for d = 19 holds

hiag(s) = D apaep™ + Y ap19p~ =0

JEA1 19 JEA2 19

and rig = 0. This is in contradiction with (16).

Thus, if statistical arguments are allowed, the Birch and Swinnerton-Dyer

conjecture fails for rank one for L(C,s). o

It is not any better for L2 (C, s):

Corollary 1. If statistical arguments of the distribution of prime numbers
in Theorem 2 are allowed, then the Birch and Swinnerton-Dyer conjecture for

L5(C, s) fails in rank one.

Proof. If statistical assumptions of Theorem 2 are allowed, then (17) holds. We
get the same contradiction for L2(C, s) as for L(C, s). The only difference is that

r=1.o
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