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Abstract 

A hidden variables matrix mechanics model of the harmonic oscillator is 
presented as a counter-example in examining fundamental assumptions of 
quantum mechanics. Solutions are obtained which can be interpreted as 
describing continuous motion of a particle at all times located at points in space. 
While this is contrary to the basic postulate of Heisenberg, the experimental 
results of the standard matrix mechanics treatment are nevertheless reproduced. 
The proposed model is motivated by the foundational issues raised by Bell. 
Inequalities violation is however, attributed to the mathematical representation 
of outcome quantities as metric variables rather than the consensus assumption 
of local causality. Examining the consequence of this alternative conclusion on 
an actual quantum system creates an overlapping between Bell inspired 
foundational issues and the original postulates of Heisenberg and Born. 
Heisenberg’s basic postulates – randomness of transitions and treating the 
system as an ensemble – are critical. Bohr’s assumption that transitions occur 
instantaneously, together with Heisenberg’s non-path postulate where the 
particle can be measured at spatially separated locations without continuous 
movement between locations, are discarded. The proposed hidden variables are 
non-contextual. These results question the commonly accepted inequalities 
violation conclusions that any local and/or non-contextual hidden variables 
theory cannot reproduce quantum predictions. That the wave function gives a 
complete description of the quantum state is likewise not supported by the 
model. Heisenberg’s measurable-only quantities are interpreted as arising from 
a substructure of periodic endogenous motion of the system.    
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1. Introduction 
 

Bell inequalities, together with other reality testing configurations – Hardy non-

locality, steering, macroscopic realism – is regarded as the conceptual and 

empirical framework for exploring quantum foundations [1]. As is well known, 

Bell was motivated by Einstein-Podosky-Rosen (EPR) questioning the 

completeness of quantum mechanics. Inequalities violation is now well 

established experimentally [2-6]. Local causality is generally considered to be 

the fatal assumption which would then imply that non-locality is a fact of nature 

[7-8]. However, explaining how non-local influences work physically remains a 

challenge while conflict with relativity persists. Also, violation only establishes 

that inequalities are wrong not why they are wrong. Nevertheless, the consensus 

view is that any local hidden variables theory cannot reproduce the results of 

quantum mechanics (QM). 

There are alternative interpretations, including: a) Bell inequalities lack 

sufficient generality to be conclusive [9]; b) contextuality is the primitive 

characteristic [10-16]; c) classicality rather than local causality is the fatal 

assumption [17]; d) both locality and counterfactual definiteness are assumed 

[18-19]; and e) Bell’s own contrary free particle position-momentum analysis 

which is in agreement with both QM and experiment [20]. 

Perhaps a most comprehensive analysis examines Bell, Kochen-Specker and 

Leggett-Garg configurations simultaneous, which are shown to be different 



violations of the same underlying mathematical property of a joint probability 

distribution for all possible measurements [21]. 

While these alternative explanations have generally not been the focus of 

intense scrutiny, there is a significant view supporting the contextuality option. 

Bell-like inequalities based on the assumption of non-contextuality are found to 

be violated; leading to a second potential conclusion that QM predictions cannot 

be reproduced by non-contextual hidden variables theories.  

As a summary, inequalities violation potentially rules out any of local causality, 

classicality, non-contextuality and/or counterfactual definiteness. Alternatively, 

realism, determinism and hidden variables are not excluded. Also, if local 

causality is not rejected physical theories would then be local, deterministic and 

counterfactual indefinite [19]. There is some conjecture on the question of 

realism. Different authors use different definitions, which leads to some 

confusion. The definition used here is that of Norsen where realism is not an 

issue [22].  

There is a further technical complication that since conclusions are drawn from 

inequalities being incorrect any inference remains conditional on there been no 

additional unidentified assumptions. Given this democracy of thought and 

technical inconclusiveness, Bell and associated inequalities are prudently seen 

here as invaluable in identifying possibilities. Any candidate fatal assumption is 

then faced with the challenge of explaining its consequences. 



This work develops on previous analysis identifying the assumption of 

representing an outcome quantity by a metric variable [23-24]. At issue is then 

the mathematical representation of physical quantities. Contrary to the assertion 

that inequalities are a conjunction of locality and experimental outcomes (in 

which case locality is the sole assumption) it has been shown that assuming 

metric variables is an additional assumption [25-27]. 

Metric variables are the variable type of classical theory. This is due to the 

metric nature of space and time. Geometrical points in Euclidean geometry obey 

field algebra with measurability definable within its axiomatic structure [28-29]. 

Due to the isomorphism with numbers, points in Euclidean geometry can be 

represented by number-values. To the extent that physical points in space and 

time can be represented by Euclidean geometrical points, they can likewise be 

represented by numbers, and can likewise possess a mathematically defined 

measurability. 

This geometrical-mathematical reasoning is more significant than mere 

abstractionism. It defines a logical procedure for representing a physical 

quantity by a mathematical entity: in this case location by number-value. For 

standard QM physical observables are associated with a mathematical 

representation – operators in Hilbert space - by postulate. To complete the 

connection between mathematics and empirical reality, experimental outcomes 



are associated, again by postulate, with eigenvalues-eigenstates of the quantum 

formalism.  

If assuming metric variables is fatal then violation of Bell inequalities can also 

permit the possibility of a non-metric space with time remaining metric. Such 

space would be described by Projective geometry whose geometrical points 

obey division ring algebra, with measurability only definable under special case 

conditions. 

Introducing non-metric space may seem a radical proposal but does have a 

simple consequence that continuous movement in space and time can also be a 

feature of QM. The following treatment of the harmonic oscillator using matrix 

mechanics methods is an example of such an analysis.  Examining an actual 

quantum system has the advantage of a more rigorous testing of fundamental 

assumptions than reasoning alone of EPR and Bell, while also extending 

discussion beyond inequalities and their violations.  

This analysis is not inconsistent with identifying non-contextuality, counter-

factual definiteness or classicality as sources of inequality violation. Nor is there 

disagreement with Bell’s free particle analysis [24]. 

While the proposed model does give solutions which can be interpreted to 

require non-metric space, it is found that the same results can be interpreted 

more simply without rejecting classical space. Further, the same analysis can 



proceed directly from a critical examination of Heisenberg’s fundamental 

assumptions without reference to EPR or Bell or the nature of space. In which 

case, the proposed model is a stand-alone counterexample independent of any 

opinion on inequalities violation. That notwithstanding, the somewhat 

contradictory approach chosen here is deliberate. This work is an examination 

of foundational postulates and is intended to remain within the framework of 

EPR and questions on the completeness of QM.  

2. Harmonic oscillator: physical assumptions 

The following discussion is more detailed than would normally be required for 

such a well-known system. It is not however the mathematical solutions which 

are the primary focus but rather the underlying foundational assumptions, 

particularly in relation to Heisenberg and Born [30-31].  

Re-visiting matrix mechanics for answers to foundational questions may seem 

indirect given that the central issue is the meaning of the wave function. 

However, Heisenberg and Born postulates are as close as possible to classical-

mechanical laws, and are thereby more transparent than the Schrodinger-based 

postulates of standard textbook treatments for exploring possible hidden 

variables in space and time [30].    

The generic Hamiltonian is: 

𝐻𝑜 = [𝑝2  +  𝑥2]/2              (1) 



Where the usual dimensionless quantities have been introduced as: 

𝐻𝑜  = 𝐻
𝜔

, 𝑝 = 𝑃
√𝜔𝑚

,   𝑥 = 𝑋√𝜔𝑚 𝑎𝑛𝑑 ħ = 1       (2) 

At issue is the mathematical representation of position and momentum as non-

classical quantities. For the initial assumption of movement in non-metric space, 

the basic question is how position – still a physical point in space and time – is 

to be mathematically represented given that points are now subject to division 

ring rather than field algebra. A possibility is to consider a quaternion 

representation [23-24]. There are several reasons for this choice: a) quaternions 

obey division ring algebra; b) quaternions have a matrix representation 

maintaining consistency with Born-Jordan (BJ) matrix mechanics; and c) 

quaternions are subject to SU(2) invariance consistent with electron spin.  

The analysis can then proceed along similar reasoning to Born-Jordan. A 

complication arises however with the physical interpretation of variables and 

solutions. If quaternions represent particle position what is then the meaning of 

quaternion matrix elements and resulting eigenvalues?   

Heisenberg interpreted what Born-Jordan later identified as matrix elements, to 

be transition amplitudes in what is termed a kinematic re-interpretation [31]. 

Commencing with the empirically verified Bohr-Einstein frequency relation 

Heisenberg concluded that transition amplitudes were a function of two indices 

representing the initial and final states of a transition. He further assumed, 



following Bohr, that transitions were instantaneous. This assumption has been 

found to be invalid. Experiments on atomic systems show duration intervals in 

the order of attosecends [32]. Heisenberg further assumed that classical 

dynamical equations would still apply to the kinematic re-interpreted quantities. 

Born-Jordan persisted with this assumption as a core postulate [30]. To be more 

precise, Born-Jordan showed that assuming a matrix Principle of Least Action 

classical equations are then applicable. It should nevertheless be clarified that 

there is ambiguity whether Heisenberg’s re-interpreted quantity is position. 

Mathematically at least the magnitudes of the matrix elements refer to the 

probabilities of transitions. 

For the model being proposed, the previously introduced assumption that the 

particle is at all times located at a point in physical space and has continuous 

motion in space and time, will persist but extended to also include transitions. In 

which case a path, likewise dependent on two indices, can be associated with a 

transition.  Physically then, the matrix elements can be interpreted to refer to 

classical paths of finite duration. This re-definition simplifies basic physical 

interpretations: non-metric space is no longer necessary, kinematic re-

interpretation is not required, and the position matrix would then refer to an 

ensemble of transition paths in metric space; where the ensemble is a feature of 

the individual particle.  



Associating an ensemble with a single particle does seem perplexing. If 

however, all ensemble information is not contained by the individual particle it 

becomes difficult to see how protective measurements, which have been 

performed experimentally, would be possible [33-34]. Notwithstanding some 

controversy, the single particle ensemble assumption thereby has empirical 

justification. 

Heisenberg rejected continuous path movement on the instrumentalist argument 

of non-measurability. However, he also added, rather pragmatically, that a 

theory based on orbitals did not reproduce experiment. Rejection of orbital-type 

movement does not necessitate rejection of all other forms of endogenous 

motion. The important requirement is system stability, which is ensured by 

Bohr’s periodicity condition.  

A further possible objection is that re-introducing classical motion contradicts 

the uncertainty principle. However, that is not the case. The experimentally 

verified preparation and measurement formulations of the uncertainty relations 

refer to ensemble distributions and relations between such distributions. The 

ensemble characteristic of QM is not in question. Ballentine pointed out long 

ago that these relations do not apply to the individual case, which here would be 

an individual path [36]. Ballentine’s statistical interpretation defines a minimum 

requirement to meet the benchmark criteria of consistency with the 

mathematical formulation of QM. The proposed model meets the criteria.   



Heisenberg introduced a number of fundamental assumptions which will 

continue to apply: 1) primacy of the frequency condition, 2) rejection of orbital 

paths, but still accepting Bohr’s periodicity condition, 3) energies, frequencies 

and transitions amplitudes as measurable quantities, 4) the system is to be 

treated as an ensemble of transitions for which Born introduced the pivotal 

matrix representation, and 5) applicability of classical equations of motion to 

the ensemble position and momentum. To this list is added the experimentally 

based randomness of transitions. Like Heisenberg and Born a particle picture is 

assumed.  

3. Harmonic oscillator: exploratory model 

Quaternion matrices are order 2× 2 which differs from the actually infinite 

matrices of Born-Jordan. However, the frequency condition refers to a unit 

transition between two arbitrary states which can be represented by 2× 2 

matrices. Initially, the model is simplified to considering unit transitions, 

whereas the ensemble postulate requires the collective treatment of matrix 

mechanics, and use of actually infinite (or at least large but finite) matrices. For 

the sake of terminology in this section the 2× 2 matrices will be referred to as 

ensemble, although not fully representing Heisenberg’s postulate. As will be 

seen, standard matrix mechanics results are obtained. A more general model 

incorporating BJ matrices, which correctly represent an ensemble, is also 

presented. Results are essentially the same. 



The Born-Jordan postulate allows classical equations of motion to be applied to 

the Hamiltonian (1) giving: 

(𝑥̇ + 𝑖 𝑝̇) = −𝑖(𝑥 + 𝑖𝑝)        (3a) 

(𝑥̇ − 𝑖 𝑝̇) =  𝑖(𝑥 − 𝑖𝑝)        (3b) 

Introducing the usual definitions: 

𝑎 = 1
√2

(𝑥 + 𝑖𝑝)         (4a) 

𝑎∗ = 1
√2

(𝑥 − 𝑖𝑝)         (4b) 

Leads to the solutions: 

𝑎 = 1
√2

(𝑥𝑜 + 𝑖𝑝𝑜)𝑒−𝑖𝑡        (5a) 

𝑎∗ = 1
√2

(𝑥𝑜 −  𝑖𝑝𝑜)𝑒𝑖𝑡        (5b) 

These relations are not obtained from Heisenberg’s equation of motion which is 

not applicable for position 2× 2 matrices. From relations (5) the time dependent 

expressions are: 

𝑥(𝑡) =  𝑥𝑜 𝑐𝑜𝑠𝑡 + 𝑝𝑜𝑠𝑖𝑛𝑡       (6a) 

𝑝(𝑡) =  𝑝𝑜 𝑐𝑜𝑠𝑡 − 𝑥𝑜𝑠𝑖𝑛𝑡       (6b) 

These relations have the same form as the standard treatment. Using definitions 

(5) the Hamiltonian becomes: 



𝐻𝑜 =  𝑎∗𝑎 + 1
2

[𝑎,𝑎∗]        (7) 

Substituting explicitly for position and momentum gives: 

𝐻𝑜 = 1
2

(𝑥𝑜2 + 𝑝𝑜2)         (8) 

That the Hamiltonian is time independent is as required by conservation of 

energy.  Born-Jordan established this as a general result for actually infinite 

matrices, with time-independence further inferring the Hamiltonian energy-

matrix is diagonal. For the specific HO Hamiltonian (1) time-independence can 

be shown by following the BJ relation for the time derivative of a product of 

two matrices followed by use of classical equations. Following similar 

reasoning to BJ, it can be further shown that the Hamiltonian is diagonal also 

for quaternion matrices. 

Another feature of relation (7) is that non-commutation terms cancel. For this 

model, the physical origin of non-commutation differs from orthodoxy. Non-

commutation is not directly a consequence of the uncertainty principle, nor 

primitive position and momentum, which remain classical quantities, nor the 

structure of space as first supposed. Mathematically, it is a consequence of 

representing the ensemble position and momentum by matrices. Since matrices 

are introduced to represent the ensemble feature of the system, non-

commutation is then a consequence of Heisenberg’s ensemble postulate; which 

is itself sourced in the nature of quantum matter.  



Standard forms for quaternions are: 

𝑞 = 𝑎 + 𝑏𝑖𝜎3 + 𝑐𝑖𝜎2 + 𝑑𝑖𝜎1       (9a) 

𝑞 =  � 𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑
−(𝑐 − 𝑖𝑑) 𝑎 − 𝑖𝑏�       (9b) 

Where a, b, c, d are real or complex coefficients, and 𝜎𝑖 are the usual Pauli spin 

matrices.  Following the form of BJ matrices, in general the ensemble position 

in 2× 2 matrix representation is: 

𝑥(𝑡) =  � 𝐴 𝑏1 𝑒𝑖𝑡 + 𝑏2𝑒−𝑖𝑡

𝑐1 𝑒𝑖𝑡 +  𝑐2𝑒−𝑖𝑡 𝐷
�    (10) 

At issue are the values of the coefficients. For diagonal elements the transition 

frequency is zero in which case these elements are constants. Heisenberg further 

assumed these elements are zero, which would also be the case here – if there is 

no transition there can be no transition path. However, following Born-Jordan, 

Newton’s 2nd Law of motion gives the most basic equation: 

𝑥̈ +  𝑥 = 0           (11) 

Substituting the position matrix (10) leads to zero diagonal elements in 

agreement with Heisenberg. In which case the initial position and momentum 

are: 

𝑥𝑜 =  � 0 𝑐 + 𝑖𝑑
−(𝑐 − 𝑖𝑑) 0 �       (12a) 



𝑝𝑜 =  � 0 𝑐′ +  𝑖𝑑′
−(𝑐′ − 𝑖 𝑑′) 0 �       (12b) 

Substituting relations (12) into (6) leads to the time dependent matrices.The 

periodicity condition for the harmonic oscillator is [37]: 

∮ 𝑝𝑑𝑞 = 2𝜋(𝑛 + 1
2
)        (13) 

Substituting position and momentum relations (6a) and (6b) gives: 

[𝑝𝑜2 +  𝑥𝑜2] = 2(𝑛 + 1
2
)        (14) 

The matrix mechanics use of classical equations has been extended to apply also 

to the periodicity condition. Omitting the identity matrix, which as expected 

gives a diagonal Hamiltonian, the standard HO energy solutions follow as: 

𝐻 =  ħ𝜔(𝑛 + 1
2
)         (15) 

Non-commutation of the ensemble quantities follows from relations (6) as: 

[𝑥(𝑡),𝑝(𝑡)] = [𝑥𝑜 ,𝑝𝑜]        (16) 

Clearly, the RHS of this relation is not a function of time. Born-Jordan 

established this result to be a property of matrices independent of order. Using 

(12) the non-commutation relation becomes:  

[𝑥(𝑡),𝑝(𝑡)] = 2(𝑐𝑑′ − 𝑑𝑐′)𝑖𝜎3       (17) 



Born-Jordan established that for matrices of any order the RHS matrix should 

be diagonal, which it is. The presence of the Pauli spin matrix may suggest an 

incorrect departure from QM. However, non-commutation of 2× 2 sub-matrices 

along the main diagonal of BJ matrices also includes the spin matrix. If as stated 

non-commutation is a consequence of ensemble-ness, then different 

mathematical representations will give different non-commutation relations. It 

is sufficient that there be consistency; which as will be seen is the case. A 

consequence of (17) is that ensemble position and momentum are not subject to 

the Heisenberg equation of motion, which again is not a problem provided that 

standard results are reproduced; which they are. 

Using relations (12a) and (12b) together with the periodicity condition (14) 

gives: 

𝑐2 + 𝑑2 +  (𝑐′)2 + (𝑑′)2 =  −(2𝑛 + 1)     (18) 

Redefining coefficients gives: 

𝑐2 = (𝛼1 + 𝛽1), 𝑑2 = (𝛼2 + 𝛽2)      (19a) 

(𝑐′)2 = (𝛼3 + 𝛽3),  (𝑑′)2 = (𝛼4 + 𝛽4)      (19b)               

Where 𝛼𝑖 =  𝛼𝑖 (𝑛) and 𝛽𝑖 is a constant, leading to: 

∑𝛼𝑖 =  −(2𝑛) 𝑎𝑛𝑑  ∑𝛽𝑖 = (−1)      (20) 



From (20) both  𝛼𝑖 and 𝛽𝑖 must be real. According to Heisenberg and Born the 

RHS of (17) should be a constant. The rationale is that the quantum condition 

(using Born terminology) refers to a change-of-state, and should therefore be 

state independent, that is, independent of 𝑛. Maintaining consistency with Born-

Jordan the constant is set to unity; so that: 

(𝑐𝑑′ − 𝑑𝑐′) =  1/2        (21) 

While this assumption is arbitrary, it is nevertheless appropriate: the purpose of 

the model is to develop an example of a possible hidden variable substructure 

reproducing standard QM. This assumption meets the minimalist criteria. As 

will be found however, the same result can be obtained without direct reference 

to BJ results by defining an a priori condition. 

Relation (21) can be re-expressed as: 

�(𝛼1 + 𝛽1)1/2(𝛼4 + 𝛽4)
1
2 −  (𝛼2 +  𝛽2)

1
2(𝛼3 + 𝛽3)

1
2� = 1/2   (22) 

At issue are again the values of the coefficients. The LHS of this relation is 

subject to three constraints: 1) real 2) positive and 3) 𝑛 independent. Using 

these conditions it is found that all 𝛼𝑖 and 𝛽𝑖 must have the same sign, and that 

all 𝛼𝑖 (𝑛) are the same function. 

The reasoning is as follows. All (𝛼𝑖 +  𝛽𝑖)  terms having the same sign does not 

potentially contradict the constraints. Also, the signs of  𝛼𝑖 and 𝛽𝑖 must be the 



same within each term. If signs are different then the sign of (𝛼𝑖 −  𝛽𝑖) will 

change depending on (𝛼𝑖(𝑛) >  𝛽𝑖) or  (𝛼𝑖 (𝑛) <  𝛽𝑖) , that is depending on the 

value of  𝑛, which would contravene the third constraint.  

Considering the LHS product terms individually, if the two (𝛼𝑖 + 𝛽𝑖)  terms 

have different signs their product cannot be real thereby contradicting the first 

constraint. Alternatively, if the two (𝛼𝑖 + 𝛽𝑖)  terms have the same sign but are 

of opposite sign to the two terms of the other product term, the product terms on 

the LHS will have the same sign, that is either both positive or both negative.  In 

which case, the 𝛼𝑖terms, which define the functional 𝑛 dependence, cannot be 

eliminated from the LHS expression thereby contradicting the third constraint. 

For 𝑛 = 0 it follows from (20) that ∑𝛼𝑖(0) = 0, since all 𝛼𝑖 terms have the 

same sign, the 𝛼𝑖 (0) terms are all zero. The two conditions become: 

[(𝛽1)1/2(𝛽4)1/2 −  (𝛽2)1/2(𝛽3)1/2] = 1/2     (23a) 

𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 = (−1)       (23b) 

All 𝛽𝑖 must then be negative. By inspection a solution is:  

𝛽1 = 𝛽4 = 0 𝑎𝑛𝑑 𝛽2 = 𝛽3 =  𝛽 = (−1
2
)     (24) 

A numerical analysis of (23a) and (23b) gives the same result. Solution (24) for 

𝛽 applies for all 𝑛 values, in which case relation (22) then becomes: 

�(𝛼1)1/2(𝛼4)1/2 − (𝛼2 + 𝛽)1/2 (𝛼3 + 𝛽)1/2� = 1/2   (25) 



The LHS must be independent of 𝑛, to illuminate this functional dependence 

requires that all 𝛼𝑖 are the same function. From relation (20) and (24) the 

solutions become:  

𝛼𝑖 =  𝛼(𝑛) =  −�𝑛
2
�  𝑎𝑛𝑑  𝛽 = (−1

2
)      (26) 

The quaternion coefficients are then: 

𝑐 =  𝑑′ = 𝑖(𝑛
2

)1/2 𝑎𝑛𝑑 𝑐′ = 𝑑 = 𝑖((𝑛 + 1)/2)1/2    (27) 

Using the basic relation 𝑝(𝑡) = 𝑥 ̇ (𝑡) as an a priori condition leads to the same 

results. The initial position and momentum become: 

𝑥𝑜 = ( 𝑖
√2

) � 0 √𝑛 + 𝑖√𝑛 + 1
−√𝑛 + 𝑖√𝑛 + 1 0

�    (28a) 

𝑝𝑜 = ( 𝑖
√2

) � 0 √𝑛 + 1 + 𝑖√𝑛
−√𝑛 + 1 + 𝑖√𝑛 0

�    (28b) 

Both matrices are hermitian, in which case their respective eigenvalues are real. 

Substituting relations (28) into relations (6) gives the time dependent ensemble 

position and momentum as: 

𝑥(𝑡) = �− 1
√2
� � 0 −𝑖√𝑛 𝑒𝑖𝑡 + √𝑛 + 1𝑒−𝑖𝑡

𝑖√𝑛 𝑒−𝑖𝑡 + √𝑛 + 1𝑒𝑖𝑡 0
�     (29a) 

 =  �− 1
√2
� � 0 √𝑛 + 1 𝑒−𝑖𝑡

√𝑛 + 1𝑒𝑖𝑡 0
� + �− 1

√2
� � 0 −𝑖√𝑛𝑒𝑖𝑡

𝑖√𝑛 𝑒−𝑖𝑡 0
�  



𝑝(𝑡) = �− 𝑖
√2
� � 0 −√𝑛 + 1 𝑒−𝑖𝑡 − 𝑖√𝑛𝑒𝑖𝑡

√𝑛 + 1𝑒𝑖𝑡 − 𝑖√𝑛 𝑒−𝑖𝑡 0
�      (29b) 

   = �− 𝑖
√2
� � 0 −√𝑛 + 1 𝑒−𝑖𝑡

√𝑛 + 1𝑒𝑖𝑡 0
� + �− 𝑖

√2
� � 0 −𝑖√𝑛𝑒𝑖𝑡

−𝑖√𝑛 𝑒−𝑖𝑡 0
� 

Again, both quantities are hermitian. Off-diagonal elements describe periodic 

motion with frequency that of the propagating virtual photon, which, together 

with their total energy are: 

𝑥𝐻𝑉(𝑡) = 𝑖�𝑛/2 𝑒𝑖𝑡 −  �(𝑛 + 1)/2𝑒−𝑖𝑡     (30a) 

𝑝𝐻𝑉(𝑡) = 𝑖�(𝑛 + 1)/2 𝑒−𝑖𝑡 − �𝑛/2𝑒𝑖𝑡     (30b) 

𝐸𝐻𝑉 = −𝑖ħ𝜔�𝑛(𝑛 + 1)         (30c) 

𝑤ℎ𝑒𝑟𝑒 𝑝𝐻𝑉(𝑡) = 𝑥̇𝐻𝑉(𝑡)         (30d) 

Similar relations hold for the conjugate matrix element with corresponding 

energy: +𝑖ħ𝜔�𝑛(𝑛 + 1). Obviously all quantities are complex, which suggests 

non-physicality. However, that is not the case. It is not a classical point-particle 

whose motion is being described but rather a transitioning quantum entity 

propagated by absorption and emission of virtual quanta. 

Complex classical trajectories are the subject of current research, showing a 

connection with QM by reproducing quantum effects, notably tunnelling [38-

39]. The possibility that complex classical systems can be viewed as possible 



hidden variables formulations has been suggested [39]. Interestingly, it can be 

inferred from protective measurements that the one-particle wave function is 

formed by an ergodic particle motion [34]. 

Mathematically, these relations are a consequence of the periodicity condition, 

together with SU(2) invariance. That matrices are hermitian is likewise a 

consequence of the same two basic conditions.  

The position matrix describes both stationary state behaviour, by real 

eigenvalues, as well as non-stationary state behaviour by complex transition 

paths. A stationary state must be balanced by emission and absorption of virtual 

quanta; in which case there is no net complex energy contribution, since the 

complex conjugate energy terms cancel.    

The presence of non-stationary state behaviour concurs with Heisenberg’s 

rejection of an orbital-type system. 

The first term of the position and momentum matrices, relation (29a) and (29b) 

reproduce the matrix elements along the main diagonal of Born-Jordan to a 

phase factor. This result, together with the energy relation (15), suggests the 

measurable-only quantities of QM can be reproduced by the model. With the 

extended model using actually infinite matrices to fully incorporate the 

ensemble postulate, matrix elements are found to be equivalent with Born-

Jordan.  



Position and momentum eigenvalues and respective eigenvectors are: 

𝑥𝑒𝑣𝑎𝑙𝑢𝑒(𝑡) = (±)[�𝑛 + 1
2
� + �𝑛(𝑛 + 1) sin(2𝑡)]½    (31a) 

𝑤ℎ𝑒𝑟𝑒 𝑥𝑒𝑣𝑎𝑙𝑢𝑒(𝑡) = 𝑓�𝑥𝐻𝑉(𝑡), 𝑥𝐻𝑉(𝑡)����������     (31b) 

𝑥𝑒𝑣𝑒𝑐𝑡𝑜𝑟(𝑡) = �
(±)[�𝑛 + 1

2
� + �𝑛(𝑛 + 1) sin(2𝑡)]½

−𝑖�𝑛
2

 𝑒−𝑖𝑡 −  �(𝑛 + 1)/2𝑒𝑖𝑡
�   (31c) 

𝑝𝑒𝑣𝑎𝑙𝑢𝑒(𝑡) = (±)[�𝑛 + 1
2
� − �𝑛(𝑛 + 1) sin(2𝑡)]½    (31d) 

𝑤ℎ𝑒𝑟𝑒 𝑝𝑒𝑣𝑎𝑙𝑢𝑒(𝑡) = 𝑔(𝑥̇𝐻𝑉(𝑡), 𝑥̇𝐻𝑉(𝑡)���������)      (31e) 

𝑝𝑒𝑣𝑒𝑐𝑡𝑜𝑟(𝑡) = �
(±)[�𝑛 + 1

2
� − �𝑛(𝑛 + 1) sin(2𝑡)]½

�− 𝑖
√2
� (√𝑛 + 1𝑒𝑖𝑡 − 𝑖√𝑛 𝑒−𝑖𝑡)

�   (31f) 

Eigenvectors are likewise functions of the corresponding hidden variables. As 

expected both eigenvalues are real since their respective matrices are hermitian.  

These solutions are not obtained by Born-Jordan in which case they are not 

described by standard matrix mechanics, and so, would also not be described by 

the wave function.  

Other properties are: 1)  position and momentum eigenvalues are not related by 

classical definitions; 2) since the respective matrices do not commute their 

eigenvalues are not simultaneous, meaning they are not simultaneously 



measurable; and 3) the position eigenvalue describes position as a continues 

function of time, that is, describing continues movement in space and time.  

The ground state is of special interest. The position eigenvalue (31a) is not a 

function of time thereby reproducing zero point oscillations about the 

equilibrium. Alternatively, if this result is assumed as an a priori condition the 

non-commutation constant of relation (17) is found to be ± 1. Both plus or 

minus values reproduce the same eigen-path solutions (31) as well as all 

measurable-only values of Born-Jordan. A further feature of the ground state is 

that the energy of the hidden variables classical transition path is zero – 

consistent with the classical H.O. There may be the suggestion of a violation of 

conservation of energy. However, individual kinetic and potential energy 

components are non-zero resulting in the well-known ½ħ𝜔 quantum ground 

state energy eigenvalue. 

Ensemble position and momentum (29) can also be expressed in Pauli spin-

matrix representation: 

𝑥(𝑡) = �−
1
√2
� {�√𝑛𝑐𝑜𝑠𝑡 + √𝑛 + 1 𝑠𝑖𝑛𝑡 �𝜎2 

+ [√𝑛 + 1 𝑐𝑜𝑠𝑡 + √𝑛𝑠𝑖𝑛𝑡]𝜎1}   (32a) 

𝑝(𝑡) = �−
1
√2
� {�√𝑛 + 1𝑐𝑜𝑠𝑡 − √𝑛√𝑠𝑖𝑛𝑡�𝜎2 



+ [√𝑛𝑐𝑜𝑠𝑡 − √𝑛 + 1𝑠𝑖𝑛𝑡]𝜎1}   (32b) 

It should be emphasized that relations (31) and (32) refer to different physical 

quantities – the first refers to an individual case while the second refers to an 

aggregate property. Further, relations (32) refer to points on a non-Euclidean 

mathematical structure subject to division ring algebra – Dirac q-numbers.  

Geometrically, the points are subject to the axioms of projective geometry, 

excluding that of order. Their structure is also SU(2) invariant. A projective 

mathematical structure circumvents the need for physical space to be projective 

as first supposed.  

Classical theory is defined on a Euclidean mathematical structure, geometrically 

the same as the physical space of the phenomena which the theory describes. 

Consequently, both observable variables and predicted measurable outcomes of 

classical theory are the same: both metric and both subject to the equations of 

motion.  Relation (32) suggests the mathematical structure of quantum theory is 

more complicated. Only the ensemble quantities are subject to classical 

equations whereas the eigenvalues are not. That observable and measurement 

outcome variables are subject to different mathematical structures, and so 

different algebra, has consequences for Bell inequalities.  

Three definitions of position and momentum are introduced: the unit ensemble 

matrix, the matrix elements and the eigenvalues. As discussed, the ensemble 

quantities (or rather unit ensemble) are a consequence of the postulates of 



Heisenberg and Born. These are the quantum observables position and 

momentum, which are non-contextual and non-metric, that is, do not take 

number-values and are do not possess measurability as a geometrical-

mathematical property. Assuming mathematical properties have correspondence 

with reality the ensemble quantities are then physically non-measurable. The 

matrix element position and momentum, which are termed hidden variables, are 

the usual classical variables: metric, non-contextual and counterfactual definite, 

including the geometrical-mathematical property of measurability.  

The eigenvalue quantities are the measurement outcome variables of QM; in 

which case are directly relevant to Bell inequalities.  These quantities are: non-

simultaneously metric, contextual and can be counterfactual indefinite, as well 

as not being subject to classical equations of motion. They do not have 

simultaneously defined measurability. Consequently, while the measurement 

outcome of either variable will give a number-value, the inferred value of the 

non-measured other quantity cannot be reasoned counterfactually. 

Bell inequalities involve an actual measurement outcome and the inferred 

outcome of the non-measured quantity as if it were measured, for two 

incompatible observables. Values are then substituted into a mathematical 

modelling of an experimental configuration. The modelling is wrong. For the 

variables just described, Bell’s inequalities are incorrect irrespective of other 

assumptions.  



The preferred inequalities violation conclusion - that no local and/or non-

contextual hidden variables theory can reproduce quantum predictions - is not 

supported by this model. That a local, deterministic hidden variables physical 

theory must be counterfactual indefinite is likewise not supported. 

Counterfactual definite hidden variables are possible where the variables 

reproduce quantum outcome variables rather than directly the experimental 

outcomes.  

Non-measurability of observables may suggest a contradiction with quantum 

orthodoxy, at least from an instrumentalist perspective. However, the question 

is more complex. Observables refer to aggregate properties of an ensemble of 

individual transition paths, which are measurable. In which case, the source of 

non-measurability is not generic but rather that an observable refers to a 

collective property. It is meaningful, for example, to consider the age of a 

population as a tangible property yet only the ages of individual members are 

measurable.  

Moreover, any instrumentalist concerns would also impact on Heisenberg’s 

definitions. It is the aggregate characteristic of these observables, not whether 

the aggregates are trans-amplitudes or trans-paths, which gives rises to non-

numeracy and non-measurability. Violation of instrumentalism in this model is 

then no different to that already present in standard matrix mechanics. 



The relation between observable and corresponding eigenvalue outcome raises 

issues in interpreting the eigenvalue-eigenstate half link [34-35]. A fundamental 

question is whether the half link implies that a QM observable is a property of 

the system.  Gao states that “the link only says that an observable is a property 

of a physical system when the system is in an eigenstate of the observable, and it 

does not say that the observable is a property of the system for all cases, for 

example, when the system is not in an eigenstate of the observable”. The 

relation between observables and outcome is summarised as: “when a physical 

system is in an eigenstate of an observable, the system has a property 

represented by the eigenvalue associated with the eigenstate. This property is 

certainly not the observable itself, although we may say that it is the observable 

possessing the corresponding eigenvalue”.  

The second conclusion, observable and eigenvalue referring to different 

properties, concurs with the definitions being presented. On the original 

question however, the observable represents a property of the system 

irrespective of whatever eigenstate the system is in. The eigenvalue and 

corresponding eigenstate are individual characteristics which alter: if the system 

is in a position eigenstate it cannot be in a momentum eigenstate.  However, the 

momentum observable will still represent the ensemble momentum property 

irrespective of the system being in a position eigenstate. The observable will 



only cease to represent the ensemble property of the system if the system ceases 

to be an ensemble. 

Measurements of eigen-paths are subject to Bohr-type quantum observations to 

the extent that outcomes are apparatus-interactive [40]. This does not however 

re-admit neo-Copenhagen-ism. An eigen-path measurement involves observing 

the physical quantities mathematically represented by the eigenvalue-

eigenvector relations (31) which characterise aggregates. The critical issue is 

not whether classical and quantum operational measurements differ - they 

would be expected to be different since quantum observations decode more 

information - but rather whether quantum measurements necessitate a different 

reality. The answer to this foundational question is “no”. Eigenvalues-

eigenvectors of (31) are sourced on classical paths.  Their measurement, while 

operationally different, would still be founded on the same reality.  

Recently, it has been shown in wave-picture configuration that a quantum 

measurement can be understood as still be interactive with the measuring 

apparatus but without introducing alternative realities [41].    

4. Harmonic oscillator: actually infinite order matrices  

It is possible to extend the exploratory model to satisfy Heisenberg’s ensemble 

postulate requiring that transitions be treated collectively. To do so involves 

extending the BJ matrices to include the extra terms suggested by the model. 



Since the following results are obtained by mainly replicating the reasoning of 

Born-Jordan only summary results are given. 

Accordingly, the ensemble quantities (in BJ matrix notation) are: 

𝒒 = 𝒒𝟏 + 𝒒𝟐 = (𝑞1(𝑛,𝑚)𝑒2𝜋𝑖𝜐(𝑛,𝑚)𝑡 + 𝑖𝑞2(𝑛,𝑚)𝑒−2𝜋𝑖𝜐(𝑛,𝑚)𝑡)        (33a) 

𝒑 = 𝒑𝟏 + 𝒑𝟐 = (𝑝1(𝑛,𝑚)𝑒2𝜋𝑖𝜐(𝑛,𝑚)𝑡 + 𝑖𝑝2(𝑛,𝑚)𝑒−2𝜋𝑖𝜐(𝑛,𝑚)𝑡)        (33b) 

The first terms have the same form as standard matrices and the second terms 

are those suggested by the unit model. These relations are only applicable in 

general if it is assumed that the endogenous motion is the same as that of the 

HO.  

Born-Jordan introduced a diagonal matrix W, whose elements are the energies 

defined by the frequency condition, providing connection with experiment. Also 

introduced is a general matrix function g = g(p, q) which in the modified form 

is: 

𝒈 = 𝒈𝟏 + 𝒈𝟐 = (𝑔1(𝑛,𝑚)𝑒2𝜋𝑖𝜐(𝑛,𝑚)𝑡 + 𝑖𝑔2(𝑛,𝑚)𝑒−2𝜋𝑖𝜐(𝑛,𝑚)𝑡)     (34) 

Differentiating w.r.t. time gives: 

𝒈̇ = 2𝜋𝑖(𝜐(𝑛,𝑚)�𝑔1(𝑛,𝑚)𝑒2𝜋𝑖𝜐(𝑛,𝑚)𝑡 − 𝑖𝑔2(𝑛,𝑚)𝑒−2𝜋𝑖𝜐(𝑛,𝑚)𝑡�)         (35) 

Following BJ gives: 

𝒈̇ = 𝑖/ħ[𝑾, (𝒈𝟏 − 𝒈𝟐)]                         (36) 



For the Hamiltonian energy-matrix the relation is then: 

      𝑯̇ = 𝑖/ħ[𝑾, (𝑯𝟏 −𝑯𝟐)]             (37) 

If 𝒈̇ = 0 BJ showed that the standard general matrix must be diagonal. This 

result does not apply to the modified matrix. From relation (35) the conditions 

for non-zero, non-diagonal elements are: 

𝑓𝑜𝑟 𝑛 ≠ 𝑚, 𝜐(𝑛,𝑚) ≠ 0:  

 𝑔1(𝑛,𝑚)𝑒2𝜋𝑖𝜐(𝑛,𝑚)𝑡 − 𝑖𝑔2(𝑛,𝑚)𝑒−2𝜋𝑖𝜐(𝑛,𝑚)𝑡 = 0        (38)  

From relation (38) the non-diagonal elements of (34) would then be the sum of 

two equal terms. In which case 𝒈𝟏 − 𝒈𝟐 of relation (36) is a diagonal matrix, so 

that the RHS equals zero consistent with the LHS (if 𝒈̇ = 0). For the energy-

matrix (37) conservation of energy can be preserved while the matrix is not 

diagonal. This result differs from Born-Jordan. 

From the periodicity condition Born-Jordan derived Heisenberg’s quantum 

condition, which applies only for diagonal elements. Following the same 

reasoning gives the modified relation: 

�{[𝑝1 (𝑛, 𝑘)𝑞1(𝑘,𝑛) −
𝑘

𝑞1 (𝑛,𝑘)𝑝1(𝑘,𝑛)]  

− [𝑝2 (𝑛,𝑘)𝑞2(𝑘,𝑛) − 𝑞2(𝑛, 𝑘)𝑝2(𝑘,𝑛)]} 

= (−𝑖ħ)       (39) 



Born-Jordan then showed that all off-diagonal elements for the standard 

matrices are zero. Following the same steps gives the same results for the 

modified matrices. Accordingly, the quantum condition (in BJ terminology) 

becomes: 

[𝒒𝟏,𝒑𝟏] − [𝒒2,𝒑2] = 𝑖ħ      (40) 

That this relation differs from the iconic quantum condition may seem 

incompatible. At least for the HO however, equivalence with standard matrix 

mechanics will be established. 

The following treatment initially follows a standard textbook approach which 

uses the special-case conditions of the HO [42]. Specific features are: non-zero 

matrix elements are pair-wise on either side of the main diagonal; a single non-

zero element in the lowest row; complex conjugate pair off-diagonal elements; 

and the applicability of the basic relation where momentum is the time 

derivative of position. Using these characteristics the nth diagonal element of 

the Hamiltonian is: 

𝐸𝑛 = 𝜔2[|𝑞1(𝑛,𝑛′)|2 + |𝑞1(𝑛,𝑛′′)|2 + |𝑞2(𝑛,𝑛′)|2 + |𝑞2(𝑛,𝑛′′)|2]   (41) 

Primes refer to pair-wise elements. A second relation follows from the nth 

diagonal of condition (39) as: 

ħ/2 = 𝜔[|𝑞1(𝑛,𝑛′)|2 − |𝑞1(𝑛,𝑛′′)|2 + |𝑞2(𝑛,𝑛′)|2 − |𝑞2(𝑛,𝑛′′)|2]   (42) 



The first two terms of both conditions replicate Born-Jordan. For an index 𝑛0 

there is only one non-zero element so that 𝑞(𝑛0,𝑛0′′) = 0 in which case: 

𝐸𝑛 = 𝜔2[|𝑞1(𝑛0,𝑛0′ )|2 + |𝑞2(𝑛0,𝑛0′ )|2]    (43a) 

ħ/2 = 𝜔[|𝑞1(𝑛0,𝑛0′ )|2 + |𝑞2(𝑛0,𝑛0′ )|2]     (43b) 

This leads to the standard ground state energy: 

𝐸𝑛0 = ħ𝜔/2       (44) 

In which case the energy levels for stationary states are the usual: 

𝐸𝑛 = (𝑛 + ½)ħ𝜔      (45) 

Substituting into (41) and (42) gives: 

[|𝑞1(𝑛,𝑛 + 1)|2 + |𝑞2(𝑛,𝑛 + 1)|2] = ( ħ
2𝜔

)(𝑛 + 1)    (46) 

This leads to: 

𝑞1(𝑛,𝑛 + 1) = � ħ
2𝜔
𝑎(𝑛)𝑒−𝑖𝜔𝑡       (47a) 

𝑞2(𝑛,𝑛 + 1) = � ħ
2𝜔
𝑏(𝑛)𝑒𝑖𝜔𝑡        (47b) 

𝑤ℎ𝑒𝑟𝑒 𝑎(𝑛)𝐵𝐽2 ≡ 𝑎(𝑛)2 + 𝑏(𝑛)2 = 𝑛 + 1      (47c) 



Corresponding momentum relations can be obtained by taking the time 

derivative of position. Taking complex conjugates give the corresponding 

complex conjugate elements. In summary the matrix elements are: 

𝑞(𝑛,𝑛 + 1) = ( ħ
2𝜔

)½[𝑎(𝑛)𝑒−𝑖𝜔𝑡 + 𝑖𝑏(𝑛)𝑒𝑖𝜔𝑡]    (48a) 

𝑝(𝑛,𝑛 + 1) = (ħ𝜔
2

)½[−𝑖𝑎(𝑛)𝑒−𝑖𝜔𝑡 − 𝑏(𝑛)𝑒𝑖𝜔𝑡]    (48b) 

Embedded in the extended BJ matrices are the quaternion unit transition 

matrices arising from complex conjugate pairs representing the n ⇄ m transition 

such that: 

𝑸 = ( ħ
2𝜔

)½ � 0 𝑎(𝑛)𝑒−𝑖𝜔𝑡 + 𝑖𝑏(𝑛)𝑒𝑖𝜔𝑡

𝑎(𝑛)𝑒𝑖𝜔𝑡 − 𝑖𝑏(𝑛)𝑒−𝑖𝜔𝑡 0
�  (49a) 

𝑷 = (ħ𝜔
2

)½ � 0 −𝑖𝑎(𝑛)𝑒−𝑖𝜔𝑡 − 𝑏(𝑛)𝑒𝑖𝜔𝑡

𝑖𝑎(𝑛)𝑒𝑖𝜔𝑡 − 𝑏(𝑛)𝑒−𝑖𝜔𝑡 0
�  (49b) 

Their commutation relation is: 

[𝑸,𝑷] = 𝑖ħ(𝑎(𝑛)2 − 𝑏(𝑛)2)𝜎3     (50) 

As previously discussed the RHS constant is set to unity to maintain consistency 

with the ground state order 2 sub-matrix of standard Born-Jordan. In which case 

a second relation follows as: 

𝑎(𝑛)2 − 𝑏(𝑛)2 = 1      (51) 

Relations (47c) and (51) give the coefficients as: 



𝑎(𝑛)2 = �𝑛
2

+ 1� 𝑎𝑛𝑑 𝑏(𝑛)2 = 𝑛/2    (52) 

Alternatively, the same values can be obtained directly from the two 

commutation relations. Again, using the special case conditions of the HO to 

define the general structure of the position and momentum matrices, relation 

(40) generates recursion relations for the coefficients 𝑎(𝑛)2, 𝑏(𝑛)2,𝑎(𝑛 +

1)2,𝑏(𝑛 + 1)2 which together with relation (51) lead to relations (52). All 

matrices are then fully determined. 

The position eigenvalue for (49a) is then: 

𝑄𝑒𝑣𝑎𝑙𝑢𝑒(𝑛 ⇄ 𝑚, 𝑡) = (±)(ħ
𝜔

)½[(𝑛+1)
2

− ½�𝑛(𝑛 + 2) sin(2𝑡)]½   (53) 

Although there is a slight mathematical difference to the corresponding 

eigenvalue of the exploratory model (31a), the physical explanation is the same. 

The above discussion in relation to Bell inequalities remains unchanged. 

Whether this mathematical solution has physical reality is the obvious question. 

Heisenberg’s measurable-only quantities - which do describe reality - are 

generated from the same coefficients.   

The position and momentum matrices are: 



𝒒 = ( ħ
2𝜔

)½

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0                        𝑒−𝑖𝜔𝑡                     0                                 0        ⋯

𝑒𝑖𝜔𝑡                  0                     �3
2
𝑒−𝑖𝜔𝑡 + 𝑖�1

2
 𝑒𝑖𝜔𝑡    0        …

0         �3
2
𝑒𝑖𝜔𝑡 − 𝑖�1

2
 𝑒−𝑖𝜔𝑡       0              √2 𝑒−𝑖𝜔𝑡 + 𝑖𝑒𝑖𝜔𝑡 . .

0                       0             √2 𝑒𝑖𝜔𝑡 − 𝑖𝑒−𝑖𝜔𝑡                   0        ⋯  
⋮                        ⋮                             ⋮                                  ⋮         ⋱   ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (54a) 

𝒑 = 𝑖(ħ𝜔
2

)½  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0                     −𝑒−𝑖𝜔𝑡                      0                               0       ⋯

𝑒𝑖𝜔𝑡                0                 −�3
2
𝑒−𝑖𝜔𝑡 + 𝑖�1

2
 𝑒𝑖𝜔𝑡    0        …

0       �3
2
𝑒𝑖𝜔𝑡 + 𝑖�1

2
 𝑒−𝑖𝜔𝑡            0    − √2 𝑒−𝑖𝜔𝑡 + 𝑖𝑒𝑖𝜔𝑡 …  

0                     0              √2 𝑒𝑖𝜔𝑡 + 𝑖𝑒−𝑖𝜔𝑡                       0     ⋯  
⋮                       ⋮                                 ⋮                                 ⋮       ⋱   ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (54b) 

As would be expected, these matrices are consistent with commutation relation 

(40). The Hamiltonian energy-matrix is: 

𝑯 = (ħ𝜔
2

)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1                         0                    𝑖√2

2
                     0                  ⋯

0                         3                    0                 𝑖 �1 + �3
2
�       ⋯ 

− 𝑖√2
2

                   0                     5                        0                 ⋯  

0          − 𝑖 �1 + �3
2
�            0                         7                 ⋯ 

      ⋮                           ⋮                    ⋮                           ⋮                   ⋱       
                                                                                                ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (55) 

Clearly, this matrix is time independent as required by conservation of energy 

but it is not diagonal. As discussed, these are not contradictory properties.  

Splitting the matrix into the sum of a diagonal and a non-diagonal matrix gives: 

𝑯 = 𝑯𝑩𝑱 + 𝑯𝒏𝒐𝒏−𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍      (56) 



The diagonal matrix, as will be discussed, is equivalent to the standard matrix 

where the elements (following BJ) can be identified with the experimental 

stationary state energies of the frequency condition. That non-diagonal elements 

are complex may suggest non-physicality. However, that is not the case.  As 

discussed with the unit model, the endogenous motion generates both stationary 

and non-stationary behaviour. It is to be expected that the energy-matrix would 

have elements corresponding to both forms.  

 Equivalence with Born-Jordan can be established by considering the magnitude 

of complex conjugate pair elements. Using standard definitions:  

|𝑞(𝑛,𝑚, 𝑡)|2 = ħ
2𝜔

[𝑎(𝑛)2 + 𝑏(𝑛)2 + 𝑎(𝑛)𝑏(𝑛)𝑠𝑖𝑛2𝜔𝑡]   (56) 

Taking the mean value over the period of the endogenous motion gives the 

equivalence: 

〈|𝑞(𝑛,𝑚, 𝑡)|2〉 = ħ
 2𝜔

[𝑎(𝑛)2 + 𝑏(𝑛)2] ≡ ħ
2𝜔
𝑎(𝑛)𝐵𝐽2 ≡ |𝑞(𝑛,𝑚)|𝐵𝐽2    (57a) 

𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 |𝑞1(𝑛,𝑚)|2 + |𝑞2(𝑛,𝑚)|2  ≡ |𝑞(𝑛,𝑚)|𝐵𝐽2    (57b) 

Alternatively, relation (57b) can be obtained directly from relation (39), with 

momentum again defined as the time derivative of position. Combing with 

condition (51), the position and momentum matrix expressions (54) can then be 

obtained by analogy from the standard BJ matrices.  



Born-Jordan proved that energy-conservation and the frequency condition can 

be established theoretically from the canonical equations of matrix mechanics.  

This is necessary to connect mathematical solutions with experimental energies. 

Combining the diagonal condition (41) with the equivalence condition (57a) 

leads to the equivalence 𝐻𝑛,𝑛 ≡ 𝐻𝑛,𝑛
𝐵𝐽  for the specific case of the HO. The 

diagonal of the energy-matrix (55) can then likewise be identified with 

experimental energies.  

Since the RHS of (57) is also the mean square of the position eigenvalue (53), 

equivalence can be expressed as: 

〈[𝑄𝑒𝑣𝑎𝑙𝑢𝑒(𝑛 ⇄ 𝑚, 𝑡)]2〉   ≡ |𝑞(𝑛,𝑚)|𝐵𝐽2       (58a) 

𝑤ℎ𝑒𝑟𝑒 𝑞(𝑛,𝑚)𝐵𝐽 ≡ ∫ ∅𝑛∗
+∞
−∞ 𝑞∅𝑚𝑑𝑞     (58b) 

Relation (58a) makes more explicit the connection between Heisenberg’s 

measureable-only transition amplitudes and the proposed motion. Schrodinger’s 

fundamental equivalence between matrix and wave mechanics (58b) is also 

mediated via transition amplitudes, thereby suggesting a possible equivalence 

between the proposed hidden variables and the wave function as: 

∮[𝑄𝑒𝑣𝑎𝑙𝑢𝑒(𝑛 ⇄ 𝑚, 𝑡)]2 𝑑𝑡 ≡ �∫ ∅𝑛∗
+∞
−∞ 𝑞∅𝑚𝑑𝑞�

2
       (59) 

This relation infers the hypothetical relation: 



𝑄𝑒𝑣𝑎𝑙𝑢𝑒(𝑛 ⇄ 𝑚, 𝑡) ≡ ±[�∫ ∅𝑛∗
+∞
−∞ 𝑞∅𝑚𝑑𝑞�

2
− 𝑞1(𝑛,𝑚)𝑞2(𝑛,𝑚) sin 2𝜔𝑡]1/2 

 (60) 

If the wave function in (59) is interpreted to express an irreducible randomness, 

as stated by orthodoxy, there is a mutually-exclusive contradiction with the LHS 

which is essentially an averaging over neo-classical endogenous paths. If 

however, the wave function is interpreted statistically, that is, describing 

properties of distributions, contradiction is averted since the underlying reality 

can be the same. Further, a statistical interpretation is compatible with both 

Heisenberg’s ensemble postulate and identifying ensemble position and 

momentum as aggregate quantities. Interestingly, the RHS (the wave mechanics 

definition) of (59) also refers to a unit transition.   

Relation (59) defines a nexus between the wave function and the centre-point of 

the periodic endogenous motion. While the eigen-path (being classical) is 

deterministic its centre-point is statistical. This means that randomness and 

continuity are co-existent yet distinct features. Randomness is attributed to the 

internal workings of the quantum particle not its space and time movement.  

On first impression it may be concluded that the model is diametrically 

conflicted with the orthodox interpretation of QM. There is however a more 

nuanced view. Minimalist orthodoxy defines a physical theory to be a self-

consistent mathematical logic reproducing experimental outcomes of defined 



observables.  The model meets this minimalism. Departure from orthodoxy is in 

the realm of foundations which is often seen as philosophy. Relation (60) 

implies an empirical prediction: a mathematically defined path possessing 

measurability as a mathematical property. Orthodoxy negates the physical 

reality of a path. There is then at least an in-principle basis for an empirical test.  

Recent experiments provide qualitative comparison with empirical data. 

Transitions have been measured in the scale of attoseconds duration [32]. For 

atomic systems (assuming an average particle speed that of that of light 

weighted by the fine structure constant) the endogenous motion will be within 

the size of the atom. A more recent experiment on state-to-state transitions has 

reported that a completed evolution from ground to excited state is continuous 

and deterministic while its occurrence is random and discrete [43].   

5. Conclusion 

This investigation began with identifying the mathematical representation of 

outcome variables as a possible fatal assumption in Bell inequalities violation 

alternative to local causality. In this work the consequences of this alternative 

conclusion are tested in a hidden variables matrix mechanics model of the 

harmonic oscillator.  

Examining the foundational questions of EPR and Bell has (at least in this 

investigation) led to re-visiting the foundational postulates of Heisenberg and 



Born. A number of changes to basic matrix mechanics assumptions are 

introduced. Heisenberg’s transition amplitudes are re-interpreted as transition 

paths, thereby negating the non-path postulate. A second initial modification is 

to replace actually infinite order matrices by quaternions in matrix 

representation to describe a unit transition between two arbitrary states. Bohr’s 

assumption that transitions occur instantaneously has been invalidated by 

experiment, and is rejected.  

Apart from these changes, all other physical postulates of Heisenberg and Born 

are used in an exploratory model. Results of the standard treatment are 

reproduced. 

The model gives an extended mathematical description of continuous 

endogenous motion in space and time. 

An additional model using actually infinite matrices, which then meets 

Heisenberg’s requirement that the system is to be treated collectively gives the 

same results. The quaternion unit transition matrices remain embedded in the 

extended Born-Jordan matrices. 

Recent experiments give at least qualitative support for features of the model. 

Historically, the issue of quantum foundations was crystallised by EPR and 

questions on the completeness of the wave function. While the statistical nature 



of QM is not questioned, the reported eigen-path is not described by the wave 

function. 

For the harmonic oscillator, this analysis shows that a local, non-contextual 

hidden variables model is capable of reproducing the results of standard QM, is 

consistent with violation of Bell inequalities, and maintains Bohr-type 

apparatus-interactive measurement of experimental outcomes without 

introducing a complex metaphysics. Equivalence with both standard matrix and 

wave mechanics is identified. Since local causality need not be rejected 

consistency with relativity is preserved.  

Despite the consistency with matrix mechanics, the model nevertheless remains 

suggestive; conclusions are conditional on a more general treatment including 

analysis of other quantum systems.    
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