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Abstract

In this note, a simple description of the zone theorem in three dimensions is given. Arrangements in three
dimensions are useful for constructing higher-order Voronoi diagrams in plane. An elementary and very
intuitive treatment of this result is also given.
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1 Introduction

Zone theorem is important in analysing incremental algorithms for constructing arrangements. Most popular
text books of Computational Geometry (see e.g. [Il [§]) describe zone theorem for Arrangements in two
dimensions. Specialised books like [2] [6] describe zone theorem for hyperplanes in d-dimensions. Three
dimensional arrangements are useful for constructing higher order Voronoi diagrams in plane [2], [6] [7, [&].
An elementary and very intuitive treatment of this is given in Section 4. Proofs of Zone theorem in higher
dimensions use Euler’s relation: Z?ZO(—I)iFi >0 [, 5 [6]. As most students of Computational Geometry
are not familiar with these result, only zone theorem in two dimensions is taught in most Computational
Geometry courses. In this note, a proof of zone theorem in three dimensions which can be easily taught in
Computational Geometry courses is described. The proof uses zone theorem in two dimensions [T}, [ [6, 8], ©].
The proof is a essentially a simplified version of proof given by Edelsbrunner, Seidel and Sharir[4].

2 Definitions and basic properties

Arrangement in two dimensions is basically a set of n lines (infinite lines and not segments), and in three
dimensions of n planes. We will assume that the lines in two dimensions and the planes in three dimensions
are in general position. Thus, in two dimension no two lines are parallel and no three lines meet in a single
point [I, 4, §]. Similarly, in three dimensions we will assume that

e No two planes are parallel. Thus, each pair of planes meet in a line. And any three planes in a point.
e No three planes intersect in a common line and no four planes in a (common) point.

Set of lines, in two dimensions, will partition the plane into regions called faces. And set of planes in three
dimensions will partition the space into regions, which we will call cells.
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Let C be any bounded cell. As planes are in general position, each point or vertex v in the arrangement
is determined by three planes. Thus, there will be three edges of C incident at any vertex v of C. Moreover,
each edge of C' is determined by two vertices of C. If |V| is the number of vertices of C' and |E¢| is the
number of edges of C, then 2|Eqx| = 3|V

As C'is on one side of each plane, C' will be a convex polytope (3-dimensional analogue of polygon). The
set of edges, vertices and faces on boundary of C' will form a planar graph (take a point O inside C' and draw
a sphere with centre as O enclosing the polytope, if z is a point on C, then line Oz will intersect sphere at
some point &', point z is mapped to 2’). In a planar graph, if |V| is the number of vertices, |E| the number
of edges and |F| the number of faces, then by Euler’s formula |E| — |[V| + 2 = |F|. If |F¢| is the number of
faces of C' then |F¢| = |Ec| — |Ve| +2 = |Ec| — 2|Ec| + 2 = $|Ec| + 2. Thus, |Ec| < 3|F¢| and hence
Vel = §|Ec| < 2|Fc|. Or, |Ve| = O(|Fc|) and |Ec| = O(|Fc).

In two dimensions, let S be a line different from n given lines (also in general position). Then S will
intersect (cut) some faces of the arrangement. Zone(S) is defined as the set of faces through which line S
passes. If C € zone(S), is a face which is cut, then let |C| be the number of edges on the boundary of face
C in the (original) arrangement, then the size of zone(S), [zone(S)| = > cczone(s) |Cl- It is known that
|zone(S)| = O(n) (see [II, 4, 6], 8, @]).

Similarly, in three dimensions, let S be a plane different from n given planes (also in general position).
Then S will intersect (cut) some cells of the arrangement. Zone(S) is defined as the set of cells which the
plane S intersects. If C' € zone(S), is a cell which is cut, then let |F¢| be the number of faces on the boundary
of cell C in the (original) arrangement, then the size of zone(S5), |zone(S)| = X cezone(s) [Fcl-

REMARK Normally the size of zone is defined as the sum of number of edges, vertices and faces of all cells
in the zone, but as the number of vertices and edges in a cell are O(|F;|), the two definitions are equivalent
up to multiplicative constants. Moreover, as each face is on boundary of two cells, the total number of cells
in a zone will also be bounded by O(> . |F¢|).

3 Zone Theorem in 3-dimensions

We will assume that all planes of the arrangement (together with S) are in general position, as size of zone
is not smaller in this case [2] (4. [6].

Further, let us enclose the arrangement in a “bounding box”[I, [6] by having six planes © = +A,y =
+A, z = £+ A— basically we compute coordinates of all (g) vertices of arrangement (by taking every possible
set of three planes) and choosing A to be larger than the (absolute value of) largest coordinate. Thus, all

cells inside the bounding box will be bounded.

Let @ be any plane of the arrangement. Then as all planes are in general position, each of them will
intersect @ in a line. All these lines will lie in the plane @ and form a two-dimensional (planar) arrangement
of lines (say Lg).

Let us remove plane @) from the arrangement A and let the resulting arrangement be called A — Q.

Let C be a cell in the arrangement A — Q. If the plane @ does not cut (intersect) cell C, then cell C' and
all its faces will be present (unchanged) in arrangement .A.

If the plane @ cuts (intersects) cell C, then the cell C' gets divided into two parts— say the part of C
above the plane @ and the part of C below Q (or if @ is horizontal then left and right of Q). Let us call the
two parts as Cq and Cy. Part of C intersected by @ will lie in plane @ (definition of intersection) and hence
will be a face (say fg) in the two dimensional arrangement Lg.

If face f (of C in A — Q is not intersected by @, then face f will be present (unchanged) in either C; or
Cs.



If face f is intersected by @), then f will get split into two parts one above ) and the other below @
(or one on left and the other on right). Let the part in C; be called f; and part in Cy be called fo. Let
the boundary (part common to both) be called eg. As eq is (also) in plane @, eg will be an edge in two
dimensional arrangement L. Edge eq is in face fq.

To prove the zone-theorem we need following intermediate result

Claim 1 Assume A is an arrangement of n planes, Q is a plane in A, and S is a plane not in A. Let C be
a cell in zone(S). Let f be a face of cell C not lying in plane Q. Then total number of such pairs (f,C) (of
face f and cell C) is at most the sum of

1. size of zone(S) in arrangement A — Q and
2. size of zone(S) in two dimensional arrangement Lo

REMARK The first size is count of faces (along with their multiplicities) and second of edges (along with
their multiplicities).

Proof: Assume that cell C is in zone(S) (of arrangement A — Q) and f is a face of C, not lying in (part
of) plane Q. As C is in zone(S), plane .S passes through cell C.

If @ does not cut cell C, then cell C' (along with all its faces) will be unchanged in arrangement A (and
as S passes through (), cell C' will also be in zone(S) in arrangement A. In this case f' = f and C' = C.
Or the same pair is present in both A and A — Q.

Let us assume that @ cuts C. Then cell C gets divided into two parts (say) Cq and Cs. If the plane @
does not cut face f, then face f will remain intact in one part (say) C; (for i = 1 or 2). If part C; contains
f, then there is one-to-one correspondence between the pair (f,C) and the pair (f,C;) (i.e., pair (f,C)
corresponds to pair (f,C;) and conversely). Note that right hand side will be larger if C; is not in the zone
(see below).

Since S passes through C, it will pass through either C; or Cy or both. If S passes through only one
part (say) C; (for i = 1 or 2), then only C; will be in the zone(S) in arrangement 4. In this case, for the
pair (f,C) we will have the corresponding pair (f,C;) and conversely (or in case f is intersected by @, then
the pair (f;, C;) where f; is the part of f in C;).

We are left with the case when face f is also cut by @ and both Cy and Cy are in the zone(S5).

If S passes through both C; and Cs, then both Cy and Cy will be in the zone(S) in arrangement .A.
As S passes through both C; and Cs, it will also intersect the common boundary of C; and C5. But as Q)
passes through the common boundary of C; and Cs, the common part will be a face (say fg) in the two
dimensional arrangement L£o. And as S intersects fg, face fg will be in the two dimensional zone(S () Q).

As face f is also cut by @, intersection of f and @ will be a line segment (say) eg. As e lies in plane @,
e will be an edge in the two dimensional arrangement Lg. Thus, for the two entries (f1,C1) and (f2, C2) on
right hand side we have two entries: the pair (f,C) in three dimensional arrangement A — Q, and also have
the pair (eq, fg) in the two dimensional arrangement £g. Thus, for the two entries (f1,C1) and (f2,Cs) on
the left hand side, we also have two entries (f,C) and (e, fo) on the right hand side.

As each face of a cell in A is in exactly one plane of the arrangement, it does not lie in remaining n — 1
planes. Thus, if we take any pair (f, C) (for face f in cell C' lying in zone(S)), it will not lie in n — 1 planes.
Or if we take each plane in turn as plane @) and add we get

(n— 1)[zone(S)| < 3 (|Z0neA_Q(S)| + |zone£Q(SﬂQ)|)

QeA

To get the bounds, let z(n) be the largest possible value of |zone(S)| for arrangement of n-planes. Then,
if we are considering this arrangement and this set S (for which the value of |zone(S)| is the largest), then



we have

(n—1)z(n) < Z (|zoneA,Q(S)| + \zonecg(S’ﬂQ)\)

QeA

As A — Q is an arrangement of n — 1 planes (Q is excluded), |zone4—_o(S)| < z(n — 1). Further, as two
dimensional arrangement L¢ is in plane () and each line corresponds to one of the other plane, the number
of lines in Lg is n — 1. By the two dimensional zone theorem (see [II, 4, [6 [8, [9]), number of edges in zone
will be linear. Hence, for some constant ¢, [zones, (S Q)| < ¢(n — 1). Thus, our equation becomes

(n—1)z(n) < Z (zin—=1)4+cn—-1))=nz(n—1)+cn(n—1)
QeEA

To solve this, we put f(n) = z(n)/n or z(n) = nf(n), the equation becomes
fm)<fn—-1)+c¢
Or f(n) = cn, or z(n) = nf(n) = cn®. Hence we get the Zone theorem:

Theorem 1 Assume that we are given an arrangement A of n planes in three dimension. Let S be a plane
different from the planes of the arrangement. Then size of zone(S),

|zone(S)| = O(n?)

4 k-Nearest Neighbours and Arrangements

Assume S = {(z;,y;};—, is a set of n points in the plane. Assume p = (h, k) and ¢ = (r, s) are two points of

S.
A query (or test) point (x,y) will be closer to p = (h, k) then to ¢ = (r, s) iff

(@=h?+@y—k? < (@-r)°+(@y—s)?or
%—2hm+h2+b<—2ky+k2 < %—2rm+r2+b<—2sy+s2or
x4+ 2sy —r? —s? < 2hx +2ky — h? — k2

Define f(u,v) = 2ux + 2vy — u? — v*
Then above condition becomes, f(h,k) > f(r,s).

As equation z = f(u,v) is an equation of plane, the above condition is equivalent to saying that
2 _ 2

plane z = 2hx + 2ky — h? — k? is above the plane z = 2rz + 2sy — r? — 5.

Hence, if we draw an arrangement of n-planes with plane z = 2z;x + 2y;y — 27 — y? for the i*point,
then the nearest neighbour of query point (z,y) will be the topmost plane above (z,y) (the one visible
from (z,y,00)). The second nearest neighbout will be the second top most plane and so on. Hence, to find
kthclosest point, we need to only consider planes which have (k — 1) planes above them.
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