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Abstract
In this paper we give a comprehensive presentation of the notions of filter base, filter and ultrafilter on single
valued neutrosophic set and we investigate some of their properties and relationships. More precisely, we
discuss properties related to filter completion, the image of neutrosophic filter base by a neutrosophic induced
mapping and the infimum and supremum of two neutrosophic filter bases.
Keywords: neutrosophic set, single valued neutrosphic set, neutrosophic induced mapping, single valued
neutrosophic filter, neutrosophic completion, single valued neutrosophic ultrafilter.

1 Introduction
The notion of neutrosophic set was introduced in 1999 by Smarandache [20] as a generalization of both the
notions of fuzzy set introduced by Zadeh in 1965 [22] and intuitionistic fuzzy set introduced by Atanassov in
1983 [2].

In 2012, Salama and Alblowi [17] introduced the notion of neutrosophic topological space which gen-
eralizes both fuzzy topological spaces given by Chang [8] and that of intuitionistic fuzzy topological spaces
given by Coker [9]. Further contributions to Neutrosophic Sets Theory, which also involve many fields of
theoretical and applied mathematics were recently given by numerous authors (see, for example, [6], [3], [4],
[15], [1], [13], [14] and [16]). In particular, in [18] Salama and Alagamy introduced and studied the notion of
neutrosophic filter and they gave some applications to neutrosophic topological space.

In General Topology, filter bases, filters and ultrafilters are widely known notions and very popular tools
for proving many properties and characterizations (see, for example [5, 7, 10]).
Rather surprisingly, despite the fact that the class of single valued neutrosophic sets, is more versatile and
has a particular aptitude for application purposes and resolution of practical real-world problems than that of
neutrosophic sets, the authors of this article were not able to find any generalizations of such notions respect
on single valued neutrosophic sets, in known scientific literature.

In this paper, we introduce the notions of filter base, filter and ultrafilter on single valued neutrosophic sets,
and we prove some of their fundamental properties and relationships which may be useful for further studies
and applications in the class of single valued neutrosophic topological spaces.

2 Preliminaries
In this section we present some basic definitions and results on neutrosophic sets and suitably exemplify them.
Terms and undefined concepts are used as in [10] and [11].

The original definition of neutrosophic set, given in 1999 by Smarandache [20], refers to the interval
]0−, 1+[ of the nonstandard real numbers and although it is consistent from a philosophical point of view,
unfortunately, it is not suitable to be used for approaching real-world problems. For such a reason, in 2010,
the same author, jointly with Wang, Zhang and Sunderraman [21], also introduced the notion of single valued
neutrosophic set which, referring instead to the [0, 1] unit range of the usual R set of real numbers, can be
usefully used in scientific and engineering applications.

Notation 2.1. Let U be a set, I = [0, 1] be the unit interval of the real numbers, for every r ∈ I , with r we
denote the constant mapping r : U→ I that, for every u ∈ U is defined by r(u) = r.
For every family {fi}i∈I of mappings fi : U→ I , we denote by:

•
∧

i∈I fi the infimum mapping
∧

i∈I fi : U → I that, for every u ∈ U is defined by
(∧

i∈I fi
)
(u) =∧

i∈I fi(u) = inf {fi(u) : i ∈ I}, and by
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•
∨

i∈I fi the supremum mapping
∨

i∈I fi : U → I that, for every u ∈ U is defined by
(∨

i∈I fi
)
(u) =∨

i∈I fi(u) = sup {fi(u) : i ∈ I}.

In particular, if f and g are two mappings from U to I , we denote their infimum (which is the minimum) by
f ∧ g and their supremum (which is the maximum) by f ∨ g.

Definition 2.2. [21] Let U be an initial universe set and A ⊆ U, a single valued neutrosophic set over U
(SVN-set for short), denoted by Ã = 〈U, µA, σA, ωA〉, is a set of the form

Ã = {(u, µA (u) , σA (u) , ωA (u)) : u ∈ U}

where µA : U→ I , σA : U→ I and ωA : U→ I are the membership function, the indeterminacy function
and the nonmembership function of A, respectively. For every u ∈ U, µA (u), σA (u) and ωA (u) are said the
degree of membership, the degree of indeterminacy and the degree of nonmembership of u, respectively.

Since I = [0, 1], it clearly results 0 ≤ µA (u) + σA (u) + ωA (u) ≤ 3, for every u ∈ U.

Notation 2.3. The set of all the single valued neutrosophic sets over a universeU will be denoted by SVN (U).

Definition 2.4. [20, 21] Let Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 be two SVN-sets over the
universe set U, we say that Ã is a neutrosophic subset (or simply a subset) of B̃ and we write Ã b B̃ if, for
every u ∈ U, it results µA (u) ≤ µB (u), σA (u) ≤ σB (u) and ωA (u) ≥ ωB (u). We also say that Ã is
contained in B̃ or that B̃ contains Ã.

It is worth noting that the relation b satisfies the reflexive, antisymmetrical and transitive properties and
so that (SVN (U),b) forms a partial ordered set (poset) but not a totally ordered set (loset) as shown in the
following example.

Example 2.5. Let U = {a, b, c} be a finite universe set and Ã = 〈U, µA, σA, ωA〉 , B̃ = 〈U, µB , σB , ωB〉 be
two SVN-sets on SVN (U) respectively defined by the following tabular representations:

U

Ã µA σA ωA

a 0.5 0.3 0.2
b 0.6 0.2 0.3
c 0.4 0.2 0.7

U

B̃ µB σB ωB

a 0.2 0.2 0.2
b 0.4 0.1 0.6
c 0.8 0.3 0.1

Then Ã 6b B̃ because µA (a) = 0.5 > 0.2 = µB (a) and B̃ 6b Ã because ωB (c) = 0.1 < 0.7 = ωA (c) and
so the SVN-sets Ã and B̃ are not comparable.

Definition 2.6. [20, 21] Let Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 be two SVN-sets over the
universe set U, we say that Ã is a neutrosophically equal (or simply equal) to B̃ and we write Ã = B̃ if
Ã b B̃ and B̃ b Ã.

Definition 2.7. [21] The SVN-set 〈U, 0, 0, 1〉 is said to be the neutrosophic empty set overU and it is denoted
by ∅̃, or more precisely by ∅̃U in case it is necessary to specify the corresponding universe set.

Definition 2.8. [21] The SVN-set 〈U, 1, 1, 0〉 is said to be the neutrosophic absolute set over U and it is
denoted by Ũ.

Evidently, for every A ∈ SVN (U), it results ∅̃ b A b Ũ.

Definition 2.9. [20, 21] Let Ã = 〈U, µA, σA, ωA〉 be a SVN-set over the universe set U, the neutrosophic
complement (or, simply, the complement) of Ã, denoted by Ã{, is the SVN-set Ã{= 〈U, ωA, 1− σA, µA〉 that
is Ã{= {(u, ωA (u) , 1− σA (u) , µA (u)) : u ∈ U}.

It is a simple matter to verify that for every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U), it results
(
Ã{
){
= Ã and,

in particular, that Ũ{= ∅̃ and ∅̃{= Ũ.

Remark 2.10. It is important to point out that, unlike in the crisp sets theory, the neutrosophic intersection of
a SVN-set with its complement is not always the neutrosophic empty set, and the neutrosophic intersection of
a SVN-set with its complement is not always the neutrosophic absolute set. In fact, if we consider the universe
set U = {a, b} and the SVN-set on SVN (U) defined by the following tabular representations:
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U

Ã µA σA ωA

a 0.2 0.6 0.8
b 1 0.5 0

we can easily verify that the neutrosophic intersection, Ã e Ã{ and the neutrosophic union, Ã d Ã{ are,
respectively, given by the following tabular representations:

U

Ã e Ã{ µ
ÃeÃ{ σ

ÃeÃ{ ω
ÃeÃ{

a 0.2 0.4 0.8
b 0 0.5 1

and

U

Ã d Ã{ µ
ÃdÃ{ σ

ÃdÃ{ ω
ÃdÃ{

a 0.8 0.6 0.2
b 1 0.5 0

and so that Ã e Ã{ 6= ∅̃ and Ã d Ã{ 6= Ũ.

Proposition 2.11. [21] For every pair Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 of SVN-sets in
SVN (U), we have that Ã b B̃ iff B̃{b Ã{.

Definition 2.12. [18] Let
{
Ãi

}
i∈I

be a family of SVN-sets Ãi = 〈U, µAi , σAi , ωAi〉 over a common

universe set U, its neutrosophic union (or simply union), denoted by
⋃⋃

i∈I
Ãi, is the neutrosophic set

Ã = 〈U, µA, σA, ωA〉 where µA =
∨

i∈I µAi , σA =
∨

i∈I σAi , and ωA =
∧

i∈I ωAi .
In particular, the neutrosophic union of two single SVN-sets Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉,
denoted by Ã d B̃, is the neutrosophic set defined by 〈U, µA ∨ µB , σA ∨ σB , ωA ∧ ωB〉.

Definition 2.13. [18] Let
{
Ãi

}
i∈I

be a family of SVN-sets Ãi = 〈U, µAi , σAi , ωAi〉 over a common universe

set U, its neutrosophic intersection (or simply intersection), denoted by
⋂⋂

i∈I
Ãi, is the neutrosophic set

Ã = 〈U, µA, σA, ωA〉 where µA =
∧

i∈I µAi
, σA =

∧
i∈I σAi

, and ωA =
∨

i∈I ωAi
. In particular, the

neutrosophic intersection of two SVN-sets Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉, denoted by
Ã e B̃, is the neutrosophic set defined by 〈U, µA ∧ µB , σA ∧ σB , ωA ∨ ωB〉.

Definition 2.14. [21] Let Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 be two SVN-sets over U, we say
that Ã and B̃ are neutrosophically disjoint if Ã e B̃ = ∅̃. On the contrary, if Ã e B̃ 6= ∅̃ we say that Ã
neutrosophically meets B̃ (or that Ã and B̃ neutrosophically meet each other).

Definition 2.15. [18] Let A,B ⊆ SVN (U) be two nonempty families of SVN-sets over U, we say that A
neutrosophically meets B (or that A and B neutrosophically meet each other) if every member of A neutro-
sophically meets any member of B, that is if for every Ã ∈ A and every B̃ ∈ B it results Ã e B̃ 6= ∅̃.
In particular, if C̃ = 〈U, µC , σC , ωC〉 is a SVN-set over U which neutrosophically meets each member of the
family A, we say that C̃ neutrosophically meets A.

The neutrosophic operators of union, intersection and complement satisfy many relations similar to those
of crisp set theory, which are summarized in the following propositions.

Proposition 2.16. [21] For every SVN-set Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U), we have:

(1) Ã d Ã = Ã

(2) Ã d ∅̃ = Ã
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(3) Ã d Ũ = Ũ

(4) Ã e Ã = Ã

(5) Ã e ∅̃ = ∅̃
(6) Ã e Ũ = A

Proposition 2.17. [21] For every pair Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 of SVN-sets in
SVN (U), we have:

(1) Ã d B̃ = B̃ d Ã

(2) Ã e B̃ = B̃ e Ã

Proposition 2.18. [21] For every triplet Ã = 〈U, µA, σA, ωA〉, B̃ = 〈U, µB , σB , ωB〉 and C̃ = 〈U, µC , σC , ωC〉
of SVN-sets in SVN (U), we have:

(1) Ã e
(
B̃ e C̃

)
=
(
Ã e B̃

)
e C̃

(2) Ã d
(
B̃ d C̃

)
=
(
Ã d B̃

)
d C̃

Proposition 2.19. [21] Let Ã = 〈U, µA, σA, ωA〉, B̃ = 〈U, µB , σB , ωB〉 ∈ SVN (U) be two SVN-sets over
a universe U, then:

(1) Ã b B̃ iff Ã e B̃ = Ã

(2) Ã b B̃ iff Ã d B̃ = B̃

Proposition 2.20. [21] For every pair Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 of SVN-sets in
SVN (U), we have:

(1) Ã d
(
Ã e B̃

)
= Ã

(2) Ã e
(
Ã d B̃

)
= Ã

Proposition 2.21. [21] Let Ã = 〈U, µA, σA, ωA〉, B̃ = 〈U, µB , σB , ωB〉, C̃ = 〈U, µC , σC , ωC〉 and D̃ =

〈U, µD, σD, ωD〉 be SVN-sets in SVN (U) such that Ã b B̃ and C̃ b D̃, then:

(1) Ã d C̃ b B̃ d D̃

(2) Ã e C̃ b B̃ e D̃

Proposition 2.22. [21] Let
{
Ãi

}
i∈I

be a family of SVN-sets Ãi = 〈U, µAi
, σAi

, ωAi
〉 over a common

universe set U, then, for every i ∈ I , we have that
⋂⋂

i∈I
Ãi b Ãi b

⋃⋃
i∈I

Ãi.

Proposition 2.23. [21] Let respectively Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) be a SVN-set and
{
B̃i

}
i∈I
⊆

SVN (U) be a family of SVN-sets B̃i = 〈U, µBi , σBi , ωBi〉 over a common universe set U, then we have:

(1) Ã e
(⋃⋃

i∈I
B̃i

)
=
⋃⋃

i∈I

(
Ã e B̃i

)
(2) Ã d

(⋂⋂
i∈I

B̃i

)
=
⋂⋂

i∈I

(
Ã d B̃i

)
Proposition 2.24. [21] Let

{
Ãi

}
i∈I
⊆ SVN (U) be a family of SVN-sets Ãi = 〈U, µAi

, σAi
, ωAi

〉 over a

common universe set U, it results:

(1)
(⋃⋃

i∈I
Ãi

){
=
⋂⋂

i∈I
Ã{

i

(2)
(⋂⋂

i∈I
Ãi

){
=
⋃⋃

i∈I
Ã{

i

Definition 2.25. [12, 19] Let f : U → V be a mapping between two universe sets U and V, and Ã =

〈U, µA, σA, ωA〉 be a SVN-set overU. The neutrosophic image of Ã by f , denoted by f̃
(
Ã
)

, is the SVN-set
over V defined by:

f̃
(
Ã
)
= 〈V, f (µA) , f (σA) , f (ωA)〉
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where the mappings f (µA) : V→ I , f (σA) : V→ I and f (ωA) : V→ I are defined respectively by:

f (µA) (v) =

 inf
u∈f−1({v})

µA (u) if f−1 ({v}) 6= ∅

0 otherwise
,

f (σA) (v) =

 inf
u∈f−1({v})

σA (u) if f−1 ({v}) 6= ∅

0 otherwise
,

f (ωA) (v) =

 sup
u∈f−1({v})

ωA (u) if f−1 ({v}) 6= ∅

1 otherwise

for every v ∈ V.

Definition 2.26. [12, 19] Let f : U → V be a mapping between two universe sets U and V, and B̃ =

〈V, µB , σB , ωB〉 be a SVN-set over V. The neutrosophic inverse image of B̃ by f , denoted by f̃−1
(
B̃
)

, is
the SVN-set over U defined by:

f̃−1
(
B̃
)
=
〈
U, f−1(µB) , f

−1(σB) , f
−1(ωB)

〉
where the mappings f−1(µB) : U → I , f−1(σB) : U → I and f−1(ωB) : U → I are defined respectively
by:

f−1(µB) (u) = µB (f(u)) ,

f−1(σB) (u) = σB (f(u)) ,

f−1(ωB) (u) = ωB (f(u))

for every u ∈ U.

Remark 2.27. Let us note that the notation used to denote neutrosophic images and neutrosophic inverse
images implicitly underlines the fact that they are not real images or counterimages since the mapping f is
defined between the universe sets U and V while the definition refers to the sets SVN (U) and SVN (V)
of all the SVN-sets of that respective universe sets. More properly, this means that we consider a mapping
f̃ : SVN (U)→ SVN (V) induced by f : U→ V over the corresponding sets of all SVN-sets.

Example 2.28. Let U = {a, b, c} and V = {α, β, γ, δ} be two finite universe sets, f : U → V be a mapping
defined by f(a) = f(c) = β and f(b) = α. Let us consider a SVN-set Ã = 〈U, µA, σA, ωA〉 on SVN (U) and
a SVN-set B̃ = 〈U, µB , σB , ωB〉 on SVN (V) respectively defined by the following tabular representations:

U

Ã µA σA ωA

a 0.5 0.3 0.2
b 0.6 0.2 0.3
c 0.4 0.2 0.7

V

B̃ µB σB ωB

α 0.1 0.7 0.9
β 0.5 0.3 0.1
γ 0.8 0.4 0.2
δ 0.4 0.6 0.8

Then the neutrosophic image f̃
(
Ã
)
= 〈V, f (µA) , f (σA) , f (ωA)〉 of Ã by f and the neutrosophic inverse

image f̃−1
(
B̃
)
=
〈
U, f−1(µB) , f

−1(σB) , f
−1(ωB)

〉
of B̃ by f are given by:

V

f̃
(
Ã
)

f (µA) f (σA) f (ωA)

α 0.6 0.2 0.3
β 0.4 0.2 0.7
γ 0 0 1
δ 0 0 1
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and:

U

f̃−1
(
B̃
)

f−1(µB) f−1(σB) f−1(ωB)

a 0.5 0.3 0.1
b 0.1 0.7 0.9
c 0.5 0.3 0.1

respectively.

Proposition 2.29. [19] Let f : U→ V be a mapping between two universe setsU andV, Ã = 〈U, µA, σA, ωA〉
be a SVN-set over U and B̃ = 〈V, µB , σB , ωB〉 be a SVN-set over V, then the following hold:

(1) f̃
(
∅̃U
)
= ∅̃V

(2) f̃−1
(
∅̃V
)
= ∅̃U

(3) f̃−1
(
Ṽ

)
= Ũ

(4) Ã b f̃−1
(
f̃
(
Ã
))

and the identity holds if f̃ is injective

(5) f̃
(
f̃−1

(
B̃
))

b B̃ and the identity holds if f̃ is surjective

(6) f̃−1
(
B̃{
)
= f̃−1

(
B̃
)
{

Proposition 2.30. [19] Let f : U→ V be a mapping between two universe setsU andV, Ãi = 〈U, µAi , σAi , ωAi〉
(with i = 1, 2) be SVN-sets over U and B̃i = 〈V, µBi

, σBi
, ωBi

〉 (with i = 1, 2) be SVN-sets over V, then the
following hold:

(1) if Ã1 b Ã2 then f̃
(
Ã1

)
b f̃

(
Ã2

)
(2) if B̃1 b B̃2 then f̃−1

(
B̃1

)
b f̃−1

(
B̃2

)
Proposition 2.31. [19] Let f : U→ V be a mapping between two universe setsU andV,

{
Ãi

}
i∈I

be a family

of SVN-sets Ãi = 〈U, µAi
, σAi

, ωAi
〉 over U and

{
B̃i

}
i∈I

be a family of SVN-sets B̃i = 〈V, µBi
, σBi

, ωBi
〉

over V , then the following hold:

(1) f̃
(⋃⋃

i∈I
Ãi

)
=
⋃⋃

i∈I
f̃
(
Ãi

)
(2) f̃

(⋂⋂
i∈I

Ãi

)
b
⋂⋂

i∈I
f̃
(
Ãi

)
and the identity holds if f̃ is injective

(3) f̃−1
(⋃⋃

i∈I
Ãi

)
=
⋃⋃

i∈I
f̃−1

(
Ãi

)
(4) f̃−1

(⋂⋂
i∈I

Ãi

)
=
⋂⋂

i∈I
f̃−1

(
Ãi

)
3 Single Valued Neutrosophic Filters
In [18], A.A. Salama and H. Alagamy introduced the notion of filter on neutrosophic set. That study, unfortu-
nately, is rather incomplete and certainly not exhaustive because it does not cover the neutrosophic equivalent
of many fundamental notions and properties such as those concerning the lower or upper bound of two filter
bases, the proof of the ultrafilter’s existence, etc. For this reason, together with the fact that – as already men-
tioned – the class of the single valued neutrosophic sets lends itself with greater ductility to resolution of real
life problems and applications, we give here a comprehensive presentation about theory of filters on SVN-sets
which includes new notions and properties that are not present in that article.

Definition 3.1. Let A ⊆ SVN (U) be a nonempty family of SVN-sets over the universe set U, we say
that F is a single valued neutrosophic filter subbase (SVN-filter subbase for short, or simply a filter sub-
base) on SVN (U) if it has the finite intersection property, i.e. if for every Ã1, . . . Ãn ∈ A (with Ãi =

〈U, µAi
, σAi

, ωAi
〉 for every i = 1, . . . n, and n ∈ N∗), it results

⋂⋂ n

i=1
Ãi 6= ∅̃.
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Definition 3.2. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is single valued
neutrosophic filter base (SVN-filter base for short, or simply a filter base) on SVN (U) if the following two
conditions hold:

(i) ∅̃ /∈ F
(ii) for every F̃ , G̃ ∈ F there exists some H̃ ∈ F such that H̃ b F̃ e G̃.

Definition 3.3. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is single valued
neutrosophic filter (SVN-filter for short or simply a filter) on SVN (U) if:

(i) F is a SVN-filter base, and

(ii) for every F̃ = 〈U, µF , σF , ωF 〉 ∈ F and every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) such that F̃ b Ã it
follows that Ã ∈ F .

An equivalent definition of SVN-filter is given by the following proposition.

Proposition 3.4. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is a SVN-filter on
SVN (U) if and only if the following three conditions hold:

(i) ∅̃ /∈ F
(ii) for every F̃ , G̃ ∈ F , it follows that F̃ e G̃ ∈ F

(iii) for every F̃ ∈ F and every Ã ∈ SVN (U) such that F̃ b Ã we have that Ã ∈ F .

Proof. Let F be a SVN-filter over U. Evidently, conditions (i) and (iii) are satisfied. Let F̃ , G̃ ∈ F . By
condition (ii) of the definition of SVN-filter base, there exists some H̃ ∈ F such that H̃ b F̃ e G̃ and so, by
the peculiar condition of SVN-filter, it also follows that F̃ e G̃ ∈ F .

Conversely, if F is a nonempty family of SVN-sets over the universe set U satisfying conditions (i), (ii)
and (iii), it is enough to note that (ii) implies condition (ii) of Definition 3.2 and so that F is SVN-filter over
U.

It is a simple routine to show that the condition (ii) of the Proposition 3.4 can be generalized to any finite
neutrosophic intersection as it is pointed out in the following corollary.

Corollary 3.5. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is a SVN-filter on
SVN (U) if and only if the following three conditions hold:

(i) ∅̃ /∈ F

(ii) for every F̃1, . . . F̃n ∈ F , it follows that
⋂⋂

i∈I
F̃i ∈ F

(iii) for every F̃ ∈ F and every Ã ∈ SVN (U) such that F̃ b Ã we have that Ã ∈ F .

Remark 3.6. Evidently every SVN-filter is a SVN-filter base and every SVN-filter base is a SVN-filter sub-
base. It is also trivial to note that every SVN-filter on SVN (U) contains U.

Example 3.7. Let U = {a, b, c} be a finite universe set and let F =
{
F̃ , G̃, H̃, Ũ

}
⊆ SVN (U) be a set

of the SVN-sets F̃ = 〈U, µF , σF , ωF 〉 , G̃ = 〈U, µG, σG, ωG〉 , H̃ = 〈U, µH , σH , ωH〉 and Ũ = 〈U, 1, 1, 0〉
respectively defined by the following tabular representations:

U

F̃ µF σF ωF

a 0.4 0.3 0.2
b 0.8 0.2 0.1
c 0.6 0.5 0.4

U

G̃ µG σG ωG

a 0.7 0.1 0.3
b 0.9 0.2 0.2
c 0.2 0.6 0.5

U

H̃ µH σH ωH

a 0 0.4 0.8
b 0.5 0.3 0.6
c 0.1 0.8 0.5

U

Ũ µU σU ωU

a 1 1 0
b 1 1 0
c 1 1 0
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It is easy to check that F is a SVN-filter base on SVN (U). However, by using Proposition 3.4, we have that
F is not a SVN-filter since, for example, the neutrosophic intersection W̃ = F̃ e G̃ of F̃ , G̃ ∈ F computated
as shown in the following tabular representation:

U

W̃ µW σW ωW

a 0.4 0.3 0.3
b 0.8 0.2 0.2
c 0.2 0.6 0.5

is a SVN-set over U which does not belong to the family F .

Notation 3.8. The set of all the single valued neutrosophic filters over the universe set U will be denoted by
F(U).

Definition 3.9. Let F and G be two SVN-filter bases on SVN (U), we say that G is finer than F if F ⊆ G.
We also say that F is coarser than G.

Let us note that the set F(U) equipped with the finess relation ⊆ forms a poset although it is not a loset.

Proposition 3.10. Let S be a SVN-filter subbase on SVN (U) and let

S∗ =

{
n⋂⋂

i=1

Ãi : Ãi = 〈U, µAi , σAi , ωAi〉 ∈ S, n ∈ N∗
}

be the set of all finite neutrosophic intersections of S. Then S∗ is a SVN-filter base on SVN (U) containing S,
i.e. S ⊆ S∗.

Proof. Let S be a SVN-filter subbase over U. Since, by Definition 3.1, S has the finite intersection property,
it is evident that S∗ satisfies the condition (i) of Definition 3.2. Furthermore, for every Ã, B̃ ∈ S∗, there exist
some m,n ∈ N∗, Ãi = 〈U, µAi

, σAi
, ωAi

〉 ∈ S (with i = 1, . . .m) and B̃j =
〈
U, µBj

, σBj
, ωBj

〉
∈ S

(with j = 1, . . . n) such that Ã =
⋂⋂m

i=1
Ãi and B̃ =

⋂⋂ n

j=1
B̃i and so, by definition of S∗, it is clear that

Ã e B̃ ∈ S∗. Thus, S∗ also satisfies condition (ii) of Definition 3.2 and it is a SVN-filter base. Finally,
for every Ã ∈ S , since by Proposition 2.16 (4) it results Ã e Ã = Ã, we have that Ã ∈ S∗ and hence that
S ⊆ S∗.

Definition 3.11. Let S be a SVN-filter subbase on SVN (U) , the SVN-filter base S∗ defined in the proposition
above is called the neutrosophic filter base generated by its neutrosophic filter subbase S.

Proposition 3.12. Let F be a SVN-filter base on SVN (U) and let

〈F〉 =
{
Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) : ∃F̃ = 〈U, µF , σF , ωF 〉 ∈ F , F̃ b Ã

}
be the set of all neutrosophic supersets of members of F , then 〈F〉 is a SVN-filter on SVN (U) containing F ,
i.e. F ⊆ 〈F〉.

Proof. Let F be a SVN-filter base over U. Evidently, every member of 〈F〉 is nonempty and for every
Ã, B̃ ∈ 〈F〉, there exist some F̃ , G̃ ∈ F such that F̃ b Ã and G̃ b B̃. So, by Proposition 2.21 (2), it follows
that F̃ e G̃ b Ã e B̃ and, by condition (ii) of Definition 3.2, we have that there exists some H̃ ∈ F such that
H̃ b F̃ e G̃ which implies that H̃ b Ãe B̃ and hence that Ãe B̃ ∈ 〈F〉. Furthermore, for every Ã ∈ 〈F〉 and
B̃ ∈ SVN (U) such that Ã b B̃, we have that there exists some F̃ ∈ F such that F̃ b Ã and, consequently,
F̃ b B̃ which means that B̃ ∈ 〈F〉. Thus, 〈F〉 satisfies all the conditions of Proposition 3.4 and so it is a
SVN-filter on SVN (U). Furthemore, we have that F ⊆ 〈F〉 since it is clear that for every Ã ∈ F , it results
Ã b Ã and hence Ã ∈ 〈F〉.

Definition 3.13. Let F be a SVN-filter base on SVN (U), the SVN-filter 〈F〉 defined in the proposition above
is called the neutrosophic filter completion of F . Additionally, we say that F is a neutrosophic filter base for
the SVN-filter 〈F〉.
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Proposition 3.14. If F and G are two SVN-filter bases on SVN (U) such that F ⊆ G then 〈F〉 ⊆ 〈G〉.

Proof. In fact, for every Ã ∈ 〈F〉 we have that there exists some F̃ ∈ F such that F̃ b Ã and since F ⊆ G it
also follows that F̃ ∈ G and hence that Ã ∈ 〈G〉.

Definition 3.15. Let F and G be two SVN-filter bases on SVN (U). We say that F and G are equivalent if
they are both neutrosophic filter base for the same SVN-filter, that is if 〈F〉 = 〈G〉.

Remark 3.16. It is a simple matter to verify that:

(1) if S is a SVN-filter base on SVN (U) then S∗ = S,

(2) if F is a SVN-filter on SVN (U) then F∗ = F and 〈F〉 = F .

Proposition 3.17. If S is a SVN-filter subbase on SVN (U) then 〈S∗〉 is the coarsest SVN-filter on SVN (U)
containing S, i.e. such that:

(i) S ⊆ 〈S∗〉, and

(ii) for every SVN-filterH on SVN (U) such that S ⊆ H it follows that 〈S∗〉 ⊆ H.

Proof. Let S be a SVN-filter subbase over U. Condition (i) is trivially verified since by Propositions 3.10 and
3.12, we immediately have that S ⊆ S∗ ⊆ 〈S∗〉. Now, suppose that H is a SVN-filter on SVN (U) such that
S ⊆ H and let Ã ∈ 〈S∗〉. Then, for some n ∈ N∗, there exist B̃1, . . . B̃n ∈ S such that

⋂⋂ n

i=1
B̃i b Ã. Since

S ⊆ H, it follows that every B̃i ∈ H (for i = 1, . . . n) and, by Corollary 3.5, we obtain that
⋂⋂ n

i=1
B̃i ∈ H

and therefore that Ã ∈ H which proves condition (ii) and concludes our proof.

Definition 3.18. Let S be a SVN-filter subbase on SVN (U), the SVN-filter 〈S∗〉 defined in the proposition
above is called the neutrosophic filter generated by its neutrosophic filter subbase S.

In particular, if Ã = 〈U, µA, σA, ωA〉 is a nonempty SVN-set over the universe set U, the SVN-filter
〈S∗〉 generated by the singleton S =

{
Ã
}

, being the coarser (smallest) SVN-set containing S, coincides

with the family of all single valued neutrosophic superset of Ã, is denoted simply with
〈
Ã
〉

and is called the

SVN-principal filter generated by Ã.

Proposition 3.19. If F is a finite SVN-filter base on SVN (U), then the neutrosophic filter completion 〈F〉 is
a SVN-principal filter over U.

Proof. Let F =
{
F̃1, . . . F̃n

}
(with F̃i = 〈U, µFi

, σFi
, ωFi
〉, i = 1, . . . n) be a finite SVN-filter base and let

G̃ =
⋂⋂ n

i=1
F̃i. We will show that G =

{
G̃
}

is an equivalent SVN-filter base for the SVN-filter 〈F〉. In fact,

since F is a SVN-filter base, by Remark 3.16 (1), we have that G̃ ∈ F∗ = F . Thus G ⊆ F and by Proposition
3.14 it follows that 〈G〉 ⊆ 〈F〉. On the other hand, for every Ã ∈ 〈F〉, we have that there exists some
j = 1, . . . n such that F̃j b Ã and since by Proposition 2.22 we know that G̃ =

⋂⋂ n

i=1
F̃i b F̃j , it follows that

G̃ b Ã and so that Ã ∈ 〈G〉. This proves that 〈F〉 ⊆ 〈G〉 and consequently that 〈F〉 = 〈G〉 =
〈
G̃
〉

, i.e. that

〈F〉 is a SVN-principal filter generated by G̃.

Proposition 3.20. Let F and G be two SVN-filter bases on SVN (U) and let

F ∧ G =
{
F̃ d G̃ : F̃ = 〈U, µF , σF , ωF 〉 ∈ F , G̃ = 〈U, µG, σG, ωG〉 ∈ G

}
be the set of all neutrosophic unions of the members of F and G, then F ∧G is a SVN-filter base on SVN (U).
Additionally, if F and G are SVN-filter over U then F ∧ G is a SVN-filter on SVN (U) which is coarser than
both F and G, i.e. F ∧ G ⊆ F and F ∧ G ⊆ G.

Proof. If F and G are two SVN-filter bases on SVN (U), for every F̃ ∈ F and G̃ ∈ G, it is evident that
F̃ d G̃ 6= ∅̃ and so that F ∧G verifies the condition (i) of Definition 3.2. Moreover, for every Ã1, Ã2 ∈ F ∧G,
we have that there exist some F̃1, F̃2 ∈ F and G̃1, G̃2 ∈ G such that Ã1 = F̃1 d G̃1 and Ã2 = F̃2 d G̃2. Since
F and G are SVN-filter bases, there exist F̃3 ∈ F and G̃3 ∈ G such that F̃3 b F̃1 e F̃2 and G̃3 b G̃1 e G̃2.
So, F̃3 d G̃3 ∈ F ∧ G and, by using Proposition 2.23, it results F̃3 d G̃3 b

(
F̃1 e F̃2

)
d
(
G̃1 e G̃2

)
=
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(
F̃1 d

(
G̃1 e G̃2

))
e
(
F̃2 d

(
G̃1 e G̃2

))
b
(
F̃1 d G̃1

)
e
(
F̃2 d G̃2

)
= Ã1e Ã2 and this means that F ∧G

also verifies condition (ii) of Definition 3.2 and hence that it is a SVN-filter base on SVN (U).
Now, suppose thatF and G are are SVN-filters and let F̃ ∈ F , G̃ ∈ G and Ã ∈ SVN (U) such that F̃ dG̃ b Ã.
Since F is a SVN-filter and F̃ b F̃ d G̃ b Ã, we have that Ã ∈ F . Analogously, by the fact that G is a SVN-
filter and G̃ b F̃ d G̃ b Ã, we have that Ã ∈ G. Thus Ã = Ã d Ã ∈ F ∧ G and this proves that F ∧ G is a
SVN-filter over U.
In such a situation, for every F̃ d G̃ ∈ F ∧ G, with F̃ ∈ F and G̃ ∈ G, being F̃ b F̃ d G̃, we have that
F̃ d G̃ ∈ F and so that F ∧ G ⊆ F . In a similar way, one can also proves that F ∧ G ⊆ G.

Proposition 3.21. Let F and G be two SVN-filter bases on SVN (U) such that F nuetrosophically meets G
and let

F ∨ G =
{
F̃ e G̃ : F̃ = 〈U, µF , σF , ωF 〉 ∈ F , G̃ = 〈U, µG, σG, ωG〉 ∈ G

}
be the set of all neutrosophic intersections of the members of F and G, then F ∨ G is a SVN-filter base on
SVN (U).
Additionally, if F and G are SVN-filters over U then F ∨ G is a SVN-filter on SVN (U) which is finer than
both F and G, i.e. F ⊆ F ∨ G and G ⊆ F ∨ G.

Proof. Since F neutrosophically meets G, it is clear that ∅̃ /∈ F ∨ G, i.e. that F ∨ G verifies the condition
(i) of Definition 3.2. Moreover, for every Ã1, Ã2 ∈ F ∨ G, we have that there exist some F̃1, F̃2 ∈ F and
G̃1, G̃2 ∈ G such that Ã1 = F̃1 e G̃1 and Ã2 = F̃2 e G̃2. Since F and G are SVN-filter bases, there exist
F̃3 ∈ F and G̃3 ∈ G such that F̃3 b F̃1 e F̃2 and G̃3 b G̃1 e G̃2. So, F̃3 e G̃3 ∈ F ∨ G and it results
F̃3 e G̃3 b

(
F̃1 e F̃2

)
e
(
G̃1 e G̃2

)
=
(
F̃1 e G̃1

)
e
(
F̃2 e G̃2

)
= Ã1 e Ã2 and this means that F ∨G also

verifies the condition (ii) of Definition 3.2 is verified and hence that it is a SVN-filter base on SVN (U).
Now, suppose that F and G are SVN-filters and let F̃ ∈ F , G̃ ∈ G and Ã ∈ SVN (U) such that F̃ e G̃ b Ã.
Since F̃ = F̃ d

(
F̃ e G̃

)
b F̃ d Ã and F is a SVN-filter, we have that F̃ d Ã ∈ F . In a similar way, since

G̃ b G̃ d Ã and G is a SVN-filter, it follows that G̃ d Ã ∈ G and hence that
(
F̃ d Ã

)
e
(
G̃ d Ã

)
∈ F ∨ G.

By Proposition 2.23 (2) and Proposition 2.19 (2) we have that
(
F̃ d Ã

)
e
(
G̃ d Ã

)
=
(
F̃ e G̃

)
d Ã = Ã and

so that Ã ∈ F ∨ G which proves that F ∨ G is a SVN-filter over U.
In such a situation, for every F̃ ∈ F and for any fixed G̃ ∈ G, we have that F̃ e G̃ b F̃ with F̃ e G̃ ∈ F ∨ G
and so that also F̃ ∈ F ∨ G which proves that F ⊆ F ∨ G. In a similar way, one can also proves that
G ⊆ F ∨ G.

Proposition 3.22. Let F be a SVN-filter base on SVN (U) and Ã = 〈U, µA, σA, ωA〉 be a SVN-set over U

which neutrosophically meets F , then the set F ∨ Ã =
{
F̃ e Ã : F̃ ∈ F

}
of all neutrosophic intersections

of Ã with the members of F is a SVN-filter base over U. Additionally, if F is a SVN-filter then F ∨ Ã is a
SVN-filter on SVN (U) which is finer than F , i.e. F ⊆ F ∨ Ã.

Proof. Since by hypothesis F neutrosophically meets Ã = 〈U, µA, σA, ωA〉 it is evident that ∅̃ /∈ F ∨ Ã.
Moreover, for every G̃1, G̃2 ∈ F ∨ Ã there exist F̃1, F̃2 ∈ F such that G̃1 = F̃1 e Ã and G̃2 = F̃2 e Ã. Since
F is a SVN-filter base, there exists some F̃3 ∈ F such that such that F̃3 b F̃1 e F̃2. So, let G̃3 = F̃3 e Ã, we
note that G̃3 ∈ F ∨ Ã and it results G̃3 b G̃1e G̃2 which proves that F ∨ Ã is a SVN-filter base on SVN (U).
Now, suppose that F is a SVN-filter over U and let F̃ ∈ F and B̃ ∈ SVN (U) such that F̃ e Ã b B̃, with
B̃ b Ã. Since F̃ = F̃ d

(
F̃ e Ã

)
b F̃ d B̃ and F is a SVN-filter, we have that F̃ d B̃ ∈ F and hence that(

F̃ d B̃
)
e Ã ∈ F ∨ Ã. Moreover, by Proposition 2.23 (2) and Proposition 2.19 (2), B̃ b Ã and F̃ e Ã b B̃

imply that
(
F̃ d B̃

)
e Ã =

(
F̃ e Ã

)
d
(
B̃ e Ã

)
=
(
F̃ e Ã

)
d B̃ = B̃ and hence that B̃ ∈ F ∨ Ã which

proves that F ∨ Ã is a SVN-filter over U.
In such a situation, for every F̃ ∈ F , we have that F̃ e Ã ∈ F ∨ Ã and since F̃ e Ã b F̃ and F ∨ Ã is a
SVN-filter, it follows that also F̃ ∈ F ∨ Ã and hence that F ⊆ F ∨ Ã.

Proposition 3.23. Let f : U→ V be a mapping between two universe sets U and V and let F be a SVN-filter
base on SVN (U). Then, the family f̃ (F) =

{
f̃
(
F̃
)
: F̃ ∈ F

}
of all neutrosophic images on SVN (U) by

the mapping f is a neutrosophic filter base on SVN (V).
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Proof. Let us consider a mapping f : U → V and a SVN-filter base F over U. Evidently, for every Ã ∈ F ,
being Ã 6= ∅̃U, by Proposition 2.29 (1), we also have that f̃

(
F̃
)
6= ∅̃V and this means that f̃ (F) satisfies

the condition (i) of Definition 3.2. Moreover, for every G̃1, G̃2 ∈ f̃ (F), there are some F̃1, F̃2 ∈ F such
that G̃1 = f̃

(
F̃1

)
and G̃2 = f̃

(
F̃2

)
. Since F is a SVN-filter base, there exists some F̃3 ∈ F such that

F̃3 b F̃1 e F̃2. Hence, said G̃3 = f̃
(
F̃3

)
, we have that G̃3 ∈ f̃ (F), while by Proposition 2.30 (1) and

Proposition 2.31 (2), we obtain that G̃3 = f̃
(
F̃3

)
b f̃

(
F̃1 e F̃2

)
b f̃

(
F̃1

)
e f̃

(
F̃2

)
= G̃1 e G̃2. This

shows that f̃ (F) satisfies also the condition (ii) of Definition 3.2 and concludes our proof.

4 Single Valued Neutrosophic Ultrafilters
In this section we consider the class of SVN-ultrafilters, first proving that it is not empty and then establishing
some characterizations and properties that we think may be useful for further investigations.

Definition 4.1. Let U be a SVN-filter base on SVN (U), we say that it is a SVN-ultrafilter if it is maximal in
the partial ordered set (F(U),⊆) of all SVN-filters overU, that is if there is no SVN-filter on SVN (U) strictly
finer than U , or, equivalently, if any other SVN-filter containing U coincides with U .

Proposition 4.2. Every SVN-filter base on SVN (U) is contained in some SVN-ultrafilter over U.

Proof. Let F be a SVN-filter base over U and let us consider the set S = {G ∈ F(U) : F ⊆ G} of all SVN-
filters on SVN (U) containingF . Obviously S is a nonempty subset of the poset (F(U),⊆) because 〈F〉 ∈ S.
Now, let C be a nonempty chain of S and defineM =

⋃
G∈C G as the union of all SVN-filters of C. Now, we

have thatM is a SVN-filter over U because it satisfies all the conditions of Definitions 3.3 and 3.2, that is:

(i) For every G̃ ∈ M, we have that there exists some G ∈ C such that G̃ ∈ G and since G is a SVN-filter,
we immediately have that G̃ 6= ∅̃.

(ii) For every G̃1, G̃2 ∈ M, there are some G1,G2 ∈ C such that G̃1 ∈ G1 and G̃2 ∈ G2. Since C is a chain,
i.e. a totally ordered subset of (S,⊆), G1 and G2 must be comparable and, without loss of generality, we
can suppose that G1 ⊆ G2. Thus, G̃1, G̃2 ∈ G2 and since G2 is a SVN-filter, there exists some G̃3 ∈ G2
such that G̃3 b G̃1 e G̃2 with G̃3 ∈ G2 ⊆

⋃
G∈C G =M.

(iii) For every G̃ ∈ M, and Ã ∈ SVN (U) such that G̃ b Ã, there exists some G ∈ C such that G̃ ∈ G and
since G is a SVN-filter, we immediately have that also Ã ∈ G and hence that Ã ∈ G ⊆

⋃
G∈C G =M.

Moreover, being F ⊆ G, for every G ∈ C, we have that F ⊆
⋃
G∈C G =M and so thatM ∈ S is an upper

bound for C. Hence, by the Zorn’s Lemma (see [11]), it follows that (S,⊆) has a maximal element, that is a
SVN-ultrafilter U containing F .

Proposition 4.3. Let U be a SVN-filter base on SVN (U). Then U is a SVN-ultrafilter over U if and only if
for every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) which neutrosophically meets U we have that Ã ∈ U .

Proof. Suppose that U is a SVN-ultrafilter and consider a SVN-set Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) which
neutrosophically meets U , By Proposition 3.22, we have that U ∨ Ã is a SVN-filter such that U ⊆ U ∨ Ã but,
being U a SVN-ultrafilter, it must necessarily follow that U ∨ Ã = U and so that Ã ∈ U .
Conversely, suppose that every SVN-set which neutrosophically meets the SVN-filter base U belongs to U . In
order to prove first that U is a SVN-filter over U, let Ũ ∈ U and Ã ∈ SVN (U) such that Ũ b Ã. We claim
that Ã meets U . In fact, for each Ṽ ∈ U , since U is a SVN-filter base, we have that there exist some W̃ ∈ U
such that W̃ b Ũ e Ṽ b Ũ b Ã and, by Proposition 2.21 (2), we have that W̃ e Ṽ b Ã e Ṽ . On the other
hand, being also W̃ b Ũ e Ṽ b Ṽ , by Proposition 2.19 (1), we have W̃ e Ṽ = W̃ and hence that W̃ b Ãe Ṽ ,
with W̃ ∈ U . Thus, by Definition 3.2, it follows that Ã e Ṽ 6= ∅̃ and, by hypothesis, we obtain that Ã ∈ U ,
which proves that U is a SVN-filter on SVN (U).
Moreover, in order to prove that U is SVN-ultrafilter over U, suppose, by contradiction, that there is some
SVN-filterM over U such that U ⊂ M and so that there exists some M̃ ∈ M such that M̃ /∈ U . Hence, by
hypothesis, we have that M̃ does not meet U , i.e. that there exists some Ũ ∈ U such that Ũ e M̃ = ∅̃ but,
being M̃ ∈M and Ũ ∈ U ⊂M, this contradicts the fact thatM is a SVN-filter and concludes our proof.

Corollary 4.4. If U is a SVN-ultraffilter on SVN (U), then for every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) it
results Ã ∈ U or Ã{∈ U .
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Proof. Let Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) an suppose, by contradiction, that Ã /∈ U and Ã{ /∈ U . By
Proposition 4.3, we should have that neither Ã does not neutrosophically meet U nor Ã{does not neutrosoph-
ically meet U , i.e. that there are some Ũ1, Ũ2 ∈ U such that Ũ1 e Ã = ∅̃ and Ũ2 e Ã{ = ∅̃. Since U is a
SVN-filter base, it follows that there exists some Ũ3 ∈ U such that Ũ3 b Ũ1e Ũ2. Hence, by Proposition 2.22,
we have that Ũ3 b Ũ1 and Ũ3 b Ũ2 and, by Proposition 2.21 (2), it also follows that Ũ3 e Ã b Ũ1 e Ã and
Ũ3eÃ{b Ũ2eÃ{. Hence, Ũ3eÃ = ∅̃ and Ũ3eÃ{= ∅̃. Thus, by Propositions 2.16 (4), 2.20 and 2.23 (1),we
have that Ũ3 = Ũ3 e Ũ3 =

(
Ũ3 d

(
Ũ3 e Ã

))
e
(
Ũ3 d

(
Ũ3 e Ã{

))
= Ũ3 e

((
Ũ3 e Ã

)
d
(
Ũ3 e Ã{

))
=

Ũ3 e
(
∅̃ d ∅̃

)
= ∅̃ which is a contradiction to the fact that Ũ3 ∈ U and U is a SVN-filter.

Remark 4.5. In the classical filter’s theory on crisp sets, the condition of Corollary 4.4 is a ultrafilters charac-
terization, but in the case of filters on single valued neutrosophic sets the converse does not hold. This is due
to the fact that, as pointed out in Remark 2.10, in general, the neutrosophic intersection of a SVN-set with its
neutrosophic complement is not the neutrosophic empty set, and it can be confirmed by the following example.

Example 4.6. Let U = {a, b, c} be a finite universe set and consider the SVN-principal filter F =
〈
Ã
〉
={

Ã, B̃, C̃, Ũ
}

generated by Ã, where the SVN-sets Ã = 〈U, µA, σA, ωA〉 , B̃ = 〈U, µB , σB , ωB〉 , C̃ =

〈U, µC , σC , ωC〉 and Ũ = 〈U, 1, 1, 0〉 are respectively defined by the following tabular representations:

U

Ã µA σA ωA

a 0.8 0.4 0
b 0 0.1 0.9
b 0 0 1

U

B̃ µB σB ωB

a 0.9 0.5 0
b 0.8 0.6 0.1
c 0 0.2 0.3

U

C̃ µC σC ωC

a 1 0.5 0
b 0 0.2 0.8
c 0.7 0.6 0.5

U

Ũ µU σU ωU

a 1 1 0
b 1 1 0
c 1 1 0

After observing that Ã b B̃ and Ã b C̃, one can easily check that
〈
Ã
〉

is a SVN-ultrafilter on SVN (U).

However, if we consider the SVN-set Z̃ = 〈U, µZ , σZ , ωZ〉 defined by the following tabular representation:

U

Z̃ µZ σZ ωZ

a 0 0 1
b 0.7 0.3 0.5
c 0.8 0.4 0.6

it is a trivial matter to verify that neither Z̃ nor its complement Z̃ { belong to
〈
Ã
〉

.

5 Conclusions and Perspectives
In this paper we have introduced the notions of SVN-filter base, SVN-filter and SVN-ultrafilter on the set
SVN (U) of all the single valued neutrosophic sets and we have investigated some of their fundamental prop-
erties and relationships concerning, in particular, the SVN-filter and SVN-filter base generated by some neu-
trosophic filter subbase, the neutrosophic filter completion, the principal SVN-filters, the infimum and the
supremum of two SVN-filter bases, the image of a SVN-filter base by a neutrosophic induced mapping be-
tween two universe sets, the existence of SVN-ultrafilters and some their characterizations.
We expect to continue the research on these topics by investigating supplementary features and properties
related to SVN-filters and we hope that this comprehensive study will stimulate further developments in the
theory of Neutrosophic Sets and will provide useful tools to demonstrate in an elegant and concise way new
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properties for the class of Single Valued Neutrosophic Topological Spaces.
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