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A proposed proof of the Riemann hypothesis.
1. Introduction

The Riemann zeta function is

> 1
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£(s) ;W (1)
for o = Re(s) > 1. For other values of s it is defined uniquely by analytic continuation, see [1]. The
function £(s) has trivial zeros at s = =2/ for [ € N = {1,2,3,...}. It is known that the nontrivial zeros

s = o + it of {(s) satisfy the following properties.

I: If s = 0 + it is a nontrivial zero of {(s) then s = o — it is a nontrivial zero of {(s).

II: If s = o + it is a nontrivial zero of {(s) then o € (0, 1).

III: If s = o + it is a nontrivial zero of {(s) then s = 1 — o + it is a nontrivial zero of {(s).
2. Proof of the Riemann hypothesis

Theorem

All nontrivial zeros of {(s) have real part equal to %
Proof

In light of [2] consider
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for x € (n,n + 1) and n € N. Here y/(x) is a weighted prime counting function

Y(x)= > log,p 3)

pr<x

where p is prime and the sum is over all prime powers. The sum in the second term on the right of (2) is
over all p such that s = p is a nontrivial zero of {(s). The exact function ¢/(x) is constant on the domain
between any two consecutive integers. The approximation of y(x) with finitely many p values displays a
Gibbs phenomenon. Differentiating (2) with respect to x yields
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Rearranging (4) gives
X=X
E ¥ (g—) =1 )
B-x-1
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Differentiating (5) with respect to x yields
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)1 =0. (6)



Now

Z(p Dt = Z(B + iy — DxFrt,
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On using Euler’s identity
e = cos(0) + i sin()
equation (7) becomes
D= =y (B+iy - D [cos(ylog, x) + i sin(y log, x)]
P B+iy
which expands to
Do -t = ¥ [cos(ylog, x)(B - 1) - sin(y log, x)y]
p Briy
+i Z **![sin(y log, x)(8 — 1) + cos(y log, x)y].
B+iy
The second term on the right of (10) disappears due to I. Then (10) becomes
Do =t = ¥ Meos(ylog, )8~ 1) - sin(y log, x)y].
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Also

On using Euler’s identity equation (12) becomes
Z ¥ = Z x*~! cos(ylog, x) + iZ x*!sin(y log, x).
P PB+iy B+iy
The second term on the right of (13) disappears due to I. Then (13) becomes
Z ¥l = Z x*~! cos(y log, x).
P B+iy

Equation (6) is then
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Let x = y+ ¢ where O < y < 1 and c is a constant such that x € (n,n + 1). Then (15) implies
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On using a Taylor expansion (16) becomes
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Now (17) must be true independent of y. We then must take coefficients of (y + ¢) in (17), for 8 € (0, 1) in
accordance with II, and set them to zero. Now (17) has the form

D 0+ OB - D + gy, 0 + o)) = 0. (18)
=0
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So for example, taking the the O((y + ¢)*~!) coefficient in (18) gives
D @B =1+ g1 =0 (19)
YER(B)
which implies
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on using III. Therefore without loss of generality 8 = % O

B=

+1=1-8 (20)
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