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Abstract

This document is specifically dedicated to finding an exact solution of a charged cylindrical
wave in a vacuum. It is a charged electromagnetic field that exactly obeys the conditions of
Cauchy Riemann. It is a ""'waveguide™ field, but without the waveguide.

Mathematically the solution carries mass, charge and angular momentum and also magnetic
charge. It must be better understood, whether it has a physical meaning or not and whether it
has to do with the mysterious EVOs of Ken Shoulders. It is certainly exotic and it is certainly
in a vacuum.



1- FOREWORD

I write only the final results of the argument , skipping all the speculations that led

me right here. | only say , as far as my notations are concerned , that a brief but

exhaustive explanation can be found in a few, few pages, of [1 ]. Other interesting readings are
in Bibliography, [2]to [6]. Of other avant-garde and more or less contested topics, EVOs of
Ken Shoulders , Condensed Plasmoids , Ball Lightning etc I have found no trace in the official
scientific literature, therefore I have not put them in the Bibliography. However, they can be
found on the Internet.



2 - CAUCHY-RIEMANN EQUATIONS

I'll go straight to the topic.
I'm looking for a solution of 9*F = 0.

With
e—i(wt—kz)

I place

F = Fl(x, y)e—i(wt—kz)

(a+'a)F+('a+T )F—O
ox lay ]0z at)

[(% + l%) F,(x, y)] e~i@t=k2) 4 (jF ik — TFiiw)e ¥ @T~k2) = ¢
Simplifying the exponential | get
0" yyF1(x,y) + (jF ik — TFiw) = 0
I can bring F4i to the right and collect it to common factor
0" yF1(x,y)F; + (jk — Tw)F1i =0
I place
F,=(E+TH)

With this separation of indices in F1 both what | called E and what I called H contain the
indices Iﬁ

Note: | could put F,; = (E + TjiH) but | don't know what is more convenient.
0"yy(E + TH) + (jk — Tw)(E + TH)i = 0

Indexes in motion

and are thus separated , between the part without the T (i.e. E) and the part in front of the T
(i.e. H)




0"yy(E + TH) + (jk — Tw)(E + TH)i = 0

And both E and H contain the indices

9" E + 8", TH + jKEi + jTkHi — TwEi — wHi = 0
| obtain these two equations among (E,H) with indices

9", E + jKEi — wHi = 0
9",y TH + jTkHi — TwEi = 0

| observe that

0"y T =Ta,,
so | bring T on the left and simplify

9", E + jKEi — wHi = 0
d.yH — jkHi — wEi =0

Now I replace the coordinates from cartesian to cylindrical

d., =ei¢ (i — ii)
o or roe
9" i (i ii)
v =€\ or T 17

< dr 71d@
e ¢ (i —£i>H — jkHi — wEi =
\ or rae J B



Arrived at this point

-both E and H contain the indices and therefore parts with and without the
and [HT
- both E and H contain parts 'r* and parts ‘phi'.

Suppose immediately to separate the terms E, H in "'part 1, i'** and "part j, ji*
Here

r . O0E i OE
e — +—-e"— + jKkEi — wHi = 0
oar r i X0,
. 0H i . OH
e'Y———-—e'"——jkHi — wEi =0
\ oar r X0,

I make the following changes :
E = (E +jE;)
H = (H + jH;)
i.e. | separate in E, H the "parts 1, i"" and the "parts j, ji*.
Fy = (E+jE;) + T(H +jH))
With this we get:

A

.aE+ '.aE
eiv M#el (B +JE, )+ik(E+jEj)i—w(H+iHj)i=0
; 6(H+] ) ie—i 6(H jH )

—— op  ~Jk(H+jH;)i— w(E+jE;)i =0

At this point the terms with and without j give rise to separate equations and 4 equations are
obtained

j[ el 6;:5:) + ;e""’ O(E) +jk(jE]-)i —w(H)i=0
Ike"“"@+r (] ])+]k(E)l—w(]H )i=0

( . oH) i _, oH) . .. _
j e p —%e“"’ 99 — jk(jH;)i — w(E)i =0
Ike“"’ a% 1) %e i _a(;(z:,-) — jk(H)i — w(jE,)i = 0



I group them differently ie in the following way

(1)
(
j eiv a;f)+§ i aa((E,,)ﬂk(iEj)i—w(H)":"
e Lo S i
@ C el
j el a(,;f") ; U ’)+1k(E)z—w(J H)i=0
Ik‘upa(l ) ie—iw%(pl)_ik(H)i—w(iEi)i:O

I try to separate dependencies from r and phi:

E +jE; = (Rg®g + jRg;®g )

H+jH; = (Ry®y + jRy; @y, )
So that they RH]. and Rpgj arewithindices1,i,andaswell Rpg and Ry -
Soitis:

{E = Ry ®;
H=Ry®y

JEj = jRg;®g;
JH; = jRy; Py,

I replace in (1).

( . a(RE(DE) | A a(RE(DE)
j e'¢ ar ;e“” T + jk (]RE](DE ) — w(Ry®y)i =
- O(Ry®y) i . d(Ry®y)
| _ HPu) L _ HPH) .
ke lo ar = lo o0 jk (]RHJCDH ) — w(Rg®g)i =



( d(R i . o
(Rr) Oy +—e?R; (6(pE)+ jk (jRE]-CDEj)i—w(RHCDH)i =0

| ele
4 € Tor T
_io O(Ry) i oo 0(@y) . .
Ike O ar On e Ry~ jk (]RH,-cDHj) i— w(Rp®g)i =0
To simplify (i.e. to attempt to simplify) an exponential from the right we admit it is
P, = ei"?
(I)H = ei(n+1)‘P
CI)E_ = ei(n+1)‘P
J
Dy, = e
Substituting
( . 0(Rg) . i . ale?) . . . .
el® Telnqo + ;eupRE +]k(]RE]_el(n+1)tp)l _ w(RHel(n+1)tp)l =0

I(Ry) . i . d(eltDe) o o
Tel(n+1)40 - ;e l(pRHT —]k(]RH]-e‘""’)l _ w(REe‘""’)l =0

|

and then executing the derivatives with respect to phi

e

. 0(Rg) . i . L o . ) . )
el® . e’ + —ePRyine™” + jk(jRpje'™V?)i — w(Rye ™t V?)i =0
O(Ry) ;.1 i . ) _— o L L

"’Te‘(’” 0 — —e~WRyi(n+ 1)(e!™V?) — jk(jRyje™®)i — w(Rpe™)i =0

you can simplify the exponential from the right and you get to this megasimplification

—i

O(Rg) & . . .
5y Rein + jk(jRg)i — w(Ry)i =0
O(Ry) i@ . _ . .

o ;RHl(n +1) —]k(]RH]-)l —w(Rp)i=0

(1a)

0(Rg) 1 : :

ar —;REn—k(RE])l—w(RH)lZO
J(R 1

ar




Now I replace in (2).
{E = Ry ®g
H = Ry®y

JEj = jRg;®g;
jH] :jRH]'(DHj

( g
j el? — = (] 2. ;"p (6](p)+]k(E)l_w(] H;)i =0
|—upa(] ) ge-iw%—iumi—w(ﬂf})i:o

. 6(] E,) a((pEi)

Py, + e "’]RE] P + jk(Rp®p)i — w (jRHid)Hj) i=0

. 6(jRH-) i . 0\®y) _ ] _
e~io 27 Dy, — ;e“"’]RH]- (6(p ]) — jk(Ry®p)i — ® (]RE]-CDE].) i=0
To simplify an exponential from the right we admit that it is (same hypotheses as above):

@y = ei"?
(DH — ei(n+1)tp

{‘DE- — ei(n+1)tp
J

Dy, = e
Substituting

{ . a l(n+1)‘p ) ,
j oi® (] E]) eitn+1)o 4 = eup]R a(a—(p) + jk(Rge™?)i — w(jRH]-eth)i =0
| o-i0 a(]a H]) ein® — :;e (ijHj 0(;:"’) _jk(RHei(n+1)tp)i — w(jREjei(n+1)lP)i =0




and then executing the derivatives with respect to phi
|{ i a(] EJ) l(n+1) i ip; : i(n+1) : ingy; : ing);
4 e'? ? + e “#jRg;i(n+1)(e ) + jk(Rge™)i — w(jRyje™*)i =0
i . . . .
Ik —ip T Hj) (] H]) eine _ ;e—ltijHjin(emtp) _jk(RHel(n+1)tp)i _ w(jREjel(n+1)tp)i =0

you can simplify the exponential from the right and you get to this megasimplification

{a(]RE])

¥
k

+ ]RE]l(n + 1) + jk(Rg)i — w(]RH])l =

a(jRy;) i
(] "’) ~ ~ jRyjin — jk(Ry)i - @(jRg;)i = 0

(2a)
((R 1
E
< (ar]) RE](n+1)+k(RE)l—w(RH])l =
d(Ry;) 1 : :
| % ——Ryjn — k(Ry)i— w(Rg;)i =0
Be now
Ry e? = _k Rpe'"®
Hj (w + wy) £
and also
, —k ,
in+tl)ep — in+1)e
RE].e (w+w0)RHe

(which is also compatible with the previous positionson  el®™+*D¢ and ein® ),
Let be more in particular

k
Ry =—R
Hj (w + wy) £
—k
Ry =

’_(w"'wo)

and 1I'm going to make these replacements.



I now do all the replacement steps in (2a) .
Step by step | get

k
Ry, =—R
H; (w + wy) g

—k

RE]- = ((1)+—(1)0)RH

(2a)

(0(Rg;) 1
or r
d(Ruj)

L ar

Rgj(n+1) + k(Rg)i — w(Ry;)i=0

1 ) )
— ;RH]n — k(RH)l — (D(RE])l =0

( k
"’(‘—(w+wo)’*")+1 k

= k LR

(w + wy) ¥

k
a((w+wo)RE)_1 k
\ ar r (o + wy)

k
REn— k(RH)i - w<—mRﬂ)i =0

ar

d(kRg) 1

ES U %kRH(n +1) + k(o + wo)(Rg)i — w(kRg)i = 0
——kRgn — k(w + a)(Ry)i + w(kRy)i = 0

ar

ar

a(RE) _ %REn _ ((1) + wo)(RH)l + (A)(RH)l =0

{"’(‘Rﬂ) —Ry(n+ 1) + (@ + wo)(Rp)i — w(Rg)i = 0

ar

and finally:
(2b)

d(Ry)

1 .
— + ;RH(n +1) —wy(Rg)i=0

d(Rg) 1

——R — Ri,)i=0
ar - N — wo(Ry)i




Instead, substituting step by step in (1a) we obtain

k
Ry =— R
Hj (w + wy) £

—k
R, =— R
ki (w + wy) H

(1)
0(Rg) 1

ar r

d(Ry) 1 : :
ar +;RH(n+ 1)+k(RH])l—w(RE)l:0

REn k(RE])l (D(RH)i =0

( d(Rp) 1 ( —k — )—w(RH)i=0

1 9(Ry)
L or

+1R(+1)+k( k R)' (Rg)i =0
an wo)El W(Kg)l =

(w +

d(R 1 k?
( (E)——RE +(—Rﬂ>i—w(RH)i=0

ar r

1
d(Ry)
_ Or

2
k @+ oy )'—w(RE)iZO

a(c')I:"E) - 1RE" + (w — wg)(Ry)i — w(Ry)i =

d
(aiﬂ) + %Ru(n +1) + (@ — wo)(Rp)i — w(Rp)i =0

and finally:
(1b)

Jd(R 1
(Rr) —;REn wo(Ry)i =

ar
Jd(R 1
(Rr) +;RH(n +1) —wo(Rp)i=0




Summarizing, to solve the equation

F=0
I place
F = Fl(x, y)e—i(w‘t—kz)
with
F, = (E +jE;) + T(H + jH;)
and with
R. ing — R eintp
H;€ (w + wy) E
and also
in+tl)ep — i(n+1)e
REje RHe

(w + wy)
I get the following conditions ( the 1b and 2b , coinciding with each other ) :

oR,; 1

—+—R +1) —woRri =0

ar r a(n ) — woRgi
OR; 1 R Roi=0
ar rn E — Wohpyl =

Solution: Bessel functions.
Indeed, place

Ry = i 41 (wor)
Rg = Jn(wor)
the equations become

0J n+1(@or) N (n+1)
Jar

dJn
# - g]n(wor) + woJn+1(@er) =0

Jni1(wor) — wof(wor) = 0

wich, with an appropriate change of indices,
9], (wor)
na—ro + ;]n(wor) — @woJn-1(wor) =0

dJn
# - g]n(wor) + woJn+1(@wer) =0



coincides with recursive relationships

(D.35)
V00D 4 2 20 Uex) — ey (k) =
dx
(D.36)
dZn(kx) _EZ (k )+an+1(kx) —
dx

From [7] “Introductory Applications of Partial Differential Equations: with Emphasis on
Wave Propagation and Diffusion”

by G. L. Lamb, Jr.

Copyright © 1995 John Wiley & Sons, Inc.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118032831.app4

D.7 RECURRENCE RELATIONS

Bessel's functions of neighboring order are interrelated in ways that prove to
be extremely useful. Some of these relations are listed below (Hildebrand,
1976, p. 149) where Z,(x) refers to one of the Bessel functions J, ¥, H™W,
H? 1, or K:

h"zn—l(h}! z = Jp Fl f. H“}i Ht!}

~kx"Z,_ k), Z=K (B

r. _
aixzn(h}l*{

kx ™2, (), Z =1, Y K, HY, H?

kZ, 4 1 (kx) + ~ 3-(*1} Z=1

d
— [x "7 (kx :
dr[x Zy(kx)] = [ o "Z | (D), 7= (D.35)
; kZ, _  (kx) — -Z,,(h}, Z=J]Y I HY H®
Ezn(h] .
_i(kx) — ;Z..{kx), Z=K
(D.36)
d ~kZ, . (x) + = Z_.,(.h) Z=1Y K HY, H®
e Z,(kx) =


https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118032831.app4

3-SOLUTION

Summarizing things from the beginning, one has, in succession:

F = {[Re®; + jRey@p | + T [Ry @y + jRyyy [} e-iCwr—4)

Rp®p = ]n(wor)eimp

JRE P = i s o) i ni1(@wor)el+D?

Ry®y = i]n+1(wor)ei(n+1)'p

JRyj®y; =j (w_|_—w0)]n(w0r)e"""’

and replacing everything we get:

, k .
F = {[]n(wor)em"’—jmi]n+1(w0r)e‘("+1)‘l’]

+T [i]n+1(w0r)ei(n+1)‘l’ +j (wor)eintp]} e i(wt-kz)

(w + wo)]"

which is reordered like this:

F = (]n(wor)eimp + Ti]n+1(wor)ei(n+1)¢)e—i(wr—kz)
g . . k » -
+ (l]]n+1(w0r)el(n+1)‘l’ + T]]n(wor)emtp) me i(wt—kz)



4 - DISCUSSION

The “at rest’ solution already examined in the Manuscripts [1 ] reappears
F= (]n(wor)ei"‘P + Ti]n+1(wor)ei(n+1)¢)e—i(w‘t—kz)

To this is added the component due to motion

In this part, the portion with index Tj simply represents the magnetic field components Hx

and Hy

The part with index ij shows the presence of a magnetic charge

The T field component responsible for the electric charge is also a function of z when in
motion, which involves electric current in the z direction

F= (Ti]n+1(wor)ei(n+1)‘p)e‘i(wt—kz)




5 - GENERALIZATION

The solution found opens up a series of interesting possibilities, since each component of the
solution found lends itself to be interpreted as ( more precisely: it is ) a harmonic potential.

F = (]n(wor)ein(p + Ti]n+1(wor)ei(n"'l)(ll)e—i(wr—kz)

+ (] pr1(@or)ei ™D + TjJ (wor)é

Using cylindrical coordinates

Xy ar roge
d* el (i ii)
Xy oar rade

I can directly find a series of analytic functions .
For example, using the derivation operator @ this function is certainly analytic

F = 3|(Jn(wor)ene) e iwr—k2)]

0 ia) ) i)
]0z at

or rode

indeed it is analytic (I presume) the function that arises from the harmonic potential

which generalizes exercise 5 of the Manuscripts [1 ].
Calculations.

F =0A
F=e ¢ (— - ——) [(J,,(wor)ei™®)cos (wt — kz)]

+ (—j% — T%) [(J,,(wor)ei™®)cos (wt — kz)]

F=e® % [(J,,(wor)ei™?)cos (wt — kz)] —_
a .
_ j& [(Jn(wor)e™®)cos (wt — kz)] — _




Then the function deriving from this harmonic potential is analytic (I presume)

This generalizes exercise 1 of the Manuscripts [1 ].

Calculations.
F = 0[(TiJ 11 (wor)elnt D) g-ilwr—k2))
9= -up(" ia) 0 0
¢ or rade J 0z (i k1
F = e i¢ (i — ii) [(Ti] (w r)ei(n+1)tp)e—i(wr—kz)]
ar Tr a(p n+1 0

9\, . . o
+ (_] & _ TE) [(Tl]n+1(w0r)el(n+1)tp)e i(wt kz)]

9 _ _
F = e [(TiJ 1 (wor)e+De)emiwria)]

—j = [(Ti]n+1(wor)ei(n+1)(p)e—i(wt—kz)]

From the examination of these last two potentials it seems to be able to conclude that there is

a potential to which correspond mass charge, spin, magnetic moment, and without magnetic
charge. It is

A= (]n(wor)eimp)COS (w‘[ — kz)
+ (TiJ py1 (wor) e+ Do) g—ilwe=kz)



6 - EXAMPLE
One of the most interesting aspects is to verify if it is harmonic [(J,,(wo1)e™?)cos (wt — kz)]
Let's calculate the Laplacian directly

% 9> 9> 9

40" =

axz 9y2 022 o7

The individual parts are

(4)
1 0%e™®
41

®)

(6)




Development part (3)

3)

The second derivative is calculated in the Appendix and the result is

So replacing

19 <r a],,(wor)> _10Jn(wor) _ 19]n(wor) | <n2 woz>]n(“’0r)

ror ar r ar r ar

ror ar

19 <r—a]"(w°r)> = <n—2 —~ w02>]n(w0r)



(3a)
(4a)
1 d“e'"?
r2 92
(5a)

9%cos (wt — kz)

9%cos (wt — kz)

Continuing still I run the derivative with respect to phi.




r2 d@?

deine
= ine'"?
d¢e
149%™ 1 6( ing) = n? ing
r2 d@? 2 ap tne 72 ¢

So I replace in (4 a) and then I simplify e®™® everywhere

(3b)

(4b)

(Sb)

d*cos (wt kz)

9%cos (wt — kz)
T2

(6b)




I run the latest derivatives of cos (wt — kz)

35 €5 (wt — kz) = ksin (ot — kz)

9%cos (wt — kz
f’)zz ) = —k?cos (wt — kz)

d
37695 (wt — kz) = —wsin (wt — kz)

9%cos (wt — kz
f?rz ) = —w?cos (wt — kz)

So | simplify again cos (wt — kz)

(3¢)
3/ d . -
;5 (r 5) [Jn(wor)e™®)cos (wT — kz)] (% - woz>
(4c)
9? . -
r_lza_qu [Jn(wor)e™®)cos (wT — kz)] o — %
(5¢)
L :
352 [Un(@or)e™®)cos (wT — kz)] o< —k?
(6¢)

02

32 [Un(@or)e™®)cos (w7 — k2)] o —w?



Finally in the Laplacian

I simplify everywhere by means of (3c), (4c), (5¢), (6c).
Result:

So ultimately

The function J,(@er)e™®cos (wt — kz) is a harmonic function..

As it was intended to prove.

n? n?
——wl |- -kt w=—w? -k +w=0
r r



7 - CONCLUSIONS

In conclusion, the existence of solutions of Cauchy Riemann's conditions in 4D occurs or, if
you wish, of ""'waves", what | have called elsewhere ""waves of charge' . These, whose physical
existence remains to be demonstrated, are nothing more than a generalization of ordinary
electromagnetic waves. They can therefore be "neutral™, or equipped in various ways with
mass, charge, spin. I have made some examples but much more could be studied.

In physics, someone said, what is not strictly prohibited happens.
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9 - APPENDIX
I use the formulas (see paragraph 2):

dJn ( ) ( +1)
: +(1?rw0r = r Jni1(@or) — woJn(wor) = 0

0/
# - 2]n(‘il’or) + o) n+1(wor) =

1 4],
Jns1(wor) = —— J (wor) :r]n(wor)

w, Or

d 1 6]n(w0r)+ n
or| wy, O0r
=0

(n * 1) 1 a]n(wor) tr]n(wor)l - wO]n(wOr)

or

or)l

d 1 0]n(w0r) n
or| wy, O0r

1 3% (wer)  m n 9J,(wor)
]n(wor)l Wy Ir? 2]n( ol )+ woT or

1 8% x(wer) m (gr) + aln(wor) (n+1) 10]n(wor) L wor)
Cwy 0r? 2]" of of Or or or]" @l

- wO]n(wor) -

1 3*,(wer) m n Jn(wer) (n+1) 1 9,(wor)
Cwy Or? 2]"( o) + r or r w, or
0 (n ® 1) N Wy 0

r w_]n(wor) woJn(wor) =0

0%J(wor) n aln(wor) (n+1)9n(wor)  (n+Dn
— a2 zln( or) + v - Jn(@or)

— Wy ]n(wor)

r ar r

Conclusion:

Note: nothing but the Bessel second-order differential equation.



