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A reciprocal identity for sums of inverse tangents

Martin Nicholson

An identity is proved connecting two finite sums of inverse tangents. This identity is
discretized version of Jacobi’s imaginary transformation for the modular angle.

I. Introduction

Sums of inverse tangents have attracted a lot of attention. For example, the following sums of inverse
tangents can be calculated in closed form:
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(1) is a classic sum evaluated first by Glaisher in [1]. The sum (2), where F}, is n-th Fibonacci number,
was calculated by Hoggatt and Ruegels [3]. The sum (3) was noted in [5]. See [2] for further references
and a brief summary of research in this direction.

All summations of the type (1) and (2) seem to be based on two methods: the telescopic principle, and
the method of zeroes, as was noted in [4].

Even earlier, in his studies of elliptic functions, Jacobi proved identity of completely different kind
of which he wrote in his treatise on elliptic functions “one is obliged to rank among the most elegant
formulas” [6]:
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Here ¢ = e ™X'/K | K is the complete elliptic integral of the first kind with modulus k
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K' = K(K') with k¥’ = v/1 — k? being the complementary modulus. Together with the obvious relation
arcsin k + arcsin k' = g,
this implies
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where ¢/ = ¢
The focus of this paper will be the following reciprocal identity for finite sums of inverse tangents
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Theorem 1. Let n,m € Ng. Then
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Note that when n = m both sums in (6) are equal and we get a closed form summation:

Corollary 1.
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It is instructive to write (6) in another form by shifting the summation variable and simple rearrangement

of terms
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From this form of (6), it is evident that when n, m — oo such that m/n — K’/K, one recovers (5). Thus,

(6) is discretized version of (5). Our proof is completely elementary and provides an elementary proof of
the modular relation (5).

II. Proof of Theorem 1

We break the proof into a series of lemmas.

Lemma 1. The following identity holds for n,m € Ng and j € Z
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Proof. Denote s = 2m + 1:
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Since — = sinh z the proof is complete. O

Lemma 2. For n,m € No, j € Z, and o as was defined in the previous lemma, one has
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Proof. Using properties of complex numbers we write
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This expression can be factorised according to the formula
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its validity is easy to check by standard methods: both sides are polynomials in with leading coefficient
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Lemma 3. For n,m € Ng, j € Z, one has
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The last equality is explained as follows. First, note that cos has period 27. The sum Z|k|<m is over
residue class mod 2m + 1. When m > 0, the numbers m and 2m + 1 are coprime. Hence, when k runs

over residue class mod 2m + 1, the set of numbers km runs over residue class mod 2m + 1.
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To complete the proof of the lemma set f(z) = arctan ,
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Proof. The sum is trivial when n = 0. Let’s assume that n > 0. Then
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Now, we are in a position to prove Theorem 1. According to lemmas 1-4 we have that the LHS of the
equation (6) equals
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ITI. Other reciprocal relations?

In our previous paper[8], we have found many relations of the form P(n,m) = P(m,n), for finite
products of trigonometric functions. However, the identity in Theorem 1 is of the type S(n, m)+S(m,n) =
C, where C' is independent of n and m. There is simple method to find other relations of this type. It is
based on the solution of Dirichlet problem on a finite rectangular grid. For example
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where 1 < x <n, 1 <y < m are integers and cos ] +cosha;j = 2, cos 72 J 4 cosh Bj = 2.
Laplace operator on a finite rectangular grid is deﬁned as

Af(zy k) = f(z = Ly) + fle+Ly) + flz,y =D+ flz,y +1) = 4f(z,y).
One can see that the RHS of (8) satisfies the discrete Laplace equation
Af(z,y) =0, (0<z<n0<y<m) (9)

on a rectangular grid of size n x m. Also —xy = fi(x,y) + fa(z,y), where fi(z,y) and fo(z,y) are
solutions of the Laplace equation with boundary conditions
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f2(0’y) = vaZ(nvy) =ny, 0< y < m.
Partial solutions of Laplace equation corresponding to boundary conditions (10) and (11) are given by,
respectively
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In fact this method is quite well known and there are many examples in electrodynamics and heat
conduction problems in physics (e.g., [7]).
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