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1 Introduction

In 1996, Andrijević [2] introduced a new class of generalized open sets called
b-open sets into the field of topology. This class is a subset of the class of
semi-preopen sets [3] also called β-open sets [1], i.e. a subset of a topological
space which is contained in the closure of the interior of its closure. Also the
class of b-open sets is a superset of the class of semi-open sets [7], i.e. a set
which is contained in the closure of its interior, and the class of locally dense
sets [6] or preopen sets [8], i.e. a set which is contained in the interior of its
closure. Andrijević studied several fundamental and interesting properties of
b-open sets. Among others, he showed that a rare b-open set is preopen [[2],
Proposition 2.2]. Recall that a rare set [4] is a set with no interior points. It
is well-known that for a topological space X, every rare b-open set is semi-
open if and only if the interior of a dense subset is dense. Quite recently
Caldas et al. [5] obtained some new generalized sets by utilizing b-open sets
and investigated the topologies defined by these families of sets.
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2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless
explicitly stated. Let A ⊆ X, then A is said to be b-open [2](resp. α-open [9])
if A ⊆ Cl(Int(A)) ∪ Int(Cl(A))(resp. A ⊂ Int(Cl(Int(A)))), where Cl(A)
and Int(A) denote the closure and the interior of A in (X, τ), respectively.
The complement Ac = X \ A of a b-open set A is called b-closed and the
b-closure of a set A, denoted by Clb(A), is the intersection of all b-closed sets
containing A. The b-interior of a set A denoted by Intb(A), is the union of
all b-open sets contained in A. It is obvious that if the bounday of a b-open
set is nowhere dense, then it is semi-open. Moreover a rare b-open set with
a nowhere dense boundary is α-open! Also a b-open set which its closure is
regulary closed (or semiopen) is β-open! Recall that a subset A of a space
(X, τ) is called regular open (resp. regularly closed) if A = Int(Cl(A))(resp.
A = Cl(Int(A))). It is clear that if a b-open set is closed then it is semiopen.

The family of all b-open (resp. b-closed) sets in (X, τ) will be denoted by
BO(X, τ) (resp. BC(X, τ)).

Proposition 2.1 (Andrijević [2]) (a) The union of any family of b-open sets
is a b-open.
(b) The intersection of an open and a b-open set is a b-open set.

Lemma 2.2 The b-closure Clb(A), is the set of all x ∈ X such that O∩A 6= ∅
for every O ∈ BO(X, x), where BO(X, x) = {U | x ∈ U,U ∈ BO(X, τ)}.

A subset Nx of a topological space X is said to be a b-neighbourhood of
a point x ∈ X if there exists a b-open set U such that x ∈ U ⊂ Nx.

Lemma 2.3 A subset of a space X is b-open in X if and only if it is a
b-neighbourhood of each of its points.

3 b-R1 Topological Spaces

Definition 1 Let (X, τ) be a space and A ⊂ X. Then the b-kernel of A ,
denoted by bKer(A) is defined to be the set
bKer(A) = ∩{G ∈ BO(X, τ) | A ⊂ G}.

It should be noticed that bKer(A) is defined as BΛb in [5].
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Lemma 3.1 Let (X, τ) be a space and x ∈ X. Then,
y ∈ bKer({x}) if and only if x ∈ Clb({y}).

Proof. Assume that y /∈ bKer({x}). Then there exists a b-open set V
containing x such that y /∈ V . Therefore, we have x /∈ Clb({y}). The converse
is similarly shown.

Lemma 3.2 Let (X, τ) be a space and A a subset of X. Then, bKer(A) =
{x ∈ X | Clb({x}) ∩ A 6= ∅}.

Proof. Let x ∈ bKer(A) and Clb({x}) ∩ A = ∅. Therefore, x /∈ X \
Clb({x}) which is a b-open set containing A. But this is impossible, since
x ∈ bKer(A). Consequently, Clb({x}) ∩ A 6= ∅. Now, let x ∈ X such that
Clb({x}) ∩ A 6= ∅. Suppose that x /∈ bKer(A). Then, there exists a b-
open set U containing A and x /∈ U . Let y ∈ Clb({x}) ∩ A. Thus, U is a
b-neigbourhood of y such that x /∈ U . By this contradiction x ∈ bKer(A).

Lemma 3.3 The following statements are equivalent for any points x and y
in a space (X, τ) :
(1) bKer({x}) 6= bKer({y});
(2) Clb({x}) 6= Clb({y}).

Proof. (1) → (2) : Let bKer({x}) 6= bKer({y}), then there exists a
point z in X such that z ∈ bKer({x}) and z /∈ bKer({y}). From z ∈
bKer({x}) it follows that {x} ∩ Clb({z}) 6= ∅ which implies x ∈ Clb({z}).
By z /∈ bKer({y}), we have {y} ∩ Clb({z}) = ∅. Since x ∈ Clb({z}) ,
Clb({x}) ⊂ Clb({z}) and {y} ∩ Clb({x}) = ∅. Therefore it follows that
Clb({x}) 6= Clb({y}). Now bKer({x}) 6= bKer({y}) implies that Clb({x}) 6=
Clb({y}).
(2) → (1) : Suppose that Clb({x}) 6= Clb({y}). Then there exists a point z
in X such that z ∈ Clb({x}) and z /∈ Clb({y}). It means that there exists
a b-open set containing z. Therefore x but not y, i.e., y /∈ bKer({x}) and
hence bKer({x}) 6= bKer({y}).

Recall that a space (X, τ) is called b-T0 (resp. b-T1 [5]) if for any distinct
pair of points x and y in X, there is a b-open U in X containing x but not y or
(resp. and) a b-open set V in X containing y but not x. It is worth-noticing
that in a private correspondence Professor Maximilian Ganster has shown
that a space is b-T1 if and only if each singleton is either rare or regular open.
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Theorem 3.4 Every topological space (X, τ) is b-T0.

Proof. Take two points x and y in X. If Int{x} is nonempty then {x} is
open, thus b-open and we are done. Otherwise, if Int{x} is empty, then {x}
is preclosed , i.e. X − {x} is a preopen (thus b-open) set containing y , and
we are also done.

Theorem 3.5 For a space (X, τ) each pair of distinct points x, y of X ,
Clb({x}) 6= Clb({y}).

Proof. Let x, y be any two distinct points of X. Since every space (X, τ)
is b-T0 (Theorem 3.4), there exists a b-open set G containing x or y, say x
but not y. Then Gc is a b-closed set which does not contain x but contains
y. Since Clb({y}) is the smallest b-closed set containing y, Clb({y}) ⊂ Gc,
and so x /∈ Clb({y}). Consequently Clb({x}) 6= Clb({y}).

Theorem 3.6 A space (X, τ) is b-T1 if and only if the singletons are b-closed
sets.

Proof. Suppose that (X, τ) is b-T1 and x ∈ X. Let y ∈ {x}c. Then
x 6= y and so there exists a b-open set Uy such that y ∈ Uy but x /∈ Uy.
Consequently y ∈ Uy ⊂ {x}c i.e., {x}c =

⋃{Uy/y ∈ {x}c} which is b-open.
Conversely. Suppose that {p} is b-closed for every p ∈ X. Let x, y ∈ X

with x 6= y . Now x 6= y implies y ∈ {x}c. Hence{x}c is a b-open set
containing y but not x. Similarly {y}c is a b-open set containing x but not
y. Accordingly X is a b-T1 space.

Definition 2 A space (X, τ) is said to be b-R1 if for x, y in X with Clb({x}) 6=
Clb({y}), there exist disjoint b-open sets U and V such that Clb({x}) is a
subset of U and Clb({y}) is a subset of V.

Theorem 3.7 A space (X, τ) is b-R1 if and only if for x, y ∈ X, bKer({x}) 6=
bKer({y}), there exist disjoint b-open sets U and V such that Clb({x}) ⊂ U
and Clb({y}) ⊂ V.

Proof. It follows from Lemma 3.3.

A space (X, τ) is called b-T2 if for any distinct pair of points x and y in
X, there exist b-open sets U and V in X containing x and y, respectively,
such that U ∩ V = ∅.
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Theorem 3.8 A space (X, τ) is b-T2 if and only if (X, τ) is b-R1.

Proof. Necessity. Since X is b-T2, then X is b-T1. If x, y ∈ X such
that Clb({x}) 6= Clb({y}), then x 6= y. Then there exists disjoint b-open sets
U and V such that x ∈ U and y ∈ V ; hence Clb({x}) = {x} ⊂ U and
Clb({y}) = {y} ⊂ V. Hence X is b-R1.
Sufficiency. Let x, y ∈ X such that x 6= y. By Theorem 3.4, There exists a
b-open set U such that x ∈ U and y /∈ U . Then by Lemma 3.1 x /∈ Clb({y})
and hence Clb({x}) 6= Clb({y}). Therefore there exist disjoint b-open sets U1

and U2 such that x ∈ Clb({x}) ⊂ U1 and y ∈ Clb({y}) ⊂ U2. Thus X is b-T2

Theorem 3.9 A space X is b-T2 if and only if the intersection of all b-closed
b-neighourhoods of each point of X is reduced to that point.

Proof. Necessity. Let X be b-T2 and x ∈ X. Then for each y ∈ X which
is distinct from x, there exist b-open sets G and H such that x ∈ G, y ∈ H
and G∩H = ∅. Since x ∈ G ⊂ Hc, hence Hc is a b-closed b-neighbourhood of
x to which y does not belong . Consequently, the intersection of all b-closed
b-neighbourhood of x is reduced to {x}.

Sufficiency. Let x, y ∈ X and x 6= y. Then by hypothesis there exists a
b-closed b-neighbourhood U of x such that y /∈ U . Now there is a b-open set
G such that x ∈ G ⊂ U . Thus G an U c are disjoint b-open sets containing x
and y respectively. Hence X is b-T2.

Theorem 3.10 For a space (X, τ), the following statements are equivalent
:
(1) (X, τ) is b-R1 ;
(2) If x, y ∈ X such that Clb({x}) 6= Clb({y}), then there exist b-closed sets
F1 and F2 such that x ∈ F1 , y /∈ F1 , y ∈ F2 , x /∈ F2 and X = F1 ∪ F2.

Proof. (1) → (2) : Let x, y ∈ X such that Clb({x}) 6= Clb({y}), and
hence x 6= y. Therefore, there exist disjoint b-open sets U1 and U2 such
that x ∈ Clb({x}) ⊂ U1 and y ∈ Clb({y}) ⊂ U2. Then F1 = X \ U2 and
F2 = X \ U1 are b-closed sets such that x ∈ F1 , y /∈ F1, y ∈ F2, x /∈ F2 and
X = F1 ∪ F2.
(2) → (1) : Suppose that x and y are distinct points of X, such that
Clb({x}) 6= Clb({y}). Therefore there exist b-closed sets F1 and F2 such
that x ∈ F1 , y /∈ F1 , y ∈ F2 , x /∈ F2 and X = F1 ∪ F2. Now, we set
U1 = X \ F2 and U2 = X \ F1, then we obtain that x ∈ U1 , y ∈ U2,

5



U1 ∩U2 = ∅ and U1, U2 are b-open. This shows that (X, τ) is b-T2. It follows
from Theorem 3.8 that (X, τ) is b-R1.

A space (X, τ) is said to be a b-R0 space if every b-open set contains the
b-closure of each of its singletons.

Theorem 3.11 For every space (X, τ) the following statements are equiva-
lent:
a) b-R0.
b) b-T1.

Proof. The equivalnce of b-T1 and b-R0 follows from the fact that b-T1 is
equivalent to b-R0 and b-T0.

A point x of a space (X, τ) is an b-θ-accumulation point of a subset
A ⊂ X, if for each b-open U of X containing x, Clb(U) ∩ A 6= ∅. The set
bClθ(A) of all b-θ-accumulation points of A is called the b-θ-closure of A. The
set A is said to be b-θ-closed if bClθ(A) = A. Complement of a b-θ-closed set
is said to be b-θ-open.

Lemma 3.12 For any subset A of a space (X, τ), Clb(A) ⊂ bClθ(A).

Lemma 3.13 Let x and y are points in a space (X, τ). Then y ∈ bClθ({x})
if and only if x ∈ bClθ({y}).

Theorem 3.14 A space (X, τ) is b-R1 if and only if for each x ∈ X ,
Clb({x}) = bClθ({x}).

Proof. Necessity. Assume that X is b-R1 and y ∈ bClθ({x}) \ Clb({x}).
Then there exists a b-open set U containing y such that Clb(U) ∩ {x} 6= ∅
but U ∩ {x} = ∅. Thus Clb({y}) ⊂ U , Clb({x}) ∩ U = ∅. Hence Clb({x}) 6=
Clb({y}). Since X is b-R1, there exist disjoint b-open sets U1 and U2 such
that Clb({x}) ⊂ U1 and Clb({y}) ⊂ U2. Therefore X \ U1 is a b-closed b-
neigbourhood at y which does not contain x. Thus y /∈ bClθ({x}). This is a
contradiction.

Sufficiency. Suppose that Clb({x}) = bClθ({x}) for each x ∈ X. We first
prove that X is b-R0. Let x belong to the b-open set U and y /∈ U. Since
bClθ({y}) = Clb({y}) ⊂ X \ U, we have x /∈ bClθ({y}) and by Lemma 3.13
y /∈ bClθ({x}) = Clb({x}). It follows that Clb({x}) ⊂ U . Therefore (X, τ) is
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b-R0. Now, let a, b ∈ X with Clb({a}) 6= Clb({b}). By Theorem 3.11, (X, τ)
is b-T1 and b /∈ bClθ({a}) and hence there exists a b-open set U containing
b such that a /∈ Clb(U). Therefore, we obtain b ∈ U , a ∈ X \ Clb(U) and
U∩(X\Clb(U)) = ∅. This shows that (X, τ) is b-T2. It follows from Theorem
3.8 that (X, τ) is b-R1.

4 Others Properties of b-open Sets

Definition 3 A subset A of a space X is called a bD-set if there are two
U, V ∈ BO(X, τ) such that U 6= X and A=U \ V .

One can observe that every b-open set U different from X is a bD-set if
A=U and V =∅.

Definition 4 A space (X, τ) is called:
(i) b-D0 if for any distinct pair of points x and y of X there exists a bD-set
of X containing x but not y or a bD-set of X containing y but not x.
(ii) b-D1 if for any distinct pair of points x and y of X there exists a bD-set
of X containing x but not y and a bD-set of X containing y but not x.
(iii) b-D2 if for any distinct pair of points x and y of X there exist disjoint
bD-sets G and E of X containing x and y, respectively.

Remark 4.1 (i) If (X, τ) is b-Ti , then it is b-Ti−1, i = 1, 2.
(ii) If (X, τ) is b-Ti , then (X, τ) is b-Di , i = 0, 1, 2.
(iii) If (X, τ) is b-Di , then it is b-Di−1 , i = 1, 2.

Theorem 4.2 For a space (X, τ) the following statements are true:
(1) (X, τ) is b-D0 if and only if it is b-T0.
(2) (X, τ) is b-D1 if and only if it is b-D2.

Proof. (1) We prove only the necessity condition since the sufficiency
condition is stated in Remark 4.1(ii).

Necessity. Let (X, τ) be b-D0. Then for each distinct pair x, y ∈ X, at
least one of x, y, say x, belongs to a bD-set G but y /∈ G. Let G = U1 \ U2

where U1 6= X and U1,U2 ∈ BO(X, τ). Then x ∈ U1, and for y /∈ G we have
two cases: (a) y /∈ U1 ; (b) y ∈ U1 and y ∈ U2.

In case (a), U1 contains x but not y ;
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In case (b), U2 contains y but not x. Hence X is b-T0.
(2) Sufficiency. Remark 4.1(iii).

Necessity. Let X be a b-D1 topological space. Then for each distinct pair
x, y ∈ X , we have bD-sets G1, G2 such that x ∈ G1, y /∈ G1 ; y ∈ G2 , x /∈ G2

. Let G1= U1\U2 , G2 = U3\U4. ¿From x /∈ G2, we have either x /∈ U3 or
x ∈ U3 and x ∈ U4. Now we consider the following two cases separately.

(1) x /∈ U3. From y /∈ G1 we have two subcases:
(a) y /∈ U1. From x ∈ U1\U2 we have x ∈ U1\ (U2∪ U3) and from

y ∈ U3\U4 we have y ∈ U3\(U1∪U4) . Therefore, (U1\(U2∪U3))∩ (U3\(U1∪
U4) = ∅.

(b) y ∈ U1 and y ∈ U2. We have x ∈ U1\U2, y ∈ U2. (U1\U2) ∩ U2 = ∅.
(2) x ∈ U3 and x ∈ U4. We have y ∈ U3\U4, x ∈ U4. (U3\U4) ∩ U4 = ∅.

From the discussion above we know that the space X is b-D2.

From Theorems 4.2 and 3.4, we obtain also that every space is b-D0.

Definition 5 A point x ∈ X which has X as the b-neighborhood is called a
b-neat point.

Theorem 4.3 For a space (X, τ) the following are equivalent:
(1) (X, τ) is b-D1;
(2) (X, τ) has no b-neat point.

Proof. (1) → (2). Since (X, τ) is b-D1, so each point x of X is contained
in a bD-set O = U \ V and thus in U. By definition U 6= X. This implies
that x is not a b-neat point.

(2) → (1). By Theorem 3.4, each distinct pair of points x, y ∈ X, at least
one of them, x(say) has a b-neighborhood U containing x and not y. Thus U
which is different from X is a bD-set. If X has no b-neat point, then y is not
a b-neat point. This means that there exists a b-neighborhood V of y such
that V 6= X. Thus y ∈ (V \U) but not x and V \U is a bD-set. Hence X is
b-D1.

Remark 4.4 It should be noted that a space (X, τ) is not b-D1 if and only
if there is a unique b-neat point in X. It is unique because if x and y are
both b-neat point in X, then at least one of them say x has a b-neighborhood
U containing x but not y. But this is a contradiction since U 6= X.
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Definition 6 A function f : (X, τ) → (Y, σ) is b-continuous if the inverse
image of each b-open set is b-open.

Theorem 4.5 If f : (X, τ) → (Y, σ) is a b-continuous surjective function
and E is a bD-set in Y, then the inverse image of E is a bD-set in X.

Proof. Let E be a bD-set in Y . Then there are b-open sets U1 and U2

in Y such that S = U1\U2 and U1 6= Y . By the b- continuity of f , f−1(U1)
and f−1(U2) are b-open in X. Since U1 6= Y , we have f−1(U1) 6= X. Hence
f−1(E) = f−1(U1)\f−1(U2) is a bD-set.

Theorem 4.6 If (Y, σ) is b-D1 and f : (X, τ) → (Y, σ) is b-continuous and
bijective, then (X, τ) is b-D1.

Proof. Suppose that Y is a b-D1 space. Let x and y be any pair of
distinct points in X. Since f is injective and Y is b-D1, there exist bD-sets
Gx and Gy of Y containing f(x) and f(y) respectively, such that f(y) /∈ Gx

and f(x) /∈ Gy. By Theorem 4.5 , f−1(Gx) and f−1(Gy) are bD-sets in X
containing x and y respectively. This implies that X is a b-D1 space.

Theorem 4.7 A space (X, τ) is b-D1 if and only if for each pair of distinct
points x, y ∈ X, there exists a b-continuous surjective function f : (X, τ) →
(Y, σ), where Y is a b-D1 space such that f(x) and f(y) are distinct.

Proof. Necessity. For every pair of distinct points of X, it suffices to take
the identity function on X.
Sufficiency. Let x and y be any pair of distinct points in X. By hypothesis,
there exists a b-continuous, surjective function f of a space X onto a b-D1

space Y such that f(x) 6= f(y). Therefore, there exist disjoint bD-sets Gx

and Gy in Y such that f(x) ∈ Gx and f(y) ∈ Gy . Since f is b-continuous
and surjective, by Theorem 4.5, f−1(Gx) and f−1(Gy) are disjoint bD-sets in
X containing x and y, respectively. Hence by Theorem 4.2, X is b-D1 space.
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Châp. IX-Paris 1948.

[5] M. Caldas, S. Jafari and T. Noiri, On Λb-sets and the associated topology
τΛb , Acta Math. Hungar (to appear).

[6] H. H. Corson and E. Michael, Metrizability of certain countable unions,
Illinois J. Math. 8(1964), 351-360.

[7] N. Levine, Semi-open sets and semi-continuity in topologyical spaces,
Amer. Math. Monthly 70(1963), 36-41.

[8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontin-
uous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt
53(1982), 47-53.

[9] O. Nj̊astad, On some classes of nearly open sets, Pacific J. Math.
15(1965), 961-970.

Addresses :

Departamento de Matematica Aplicada,
Universidade Federal Fluminense,
Rua Mario Santos Braga, s/n
24020-140, Niteroi, RJ BRASIL.

e-mail: gmamccs@vm.uff.br

College of Vestsjaelland South,
Herrestraede 11,
4200 Slagelse, DENMARK.

E-mail: jafari@stofanet.dk

10


