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Abstract. In this paper we introduce a particular class of matrices. We

study the concept of a matrix to be balanced. We study some properties of

this concept in the context of matrix operations. We examine the behaviour
of various matrix statistics in this setting. The crux will be to understanding

the determinants and the eigenvalues of balanced matrices. It turns out that

there does exist a direct communication among the leading entry, the trace,
determinants and, hence, the eigenvalues of these matrices of order 2 × 2.

These matrices have an interesting property that enables us to predict their

quadratic forms, even without knowing their entries but given their spectrum.

1. Introduction and motivation

Matrix theory is one of the most established areas of linear algebra, deeply em-
bedded in both theoretical research and practical applications. Its pervasiveness
has made certain fundamental concepts, such as eigenvalues, eigenvectors, and qua-
dratic forms, accessible not only to mathematicians but also to practitioners in other
fields. In fact, the vastness of matrix theory is such that even non-mathematicians
frequently encounter and understand its core elements, reflecting the extent to
which this discipline has matured. Yet, matrix theory continues to offer fertile
ground for discovery, particularly in the classification and analysis of new matrix
types with distinct structural properties.

Consider a typical 2× 2 matrix of the form

A :=

(
a b
c d

)
.

A crucial step in understanding the behavior of this matrix is determining its
spectrum, which consists of its eigenvalues. These eigenvalues can be found by
solving the characteristic equation

|A− λI| = 0,

where λ denotes any eigenvalue of A. The spectrum provides insight into the
matrixs action on a vector space, encapsulating information about scaling factors
in linear transformations. However, calculating the spectrum, especially for higher-
dimensional matrices, can be computationally intensive, necessitating sophisticated
techniques.
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For symmetric matrices, the quadratic form provides an alternative way to ex-
plore the matrixs properties. In the case of matrix A, the quadratic form is given
by

F (x, y) := ax2 + bxy + dy2,

which offers a geometric perspective on the matrix’s influence on vectors in R2.
The quadratic form is particularly important in optimization and geometry, where
it aids in studying curvature and other key geometric properties.

Despite the wealth of tools available for matrix analysis, the computation of
the spectrum and quadratic form typically requires a detailed understanding of the
matrixs entries. In what follows, we study a special class of matrices for which
both the spectrum and the quadratic form can be effectively determined without
the need to solve the characteristic equation or fully compute the matrix entries.
In this class, the eigenvalues and quadratic forms are directly related to simple
operations on the entries of the matrix, thereby simplifying the analysis.

For any matrix A in this class, we find that the sums of the row and column
entries approximate the maximum eigenvalue in the spectrum:

2∑
r=1

ai·r ≈
2∑
s=1

as·j ≈ max(M),

and that the differences between the row and column entries approximate the
minimum eigenvalue:

|ai·1 − ai·2| ≈ |a1·j − a2·j | ≈ min(M),

where M is the spectrum of A. These simple relations provide a direct method
for estimating the spectrum of the matrix, bypassing the need for solving complex
characteristic equations.

Moreover, for symmetric matrices in this class, the quadratic form can be recon-
structed directly from the eigenvalues, without requiring explicit knowledge of the
matrix. In particular, the quadratic form is approximated by one of the following
expressions, depending on the eigenvalues λ1 and λ2:

F (x, y) ≈
(
λ2 − |λ1|

2

)
(x+ y)2 + 2|λ1|xy,

or

F (x, y) ≈
(
λ2 + |λ1|

2

)
(x+ y)2 − 2|λ1|xy.

This framework not only simplifies the process of matrix analysis but also high-
lights a new class of matrices where key characteristics such as the spectrum and
quadratic form can be efficiently deduced from elementary operations on the en-
tries. This novel approach offers potential applications in areas that require rapid
or simplified matrix diagnostics, particularly in high-dimensional settings where
traditional methods may be computationally prohibitive.
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2. Balanced matrices

Definition 2.1. Let Mn×m(R) be the space of n ×m matrices with real entries.
Then A = (aij) ∈Mn×m(R), a non-zero matrix, is said to be horizontally balanced
if

m∑
j=1

a2r·j ≈
m∑
j=1

a2s·j ,

for 1 ≤ s < r ≤ n. Similarly, It is said to be vertically balanced if

n∑
i=1

a2i·r ≈
n∑
i=1

a2i·s,

for 1 ≤ s < r ≤ 1. Any matrix A is said to be fully balanced if it is both vertically
and horizontally balanced.

Example 2.2. Perhaps a good straight-forward example of a fully balanced matrix
is the identity matrix, since it abides by the above criterion. Another obvious
example of a fully-balanced matrix is given by

λ


1 1 · · · 1
1 1 · · · 1
...
1 1 · · · 1


for λ ∈ R. Hence for A ∈M3(R), the unity matrix

A =

1 1 1
1 1 1
1 1 1


the definition 2.1 about fully balanced-matrices holds, for we have

12 + 12 + 12 = 12 + 12 + 12 = 3 Horizontally(2.1)

12 + 12 + 12 = 12 + 12 + 12 = 3 Vertically.(2.2)

Through out this paper we choose for simplicity to specialize our study to fully-
balanced square matrices. Letting the paper to be taken this way brings more
questions around.

3. Elementary properties of fully balanced matrices

In this section we examine some properties of fully balanced matrices. We in-
vestigate how these properties are preserved under various matrix operations. We
prove the theorem for the sums and products of 2×2 matrices. Later, we will prove
a result that will enable us to extend these properties to higher order matrices.

Theorem 3.1. Let A,B ∈ Mn(R) be fully-balanced matrices and let λ ∈ R. Then
the following remain valid:

(i) The transpose AT is also fully balanced.
(ii) The multiple λA is also fully balanced.
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(iii) The sum of any 2 × 2 fully-balanced matrix with positive entries is still
fully-balanced. In other words, the notion of balanced balanced matrices is
preserved under matrix addition.

(iii) The product of any 2×2 fully-balanced matrices with positive entries is still
fully balanced.

(iv) The inverse of any 2 × 2 non-singular fully-balanced matrix is still fully
balanced. That is, if A is a non-singular fully-balanced 2 × 2 matrix, then
so is A−1.

Proof. (i) Let A = (aij) ∈Mn(R) be fully-balanced balanced. Then by defini-
tion 2.1, it is both vertically and horizontally balanced. Since the transpose
of a vertically balanced matrix becomes a horizontally-balanced matrix and
vice-versa, it follows that the transpose AT must be fully balanced.

(ii) The fact that λA is also fully balanced is obvious.

(iii) Consider the 2× 2 matrices

A =

(
a1 b1
c1 d1

)
B =

(
a2 b2
c2 d2

)
Then by definition 2.1 the following holds

a21 + b21 ≈ c21 + d21, a22 + b22 ≈ c22 + d22(3.1)

and

b21 + d21 ≈ a21 + c21, a22 + c22 ≈ b22 + d22.(3.2)

Using the relation a21 + b21 ≈ c21 + d21 and a21 + c21 ≈ b21 + d21, we observe that
c21 ≈ b21. Since the entries are positive, we must have c1 ≈ b1. Using the
equation further shows that a1 ≈ d1, a2 ≈ d2 and b2 ≈ c2. Their sum is
given by

A+B =

(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)
.

We claim that the matrix A+B is also fully balanced. For we observe that

(a1 + a2)2 + (b1 + b2)2 = a21 + a22 + 2|a1||a2|+ b21 + b22 + 2|b1||b2|
= (a21 + b21 + 2|b1||b2|) + (a22 + b22 + 2|a1||a2|)
≈ (c21 + d21 + 2|b1||b2|) + (c22 + d22 + 2|a1||a2|)(3.3)

≈ (c21 + c22 + 2|c1||c2|) + (d21 + d22 + 2|d1||d2|)
≈ (c1 + c2)2 + (d1 + d2)2

by leveraging the relations in 3.1 and 3.2. Thus the matrix A+ B is hori-
zontally balanced. Similarly we observe that

(b1 + b2)2 + (d1 + d2)2 = b21 + b22 + 2|b1||b2|+ d21 + d22 + 2|d1||d2|
= (b21 + d21 + 2|d1||d2|) + (d21 + d22 + 2|b1||b2|)
≈ (a21 + a22 + 2|a1||a2|) + (c21 + c22 + 2|c1||c2|)
≈ (a1 + a2)2 + (c1 + c2)2

where we have used the relation 3.1 and 3.2. Thus the matrix A+B is also
vertically balanced. Therefore it must be fully balanced.
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(iv) We now show that their product is also fully balanced. Their product is
given by

AB =

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
.

It follows that

(a1a2 + b1c2)2 + (a1b2 + b1d2)2 = (a21a
2
2 + a21b

2
2) + (b21c

2
2 + b21d

2
2) + 2a1a2b1c2 + 2a1b2b1d2

≈ a21(c22 + d22) + b21(c22 + d22) + 2d1a2c1c2 + 2b2c1d1d2

≈ d21(c22 + d22) + c21(a22 + b22) + 2d1a2c1c2 + 2b2c1d1d2

≈ (c1a2 + d1c2)2 + (c1b2 + d1d2)2

and the product is horizontally balanced. A similar argument will show
that, the product is also vertically balanced. Therefore, the product is
fully balanced.

(iv) The fact that A−1 is fully balanced, given that A is fully balanced is obvious.
�

4. Trace, determinants and eigenvalues associated with balanced
matrices

In this section we examine various statistics associated with balanced matrices.
We study the behaviour of their trace, their determinants, their eigenvalues, their
eigenvectors and their corresponding interplay in this setting.

Proposition 4.1. Let

A =

(
a b
c d

)
be a fully-balanced square matrix with positive real entries. If a < ε then Tr(A) ≤ Nε
for any ε > 0 and where Nε is a constant depending on ε.

Proof. By invoking Theorem 3.1, the result follows immediately. �

Remark 4.1. Theorem 3.1 relates the leading entry of a 2×2 fully-balanced matrix
to their trace. Indeed if the leading entry is small enough then the trace must not
be too big. Similarly if the leading entry is somewhat large then their trace must
be large. This property is archetypal of balanced matrices.

Proposition 4.1 does highlights the importance of balanced matrices. It tells
us for the most part that the leading entry or more generally the diagonal entry
of any 2 × 2 fully-balanced matrices has a profound connection with their eigen-
values, and hence influences their eigen-vectors. Indeed by using the well-known
elementary relation

λ1 + λ2 = Tr(A),

where λ1, λ2 are the eigen-values of the fully-balanced matrix A, then by leveraging
Proposition 4.1, we observe that if the leading entry is small enough then each of
the eigen-values must not be too big provided the spectrum is real and has only
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positive eigen values. Similarly if the leading entry is somewhat large then at least
one of the eigen-values must be large under the requirement of the structure of the
spectrum. A similar description could be carried out to relate the leading entry of
balanced matrices to their determinants, using the well-known elementary relation
(See [2])

det(A) = λ1λ2,

where each λi for 1 ≤ i ≤ 2 is an eigenvalue of A. This is a description characteristic
of very rare class of matrices of which balanced matrices is a sub-class.

Balanced matrices are very important theoretically and could have real use ap-
plication in areas of applied mathematics. The simple and the most basic example
of a fully-balanced matrix, as we have seen, is the identity matrix. The determi-
nant of this matrix is always 1. This gives us a clue of the distribution of balanced
matrices.

Remark 4.2. Henceforth, when we say a balanced matrix it will imply a fully-
balanced matrix. Otherwise, we will specify the context of balanced matrix.

Eigenvalues and eigenvectors are extremely important statistics in the study of
matrices. Knowing these two for any matrix can be useful in practice. The quest to
find an eigenvalue-value and, hence, eigenvector features very often in other various
applied areas such as physics. The next result helps us to predict upto a smaller
error eigenvalues and hence eigenvectors of balanced matrices, without having to
undergo the traditional procedure. This result relates the sums and differences of
the entries of balanced matrices to the least and worst eigenvalue for 2×2 balanced
matrices. It will be great to extend this result to matrices of higher orders. But for
the time being we content ourselves with the following:

Theorem 4.3. Let A ∈ B2(R+), the spaces of 2 × 2 balanced matrices with each
aij ≥ 1. If M = {|λ1|, |λ2|} is the set of eigen-values of A, then

2∑
r=1

ai·r ≈
2∑
s=1

as·j ≈ max(M)

for 1 ≤ s, r ≤ 2 and

|ai·1 − ai·2| ≈ |a1·j − a2·j | ≈ min(M)

where 1 ≤ i, j ≤ 2.

Proof. Consider the fully-balanced matrix

A =

(
a b
c d

)
.

Then by recalling the well-known elementary relation (See [2])

det(B) = (−1)nλ1λ2 · · ·λn

λ1 + λ2 + · · ·+ λn = Tr(B)
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for any matrix B, we can write

det(A) = λ1λ2

= ad− bc
≈ a2 − b2.(4.1)

Since Tr(A) = λ1 + λ2, then it follows that |a − b| ≈ |λ1| and a + b ≈ |λ2| or
vice-versa. Similarly we can write

det(A) = λ1λ2

= ad− bc
≈ d2 − c2.(4.2)

Again using the relation Tr(A) = λ1 + λ2, then it follows that |c − d| ≈ |λ1| and
c+ d ≈ |λ2| or vice-versa. Again it follows that

det(A) = λ1λ2

= ad− bc
≈ a2 − c2.(4.3)

Using the relation Tr(A) = λ1+λ2, then it follows that |a−c| ≈ |λ1| and a+c ≈ |λ2|
or vice-versa. Also, we have

det(A) = λ1λ2

= ad− bc
≈ d2 − b2(4.4)

and it follows that |b − d| ≈ |λ1| and b + d ≈ λ2 or vice-versa, by using the
relation Tr(A) = λ1 + λ2. Without loss of generality, we let λ2 = max(M) and
min(M) = λ1. Then it follows that b+ d ≈ a+ c ≈ a+ b ≈ c+ d ≈ λ2 = max(M)
and |b− d| ≈ |a− c| ≈ |c− d| ≈ |a− b| ≈ λ1 = min(M). For suppose b+ d ≈ |b− d|,
then it follows that either d ≈ 0 or b ≈ 0, which contradicts the minimality of each
of the aij ’s. Similarly, let us suppose that b+ d ≈ |a− c|. Then it follows that

b+ d ≈ a− c
≈ d− c

and we have that b ≈ −c if and only if c ≈ 0, which violates the minimality of aij
for 1 ≤ i, j ≤ 2. Also in the case where b+ d = −(a− c), then it follows that d ≈ 0,
which is a contradiction. Again if b+ d ≈ |c− d|, then we see that

b+ d ≈ c− d
≈ b− d

and it follows that d ≈ 0. On the other hand, we will have that c ≈ 0, both of
which contradicts the minimality of aij . Thus by leveraging the fact thatA is fully-
balanced, in a similar manner for other cases the result follows immediately. �

Corollary 4.1. Let A1, A2 ∈ B2(R+) with aij ≥ 1 and let Emax(A1) denotes the
maximum eigen-value of A1. Then

Emax(A1 +A2) ≈ Emax(A1) + Emax(A2).
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Proof. Consider the 2× 2 fully-balanced matrices given by

A1 :=

(
a1 b1
c1 d1

)
and A2 :=

(
a2 b2
c2 d2

)
.

Then by Theorem 3.1, their sum

A1 +A2 =

(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)
is also fully-balanced. By Theorem 4.3, Emax(A1 +A2) ≈ b1 + b2 +d1 +d2, and the
result follows immediately. �

Remark 4.4. Before we state the next result, we review the following terminologies
concerning matrices in general.

Definition 4.5. By a block n×m matrix, we mean any matrix of the form

A =


C11 C12 · · · C1n

C21 C22 · · · C2n

...
Cm1 Cm2 · · · Cmn

 ,

and where each Cij is a sub-matrix of A for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition 4.6. Let A ∈Mm×n(R) given by

A :=


a1·1 a1·2 · · · a1·n
a2·1 a2·2 · · · a2·n

...

am·1 am·2
. . . am·n

 .

Then we say a matrix B is an interior of A if it is a sub-matrix of A.

Conjecture 4.1. Let A ∈ Bn(R), the space of square balanced-matrices. Then
there exist some interior of A that is also balanced.

Remark 4.7. By thinking of a matrix as a system, Conjecture 4.1 roughly speaking
conveys the notion that, if a bigger system is balanced, then there must be a sub-
system that is also balanced.

5. Discrepancies of fully-balanced matrices

In this section, in the spirit of proving some weaker versions of Conjecture 4.1
we introduce the notion of discrepancy of fully-balanced matrices. It turns out that
Conjecture 4.1 is somewhat easier to attack in this setting.

Definition 5.1. Let A ∈ Mn×m(R). Then by the discrepancy of the matrix A
along rows, we mean the value

m∑
j=1

aij .

Similarly, by the discrepancy along columns, we mean the value
n∑
i=1

aij .
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Definition 5.2. Let A ∈Mm×n(R) and let

Mi =
1

m

m∑
j=1

aij .

Then we say the discrepancy is fair along rows if for each 1 ≤ i ≤ m then |Mi−aij | <
ε for all 1 ≤ j ≤ m, where ε > 0 is small.

The discrepancy is unfair along rows if for some aij (j = 1, 2 . . .m), there exist
some n0 such that

|M − aij | > N

for all N ≥ n0.

Remark 5.3. Next we prove some few propositions concerning fully-balanced ma-
trices, in the context of discrepancy.

Theorem 5.4. Let A ∈ B2×2(R+), the space of fully-balanced 2×2 matrices. Then
A has a fair discrepancy along rows if and only if it has a fair discrepancy along
columns.

Proof. Let A ∈ B2×2(R+) and suppose A has a fair discrepancy along rows. Then
it follows that for each 1 ≤ i ≤ 2

|Mi − aij | < ε

for small arbitrary ε > 0 and for all 1 ≤ j ≤ 2. This implies that |M1 − a1j | < ε
and hence a11 ≈ a12 and |M2 − a2j | < ε for ε > 0 and hence a21 ≈ a22. Since A is
fully-balanced, it follows that a11 ≈ a22 and a21 ≈ a12. It follows that A must have
a fair discrepancy along columns. The converse, on the other hand, follows similar
approach. �

Proposition 5.1. Let A ∈ B2×2(R+). If A has a fair discrepancy on exactly one
row, then it must have fair discrepancy on rows.

Proof. Specify A ∈ B2×2(R+) given by

A :=

(
a b
c d

)
.

Suppose A has a fair discrepancy along exactly one row. Without loss of generality,
let us assume the fair discrepancy occurs on the first row, then by Theorem 5.4, it
must be that a ≈ b. Since A is fully-balanced, Theorem 3.1 tells us that a ≈ b ≈
c ≈ d. This implies that A has a fair discrepancy on rows, and the proof of the
proposition is complete. �

Conjecture 5.1. Let ε > 0 and let A ∈Mn×m(R) be a fully balanced matrix. The
average discrepancy along rows is given by

M =
1

m

m∑
j=1

aij .

If

|Mi − aij | < ε

for a fixed 1 ≤ i ≤ n, then |Mi − aij | < ε for all 1 ≤ i ≤ n.
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Remark 5.5. Conjecture 5.1 tells us that if the discrepancy of a fully-balanced
matrix along a given row is fair, then it must be fair on all other rows. In other
words, a fair discrepancy on a given row is propagated to all other rows.

In general the determinant of matrices is not an approximate homomorphism.
That is, the determinant of the sums of matrices may not have the same distribution
as the sum of each determinant. These two statistics may be close to each other
and could very well be far from each other. Here is where the concept of balanced
matrices plays an important role. Given k distinct matrices, we say the determinant
is an approximate homomorphism if the relation holds:

det

( n∑
k=1

Ak

)
≈

n∑
k=1

det(Ak).

The next result clarifies and gives a more formal context to the ensuing discussion.

Theorem 5.6. Let A,B ∈ B2(R+), where B2(R+) is the space of 2 × 2 balanced-
matrices with aij ≥ 1 and bij ≥ 1. Let M = {|λ1|, |λ2|} be the spectrum of A. If
min(M) ≈ 0 and B has a fair discrepancy along rows or columns, then

det(A+B) ≈ det(A) + det(B).

Proof. Consider the 2× 2 fully-balanced matrices

A =

(
a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
.

Then, by Theorem 3.1 we have the fully-balanced matrix

A+B :=

(
a1 + b1 a2 + b2
a3 + b3 a4 + b4

)
.

It follows that

det(A+B) = (a1 + b1)(a4 + b4)− (a2 + b2)(a3 + b3)

= (a1a4 − a2a3) + (b1b4 − b2b3) + (a1b4 + b1a4 − a2b3 − b2a3)

≈ det(A) + det(B) + 2(b1a1 − a2b2)

≈ det(A) + det(B) + 2b1(a1 − a2)

where we have utilized the fact that A and B are fully-balanced matrices, and that
B has a fair discrepancy along rows or columns. By using the fact that min(M) ≈ 0,
then the result follows from Theorem 4.3. �

Remark 5.7. Theorem 5.6 tells us that the determinant can be made an approximate
homomorphism on any two fully-balanced matrices of not-too-small entries, by
making the least element in the spectrum of one matrix negligible and avoiding
outliers in the entries and rows of the second.

Conjecture 5.2. Let A,B ∈ Bn(R+), where Bn(R+) is the space of n×n balanced-
matrices with aij ≥ 1 and bij ≥ 1. Let M = {|λ1|, |λ2|, . . . , |λn|} be the spectrum
of A. If min(M) ≈ 0 and B has a fair discrepancy along rows or columns, then

det(A+B) ≈ det(A) + det(B).
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6. Quadratic forms associated with balanced matrices

In this section we examine various forms associated with balanced matrices. For
the time being we study the quadratic forms associated with fully-balanced 2 × 2
matrices. We review therefore the following definitions.

Definition 6.1. Let

A :=

(
a b
c d

)
be any symmetric matrix. Then by the quadratic form of A, we mean any expression
of the form

F (x, y) := ax2 + 2bxy + dy2.

Let

A =

(
a b
c d

)
be a fully-balanced symmetric matrix. Then the associated quadratic form can be
written as

F (x, y) := ax2 + 2bxy + dy2

≈ a(x2 + y2) + 2bxy

≈ a(x+ y)2 + 2(b− a)xy.

By using Theorem 4.3, we can write

F (x, y) :≈ a(x+ y)2 + 2(b− a)xy.

≈
(
λ2 − |λ1|

2

)
(x+ y)2 + 2|λ1|xy

if b > a. Similarly if b < a, then the quadratic form looks a lot like

F (x, y) = ax2 + 2bxy + dy2

≈
(
λ2 + |λ1|

2

)
(x+ y)2 − 2|λ1|xy,

where λ2 and λ1 are the worst and the least eigenvalues of A respectively. More
formally we launch a proposition concerning the quadratic forms associated with
2× 2 fully-balanced symmetric matrices.

Proposition 6.1. Let A be a fully-balanced 2 × 2 symmetric matrix, such that
aij ≥ 1 for 1 ≤ i, j ≤ 2. Let N := {|λ1|, |λ2|} be the spectrum of A, and where
max(N ) = |λ2| and min(N ) = |λ1|. Then one of the following is an approximation
of the quadratic form of A

F (x, y) :≈
(
λ2 − |λ1|

2

)
(x+ y)2 + 2|λ1|xy

or

F (x, y) :≈
(
λ2 + |λ1|

2

)
(x+ y)2 − 2|λ1|xy.

Proof. The result follows from the ensuing discussion concerning quadratic forms
of fully-balanced matrices. �
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Remark 6.2. Proposition 6.1 tells us that we do not necessarily need the entries of
a 2× 2 symmetric fully-balanced matrices to compute the values of their quadratic
forms. Given the eigenvalues of A, we can with some precision predict the quadratic
form of any fully-balanced 2× 2 symmetric matrices, without knowing the entries.

7. Further remarks

In this paper we have introduced the concept of balanced matrices, where we
studied various matrix statistics underlying this concept. Much emphasis was
placed on 2 × 2 fully-balanced matrices. This is just the beginning of a series
of papers regarding this concept. There is much optimistic work in progress to
extend these results for lower order square matrices to matrices of higher orders.
Another quest, in the not too distant future, will be to find if there really exist
some bit of interaction between this class of matrices and matrices in general. This
could provide a new window through which to study matrix theory.
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