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1. INTRODUCTION

Vague sets are regarded as a special case of context-dependent fuzzy sets. Initially, vague set
theory was first investigated by Gau and Buehrer |25] which is an extension of fuzzy set theory. In
order to handle the indeterminate and inconsistent information, the neutrosophic set is introduced
by Florentin Smarandache and has been studied extensively (see |5] - [24]). Neutrosophic set and
related notions have shown applications in many different fields. In the definition of neutrosophic set,
the indeterminacy value is quantified explicitly and truth-membership, indeterminacy membership,
and false-membership are defined completely independent, if the sum of these values lies between
0 and 3. Neutrosophic vague set is introduced in [6]. Al-Quran and Hassan in [2] introduced the
concept of neutrosophic vague soft expert set as a combination of neutrosophic vague set and soft

expert set in order to improve the reasonability of decision making in reality. Neutrosophic vague
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graphs are investigated in [16]. Motivated by papers [6,|16], we introduce the concept of operations
on neutrosophic vague graphs. The major contributions of this work are as follows:

e Operations on neutrosophic vague graphs are established.

e Cartesian product, cross product, lexicographic product, strong product and composition of

neutrosophic vague graph are explained with examples.

2. PRELIMINARIES

Definition 2.1. [25] A vague set A on a non empty set X is a pair (Ta, Fa), where Ty : X — [0,1]

and Fa : X — [0, 1]are true membership and false membership functions, respectively, such that
0<Ta(x)+ Faly) <1 for any x € X.

Let X and Y be two non-empty sets. A vague relation R of X toY is a vague set R on X XY that

is R= (Tg, FRr), where Tg : X xY — [0,1], Fg : X x Y — [0,1] and satisfy the condition:

0 < Tr(z,y) + Fr(e,y) <1 for any o € X.

Definition 2.2. [7/ Let G* = (V, E) be a graph. A pair G = (J,K) is called a vague graph on G*,
where J = (T, Fy) is a vague set on'V and K = (T, Fk) is a vague set on E CV x V such that

for each zy € E,

Ti(wy) < min(Ty(x), Ty (y)) and Fic(ay) > max(Ts(x), Fs(y)).

Definition 2.3. [17] A Neutrosophic set A is contained in another neutrosophic set B, (i.e) A C B

ifVe € X, Ta(z) <Tp(x),la(x) > Ig(x)and Fa(z) > Fp(z).

Definition 2.4. [11,|17] Let X be a space of points (objects), with a generic elements in X denoted
by x. A single valued neutrosophic set A in X is characterised by truth-membership function Ta(x),
indeterminacy-membership function I4(x) and falsity-membership-function Fa(x),

For each point x in X, Ta(z), Fa(x), La(x) € [0,1]. Also

A={z,Ta(x),Fa(x),Ia(z)} and 0 < Ta(z) + La(x) + Fa(z) < 3.

Definition 2.5. [1,/22] A neutrosophic graph is defined as a pair G* = (V, E) where
(i) V = {v1,v9,.,0,} such that Ty =V — [0,1], ; =V — [0,1] and F;, =V — [0,1] denote
the degree of truth-membership function, indeterminacy function and falsity-membership function,

respectively and

0< Tl(’l)) +Il(v) +F1(U) <3
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(ii) ECV xV where Ty = E — [0,1], I = E — [0,1] and F, = E — [0, 1] are such that

Ty(w) < min{Ty(u), T1(v)},
Ir(uwv) < min{/y (u), 11 (v)},
Fy(uv) < max{Fi(u), F1(v)},
and 0 < Ty(uv) + I (uwv) + Fy(uv) < 3, Yuv € E

Definition 2.6. [6] A neutrosophic vague set Ayy (NVS in short) on the universe of discourse X

written as
Anv = {<$7TANV(x)7fANv(x)7FANv(x»vm € X}

whose truth-membership, indeterminacy membership and falsity-membership function is defined as
TANV (.’E) = [Tﬁ (1[,’), T+(£E)], jANV (:L’) = [Ii ((E), I+(£L')} and FANV (.’E) = [Fi(x)v F+(.’E)],
where TT(z) =1—F (z),Ft(z)=1-T"(x), and 0 < T (z) + I (x) + F~(z) < 2.
Definition 2.7. [6] The complement of NVS Any is denoted by AS;y and it is defined by
Ty (@) = 1= T%(2),1 - T ()],
IS, (@) =[1—I't(z),1 - I (x)],
FS,, (2) =[1—F*(z),1 - F ()],
Definition 2.8. [6] Let Ayy and Byy be two NVSs of the universe U. If for all u; € U,

TANV (ul) < TBNV (ul)v jANV (ul) > fBNV (ui)’FANV (ul) > FBNV (ul)

then the NVS, Anvy are included in Byy, denoted by Ay C Byy where 1 < i < n.

Definition 2.9. [6/ The union of two NVSs Axy and Byy is a NVSs, Cny, written as Cyy = AnyU
Bpnv, whose truth membership function, indeterminacy-membership function and false-membership

function are related to those of Any and Byy by
Towy (2) = [max(Ty,,, (), T, (@), max(T5, (2), T3, ()]

Ieyy (2) = [min(Ly (2), 15, (@) min(I} (@), 15 (2))]

Feyy (2) = min(Fy, | (2), Fg,,, (@), min(Ff (2), Ff, ()]
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Definition 2.10. [6/ The intersection of two NVSs, Axy and Byy is a NVSs Cny, written as

Cnv = AyvN By, whose truth-membership function, indeterminacy-membership function and false-

membership function are related to those of Anyv and By by

Ty (@) = min(Ty (@), Tg,, (@), min(TH | (2), T, (2))]
fCNv(x) = [maX(IZNV (x)7I]§NV (x))’maX(IXNV (x)vlng (.13))]

F, (@)]

FCNV (:C) = [maX(F,ZNV (1‘), FJENV (I))vmaX(FXNV (JC), Byv

Definition 2.11. [16] Let G* =

(R, S) be a graph. A pair G = (A, B) is called a neutrosophic vague
graph (NVG) on G* or a neutrosophic vague graph where A = (TA,fA,FA) s a neutrosophic vague

set on R and B = (T37f37 F‘B) s a neutrosophic vague set S C R X R where

(1)R = {v1,v2, ..., vn} such that T : R —[0,1],1, : R — [0,1], F, : R — [0, 1] which satisfies the
condition Fy =[1 —T%]

Tr:R—[0,1,IF : R—[0,1], Ff : R — [0,1] which satisfies the condition Ff = [1 —T]

denotes the degree of truth membership function, indeterminacy membership and falsity membership

of the element v; € R, and
0<Ty(vi)+I4(v)+Fy(v) <2

(2) S C R x R where
Tp; :RxR—[0,1,I5: RxR—[0,1,F; : Rx R—[0,1]

T4 :Rx R—[0,1,I5 : Rx R—[0,1,F} : Rx R — [0,1]
denotes the degree of truth membership function, indeterminacy membership and falsity membership
of the element v;,v; € S, respectively and such that,

0 < Tg (vivy) + 15 (vivy) + Fg (viv;) <2

0< Tg(vﬂ}j) + Ig(’l)i’l)j) + Fg(vﬂ}j) <2,
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such that

Ty (vivy) < min{T (v;), Ty (vj)}
I (viv;) < min{l (vi), [ (v;)}

Fp (viv;) < max{F (v;), Fy (v;)},
and similarly

TF (viv;) < min{T5 (v;), T4 (v;)}
I (vivy) < minf{If (vs), I (vy)}

Fp (vivj) < max{F} (v;), F (v5)}.

Example 2.1. Consider a neutrosophic vague graph G = (R, S) such that A = {a,b,c} and B =
{ab,bec, ca} are defined by

a = T10.5,0.6], I[0.4,0.3], F[0.4,0.5], b =T[0.4,0.6], 1[0.7,0.3], F[0.4, 0.6],

¢ =1T10.4,0.4], I[0.5,0.3], F[0.6,0.6]

a” =(0.5,04,0.4),b- = (0.4,0.7,0.4),¢~ = (0.4,0.5,0.6)

a™ =(0.6,0.3,0.5),b" = (0.6,0.3,0.6),c" = (0.4,0.3,0.6)

(05,0.4,04)”
(0.6,0.3,0.5)*
a

5
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c - +
_ (0.40.6,06)7(0.4,0.2,05) R
{0.4,05,0.6) (04,07,0.4)

©.4,03,06)" (0.6,0.3,0.6)"

Figurel NEUTROSOPHIC VAGUE GRAPH
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3. OPERATIONS ON NEUTROSOPHIC VAGUE GRAPHS

Definition 3.1. The Cartesian product of two NVGs G1 and Gs is denoted by the pair G1 x Go =
(R X Ro, 51 x S2) and defined as

Ty, (K1) = T, (R) AT, (1)
Layxa, (RU) = Ty, (R) AT (1)
Fywa, (R = Fy (k) V FL (1)
T3, a, (k1) = T, (k) AT, (D)
I3, e, (K1) = T3 (k) AT (D)
F o, (kD) = Fj (k) vV F3 (1)

for all (k,1) € Ry x Rs.

The membership value of the edges in G1 X G2 can be calculated as,

(1)T§1><B2 (k‘ll)(k}lg) = Tgl (ki) A\ Téz (lllg)

Tf, g, () (Klo) = T (k) VTS (hla),

(2)1 5, « g, (k) (kl2) = Iy (k) N g, (ll2)

If g, (KL (Kl) = I (k) Vv I (Iils),

(3)F'g, B, (kl1)(Kl2) = Fy (k) V Fg, (l1l2)

Fy,

1X Ba

(kl)(kl2) = F3 (k) A Fp (lhl2),
fO?” all k € Rl,l1lg € Ss.
()T, g, (k1) (kol) = Ty, (1) A T, (k1 ko)

Ty,

1X B2

(k‘ll)(kgl) = Tj{z (l) V T]Jgrz (k’lkg),

(O g, w g, (k1) (kal) = Iy, (1) A g, (K1 k2)
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I,y (k) (kal) = I3, (1) V I (ki ),

1X B2

(6)F'g, g, (k1l)(kol) = F (1) V F, (k1k2)

Fiy g, (ki) (kal) = F (1) A Fi (aks),
fO’I“ all kike € S1,1 € R».

Example 3.1. Consider G1 = (R1,S1) and Gy = (R2, S2) are two NVGs of G = (R, S) , as repre-
sented in Figure 2, now we get G1 X Go as follows Figure 3.

k1 = T[0.5,0.6], I[0.6,0.4], F[0.4,0.5], ky = T[0.4,0.6], I[0.7,0.3], F[0.4, 0.6],

ks = T[0.6,0.4], I[0.3,0.7], F[0.6,0.4] ks = T[0.4,0.4], I[0.4,0.6], F[0.6, 0.6]

I, = T[0.4,0.4], I[0.5,0.3], F[0.6,0.6], 1y = T[0.5,0.6], I[0.4, 0.3], F[0.4,0.5],

I3 = T[0.4,0.6], I[0.7,0.3], F[0.4, 0.6]

kT = (0.5,0.6,0.4), k5 = (0.4,0.7,0.4), k3 = (0.6,0.3,0.6),k; = (0.4,0.4,0.6)

ki =(0.6,0.4,0.5), k5 = (0.6,0.3,0.6), k5 = (0.4,0.7,0.4),k; = (0.4,0.6,0.6)

I7 = (0.4,0.5,0.6),1; = (05,0.4,0.4),15 = (0.4,0.7,0.4)

I =(0.4,0.3,0.6),1 = (0.6,0.3,0.5),15 = (0.6,0.3,0.6)
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(0.5,0.6,0.4)- (0.4,0.5,0.3),(0.5,0.2,0.5)" (0.4,0.7,0.4)-
(0.6,0.4,0.5)* (0.6,0.3,0.6)*
ky k,

"
(0.6.0.3.0.6)- 0.3,02,0.5),(03,05,0.4) (0.4.0.4,0.6)-
(0.4.0.7.0.4)" ks 1(0.4,0.6,0.6)"
(0.5,0.4,0.4)" (0.6,0.3,0.5)*

(0.4,05,0.6)" (0.4,0.3,0.6)* (04,07,04)" (0.603,06)"

Figure?2
NEUTROSOPHIC VAGUE GRAPH

Theorem 3.2. The Cartesian product G1 X G = (Ry X R2, 51 X S2) of two NVG G and G2 also
an NVG of Gy x Gs.

Proof. We consider,

Case 1: for k € R17l1l2 S SQ,

T, x5y (k) (Kl2)) = Ta, (k) A T, (1112)

IN

Toay (k) A [T (1) A Tay (12)]
= [T, (k) A Tay (W] A [Ty (k) A Ty (12)]

= Tiayxcan) (ko 1) ATy a0y (K, 1)

1By x5y (K1) (Kl2)) = La, (K) A Ip, (I1ls)
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{0.5,0.4,0.4)” (0.4,04,04) (0.4,0.7,0.4)”
{0.6,0.3,0.5)* 06,03,06)" (0.6,0.3,0.6)"
s kyl, kI,
(0.4,0.4,0.4) (0.5,0.2,0.5)" (0.3,0.4,0.4)” (0.5,0.3,0.6)"

{0.3,0.3,05)
{0.4,0.3,0.6)"

{0'5'0'30‘6)‘

&
b
o>
(w)
g ’
- ‘ {0.4,0.5,0.6)" ¥
(=)
ki - 2higaos0e [ =
{0.4,0.5,0.6) {0.4,05,0.6) (0.4,0.2,0.6)* S
..... S
{0.4,03,0.6)%
{0.4,0.6,04)
{0.6,0.3,0.6)"
k ll 3
0.5,0.3,0.6)" _ i
:o 4030 5;+ {0.4,0.4,0.6) {0.4,0.4,0.6)
o {0.4,03,0.6)" {0.4,0.3,0.6)"
kil koi, s
{0.3,0.2,0.5) {0.3,0.3,05)" {0.3,0.4,0.6) (0.4,0.3,0.6)"
{0.3,0.3,0.6) +
&
{0.4,03,0.6)" S
m
o
5
{0.4,0.4,06)" iy
k.l + td
ks, 41 (0.4,0.3,0.6) S
_ (03,0.2,06) {0.3,03,086)" ”g,
{0.4,0.3,0.6) 3
(0.4,03,0.6)”
0.4,0.3,0.6)"
kL, )

{0.4,0.3,0.6)*

Figure3
CARTESIAN PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

< jAl (k) A [jAQ (ll) A jAQ (ZQ)]
= [T, (k) A Ly (1)) A [La, (k) A Tay (1))

= Teayxcan) (ko ln) Aoy sy (kolo)

F(Byxpy) (k1) (Kl2)) = Fa, (k) V Fg, (Iil2)
Fa, (k) V [Fay(l) V Fa, (Io)]

IN
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= [Fa, (k) V Fa, ()] V [Fa, (k) V Fa, (I2)]
= Flayxan (b, 11) V Fray sy (b, 1)

for all kly, kls € G1 x Gs.

Case 2: for k € Ro,l1ls € 5.

T, x5y (1K) (12k)) = Ta, (k) A T, (1112)

IN

Tay (k) A [Ty (h) AT, (I2)]
= [TA2 (k) A TAI (ll)] A [TAQ (k) A TAI (12)]

= Tiayxan) (1, k) AT, a0y (2, K)

I, x B (LK) (I2k)) = Ta, (k) A I, (I112)
< Tay (k) A [La, (1) A g, (1))
= [Tay (k) A La, ()] A [Tay (k) A L, (12)]

= Tiayxan) (11, k) A T4, xay) (12, k)

Fpy x5y (LK) (I2k)) = Fa, (k) V Fp, (Ll2)

IN

Fay (k) V [Fa, () V Fa, (I2)]
= [FAQ (k‘) \% FA1 (ll)] \ [FAQ (k') v FAI (ZQ)}
= PA’(AIXAQ)(ll, k‘) \ F(Alez)(ZQv k)

for all 1k, Ik € G1 X G2 and hence the proof.

Definition 3.3. The Cross product of two NVGs G1 and G5 is denoted by the pair G1 X Gy =
(R X R, 51 x S2) and is defined as

(T4, xa, (K1) = T, (k) ATy, (1)
Ly e, (KU = Iy, (k) AT, (1)

Fywa, (R = Fy (k) V Fy (1)
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+ _ o+ +
Ty, xa, (kL) = T4, (k) ATy, (1)

I3, a, (k1) = I, (k) AT, (1)

Fiwa, (k) = Fi (k) V F4, (1)
for all k,l € Ry X Rs.

(1) T g, gy (k1l) (kalz) = T, (k1k2) AT, (Ial2)
1@1x32)(k111)(k212) = I (kika) A I, (l112)
Fp xpyy (k1) (kalz) = F (k1ka) V F, (lhl2)
(iii)T('E,l xBQ)(klll)(]‘élQ) = Tgl (k1ka) A T§2 (lhls)
I,y (1l (kalz) = If (kika) AT, (1)

F ey () (Ralo) = Ff (kika) v F, (Lils)
fOT all kiky € Sl,l1l2 € Ss.

Example 3.2. Consider G; = (R1,51) and Go = (Ra,S2) as two NVG of G = (R, S) respectively,

(see Figure 2). We obtain the cross product of G1 X Ga as follows (see Figure /).

- _ (0.4,03,06) - (0.4,04,04)
040506) 10604 (0.40208) . (0.404,06) .
. (04060 {0.4,0.3,0.6) + [0.603,08)
(040306)" 0 -0t (040308) {0.4,0.3,06)
o4 10803 kol Ky,
" k 4 l]
o~ -
g . f x
v i 2
S o N
N 3 S
& A s N
y 1
'S 0‘? in QQ
] wv o o
o n)c\, o %Q‘.
& S g_ S
o
k.1, il ) = -
0504,04)" sy {0.4,0.7,0.4) Ay
060305 (050308 (060308" kaly b o
(0.4,0.3,05)" (0.40406) (040506) (0403,06)"
+
(0.203,06)" (040306) (040306)"
Figure4

CROSS PRODUCT OF NEUTROSOPHIC VAGUE GRAPH
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Theorem 3.4. The cross product G1 x Ga = (R1 X Rg,S1 X S3) of two NVG of NVG G and G is
an NVG of G1 x Gs.

P?”OOf. For all klll, kols € G1 X Gy

T8, x 52y ((k1l1) (kal2)) = T, (k1k2) A T, (lal2)
< [Ty (k1) AT, (k)] A [Tay (1) A Tay (12)]
= [T, (k1) ATay (1)) A [T, (k2) A Tay (1))

= T(Alez)(lﬁll) A T(Aleg)(kz, l2)

L5, x 3oy (k1) (kala)) = I, (kika) A L, (Lila)
< [jAl (kl) A fAl (kQ)] A [jAz (ll) A fAz (12)]
= [jA1 (kl) N jA2 (ll)] A [jAl (kQ) A jAz (12)]

= Teayxcan) (k1ln) Ada, xay) (K2, 1)

F(pyx sy ((k1l1) (kala)) = Fp, (kika) V Fp, (I1ls)
< [Fa, (k1) V Fa, (k2)] V [Fay (1) V Fa, (1))
= [Fa, (k1) V Fa, (1)) V [Fa, (k2) V Fa, (12)]

= Fla,xan (ki) V Fia,xay) (K2, 12)

This completes the proof. O

Definition 3.5. The lexicographic product of two NVGs G1 and G5 is denoted by the pair G, e Gg =
(R1 ® Ry, 51 0 53) and defined as

(DT 4y enq) (K1) = Ty, (k) AT, (1)

I ayeny) (R = Ty, (k) AT, (1)
Flayean (KD = Fi, (k) V Fy, (D)
T4 enn (K1) = T, (k) AT, (D)

Iy engy () = I3 (k) AT (D)
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Flyony (K1) = F4 (k) vV F (),
for all kl € Ry x Ry
(1)1 5, e, (K1) (Kl2) = Ty (k) AT, (lal2)

I, emy (KL (kl2) = I3, (k) A T, (L)

F(_BloBg)(kll)(kl2) = F, (k) Vv Fg, (l1l2)
T(J%l.Bz)(kll)(kh) = TXl(k) A T§2 (lil2)
1331.32)(k11>(kl2) = If (k) AT (L)

Fy oy (KL (Kl2) = Fj (k) V Fy (1),
fO’f‘ all k € Rl,lllg € Ss.

(0T, o3,y (K1) (kal) = T, (kik) A T, (lala)
I, upy (k1) (kalo) = I, (kiks) A T, (1al)
Fipapy (1l (kalz) = Fg (kik) V Fp, (1aly)

T+

(BlOBz)(klll)(kZIZ) = Tgl (klkg) A T;; (lllg)

I&I.Bz)(klll)<k2l2) = I§1 (klkg) A Igz (lllg)

F(‘E,I.Bz)(klll)(kglg) = Fgl (k1ko) V F§2 (lhla),
fO’f‘ all k1ks € 51,1112 € Ss.
Example 3.3. The lexicographic product of NVG G1 = (S1,T1) and Gy = (S2,T») shown in Figure
2 is defined as G1 @ Go = (S1 @ So, T} ¢ T) and is presented in Figure 5.
Theorem 3.6. The lexicographic product G, @ Go = (R; ® Ry, 51 @ S3) of two NVG of NVG G1 and
Gs is an NVG of G1 e Gs.

Proof. We have two cases.

Case 1: For k € Ry,l1ly € S,

T(Brepa) (k1) (Kl2)) = Ta, (k) A T, (I1l)



14

N. Durga, S. Satham Hussain, Saeid Jafari and Said Broumi

{0.4,05,0.6)" (04,05,06) (0.4,0.4,0.4)
4,03,06* (04,0.3,06)" (0.6,03,06)
I8 koL, k1
0 r 2
N =
) ®
5 o
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LEXICOGRAPHIC PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

< TAI (k) A [TAz (ll) A TAz (12)]
= [TAI (k> A TAz (ll)] A [TAI (k) A TAz (lQ)]

= Tiayenn (b, 11) AT A eny) (K. l2)

1,08, ((Kl1) (kl2)) = 1a, (k) A g, (l112)

< Ta, (k) A [Tay (1) A La,(lo)]



Operations on Neutrosophic Vague Graphs
= [La, (k) A Lag (1)) A [Ta, (k) A Lay (1))

= Iiayenn) (k1) A 4,0y (K, 12)

F(prepy) (k1) (Kl2)) = Fa, (k) V Fp, (I1l)

IN

Fu (k) V [Fa, (1) V Fa, (I2)]
= [Fa, (k) V Fay (10)] V [Fay (k) V Fay (1))
= F(A10A2)<k’ ll) \ F(AIOAQ)(k7 l2)

for all kly, kls € S1 X Ss.

Case 2: For all k1ly € Sy, kals € 5o,

T(,05.) ((k1l1) (kala)) = T, (krk2) A T, (Ll2)
< [Ta, (k1) AT, (k)] A [Tay (1) AT, (Io)]
= [Ta, (k1) A Ta, (10)] A [Ta, (k2) A Ta, (I2)]

= Tia,0n) (k1l1) A T a0, (Ko, l2)

I(,082) ((k1ly) (kal2)) = I, (k1k2) A I, (lals)
< [La, (k1) A Ta, (k)] A [Ta, (1) A T, (Io)]
= [La, (k1) A Lay ()] A [La, (ko) A Lay (1))

= T(ayenn) (k1ly) A Liayey (K2, l2)

F(pyepy)((k1l)(k2l2)) = Fp, (kika) V Fp, (1112)
< [Fa, (k1) V Ea, (k)] V [Fay (1) V Fa, (I2)]
= [FAI (kl) \ FA2 (ll)] \ [FAI (kQ) \ FA2 (ZQ)]

= F(AI.A2)(klll) \ F(Al.Ag)(k27 l2)

for all k’l,h € kg,lz S R1 (] RQ.

15
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Definition 3.7. The strong product of two NVG G1 and Gy is denoted by the pair G1 K Gy =
(R X Ry, 51 W Ss) and defined as

()T a s amy (k1) = Ty, (k) A T (1)
1 many (K1) = T3, (k) A T (1)
Flaman (K1) = Fa, (k) V F, (1)
T3 man (K1) = T, (k) AT, ()

Ity g () = IE (k) A TE, (1)

Flymany (KD = Fx (k) v F{ ()

for all kl € R X Ry

(i) T 3,0, (k1) (ki) = Tz, (k) A T, (1n o)
I, mpy) (Kl)(kl2) = Iy (k) A g, (Lils)

F g mp,) (k) (klz) = Fy (k) V Fg, (Lil)

Tl mp,) (R (klo) = T4 (k) AT, (o)
Il py (K1) (klo) = I, (k) AT, (1hla)

F@I&Bz)(kll)(%) = F (k) V Fg (1),

for all k € Ry,l1l3 € Ss.

(1#0) T, g5, (k1 1) (k) = Ty, (1) A T, (K )
I, s, (ki) al) = I, () A T, (K k)
g, () (kal) = Fi (1) V i, (kako)
T} s, (ki) (al) = T, (1) A T3, (ko)

13 s, (ka) (hal) = T, () A T, (R ko)

Fifap, (ki) (kal) = Ff (1) V Fg, (ki k),
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for all k1ky € S1,1 € Rs.

(Z"U)T(;glng)(klll)(k‘glg) = T§1 (kl k‘g) A\ ng (lllg)
I, () (slz) = I, (kiks) A T, (1al2)
Fip sy (b1l (hala) = F, (kika) V Fg, (i)

T+

By (1l (kala) = T, (kaka) AT, (1al)

Iy p,) (ki) (kalo) = If (kiko) A T, (lalo)

F+

(BllZlBg)(klll)(k2l2) = F;rl (k‘lkg) V ng(lllg)

for all k1ky € S1,11l € 5.
Example 3.4. The strong product of NVG G1 = (R1,51) and G2 = (Ra,S2) shown in Figure 2 is
defined as G1 R Go = (51 W Sy, Th KT5) and is presented in Figure 6.
Theorem 3.8. The strong product G1 X Gy = (R1 X Ry, 51X S2) of two NVG of NVG Gy and G4 is
a NVG OfGl @GQ
Proof. There are three cases:
Case 1: for k € Ry,l1ly € Sy,
T(p@py) (k) (k2)) = Ta, (k) A Tp, (Ll2)
< Ty (k) A [Ta, (1) A Ta, (I2)]
= [Ta, (k) AT, (1)) A [Ta, (k) A T, (I2)]

= Tia,ma,) (k1) AT a,04,) (K, 1)

Ip,gp.) (k) (kl2)) = La, (k) A g, (Iila)
< Lay (k) Ay (1) A Lay (12)]
= [La, (k) A Lay ()] A [T, (k) A ay (12)]

= Iay@ay) (k1) AL aymay) (ko)

Fipmps) (k1) (kl2)) = Fa, (k) V F, (I1l)
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STRONG PRODUCT NEUTROSOPHIC VAGUE GRAPH

< Fa

L(B)V [Eay () V Fay (I2))

= [Fz‘h (k) v FA2 (ll)] v [FAI (k) v FAQ (12)]

= Fla,ma0) (k1) V Fama,) (k1)
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for all kly, kls € Ry X R,.
Case 2: for k € Ro,l1ls € 5,

T(5,mp,) (k) (12k)) = Ta, (k) A T, (h12)
< Tay (k) A [Ta, () AT, (12)]
= [Ta, (k) A Ta, (1)) A [Tay (k) A Ta, (I2)]

= T(AIIZIAZ)(ZM k) A T(AlgAQ)(lm k)

Ig,mpy) (LK) (I2k)) = Ta, (k) A 1, (I112)
< jAz (k) A [jA1 (ll) A jAl (12)}
= [Ta, (k) A Lay ()] A [Lay (k) A La, (12)]

= Iia,map) (11, k) AT a,ma,) (2, k)

Fipmpa) (k) (I2k)) = Fa, (k) V Fp, (I1ls)

IN

o, (k) V [Fa, (1) V Fa, (I2)]
= [FA2 (k) Vv FAl(h)] \ [FAQ (k) Vv FAI (I2)]
= F(Aﬂz’Az)(h? k) V ﬁ(A1®A2)(12’ k)

for all llk,lgk S R1 X RQ.

Case 3: for ki1, ko € S1,11l2 € S5
T(pmp,) (k1l1) (kal2)) = T, (kika) AT, (Lil2)
< [T, (k1) ATa, (k)] A [Tay () A Tay (12)]

= [Ta, (k1) A Tay (L] A [Ta, (k2) A Tay (I2)]

= T(AIIZIAQ)(klll) A T(Alez)(k% l2)

I(g,mpy) (kaly) (kal2)) = Ip, (kiks) A g, (1112)

< [jAl (kl) N jAl (k2)] A [fAz (ll) A fAz (12)]

19
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= [La, (k1) ATy (1)) A [Ta, (R2) A T a, (1))

= Iay@ay) (k1l) A a,may) (ke 1)

Fipywpy) (ki) (kala)) = Fp, (kika) V Fp, (I1ls)
< [Fa, (k1) V Fa, (k2)] V [Fay () V Fa, (1))
= [FAI (kl) \4 FAZ (ll)] \ [FAI (kZ) \4 FAZ (12)]

= Fla,ma,) (ki) V Fa,ma,) (k2,12

for all I1k1,1lsk1 € R1 X Ry. Hence the proof.

Definition 3.9. The composition of two NVG Gy and Gy is denoted by the pair G1 o Gy = (R K

Rs, 51 053) and defined as

()T 4y onny (k) = T (k) AT, (1)
I3 0pmy (M) = T, (K) A T, (1)
Fpony (kD) = i, () V (1)
Tl oan(F) = T, (k) AT, (1)
IaloAz)wm = I3, (W) A TE, (1)

Fly ony (kD) = Fi (k) V Fy, (1)
for all kl € Ry o Rs.

(ii)T(;loBz)(kll)(k'lg) = TXI (k‘) A\ ng (1112)
Loy (K)(KL2) = I3, (6) A T, (hls)

oy (K1) (kl2) = Fi, (k) V Fp (Lil)

Tl oy (K1) (klo) = T (k) AT, (L)
I 0y (Rl (ko) = T (k) A I, (Ih2)

Fp,opy (k) (kl2) = F, (k) V Fg, (L),
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for all k € Ry,l1ly € Ss.

(149) 15, o g, (k11) (kal) = T, (1) A Ty, (K1ks2)
I o, (k1 D)(k2, 1) = I (1) A, (kik2)
Fp o, (k1 ) (ke 1) = Fy (1) V Fg, (kik2)
T30, (k1, 1) (k2,1) = T4, (1) A T, (ki ko)
I o, (k1 ) (2, 1) = T, (1) A IS (ko)

Ff g, (k1 D) (ke 1) = F (1) V F (kiks),
for all k1ky € S1,1 € Rs.

(10)T (g, o, (krl1) (kala) = T, (kika) ATy, (1) ATy, (I2)
I g o,y (Fil1)(kol2) = I (kika) ATy, (1) ATy, (l2)
Fipropy (kiln)(kalz) = Fig (kika) V Fy (L) V Fy, (I2)
T, (kil)(kalo) = Ty, (kaka) A TR, (1) AT, (I2)
Il opy) (il (kal2) = Iy (kika) AL (L) A T, (1)

+
FiB,0Ba)

(k‘lll)(kglg) = F1—3i_1 (k?lkig) \Y FZZ (ll) V FXZ (lg)

fOT‘ all k1ks € Sl,lllg € Ss.

Example 3.5. The composition of NVG G1 = (R1,51) and Go = (Rg,S2) shown in Figure 2 is
defined as G1 0 Go = (R1 0 Ry, 51 0.53) and is presented in Figure 7.

Theorem 3.10. Composition G1 o Go = (Ry 0 Re,S1 0 53) of two NVG of NVG Gy and Gy is an
NVG of Gy o Gs.

Proof. There are three cases: Case:1 For k € Rq,l1ls € Ss,

T(By0m,) (k1) (Kl2))T = Ta, (k) A T, (Iil2)
< Ta, (k) A [Ty (1) A Tay (12)]

= [T, (k) A Tay (W] A [Ta, (k) A Ty (I2)]



22

N. Durga, S. Satham Hussain, Saeid Jafari and Said Broumi

(0.4,0.5,0.6)” {0.5,0.4,0.4)" (0.4,0.6,0.4)”
(0.4,0.3,0.6)" 0.6,0.3,0.5)" - 0.6,0.3,0.6)"
Py ) R ¢ %11(: ) (0.3,0.4,0.4)"(0.5,0.3,0.5)" ¢ )
11 (0.3,03,05)(0.4,03,05)" % ]
a] /0 1°3
o o
) '5‘0.5 ~ B4
? ) = o
2o N4 in ‘o g
. oy 2 S > T
[y @ Q) o f\P' o
P 70 S o S
o 2, a > o
o “ O, =3 N w
s & . £
g AP 5 2, 3
«a N X S 2 S
e Y S = 4 S0 uy
wn b d
S &/ 2 N o8 =3
~ ™) S o \a o
o Q.(’\ - e.‘g =
| .NQ{Q. &
- k,l
ki (030305 040306t kil (030404 (050308 2
0.4,05,0.6) (0.4,0.4,04) ::.:,:.:.2.:;+
(0.4,03,0.6) (0.603,06)" e
(0.4,0.4,06) (0.5,0.3,06) (0.4,0.4,0.6)”
(0.4,03,06)* (0.4,03,05)* - (0.4,0.3,0.6)"
- kI 0.3,0.2,0.5) (0.3,0.3,0.5)* o
kL0 {0.3,0.2,0.6) (03,0.3,0.6)" 372 { 0.5 (03,0.3,05) k1,
3
&L
e} U ? +
& 03 ) x
] 2, 203 o N +
@ OB *05/1 p=3 N I
< 2, P, & =
s e o > o
e N\, o =
2 Qg,\ 0)0,%\ 9 3 =
ey Y £ I~ > [
sl &8 ' & 2
S ® : o o % o
o &/ o8 o o %o :cv:‘
el o 20% S < o e
NPAS 84
&
- + -
k.1, (03,0206)7(03,0308) ki, (030205 (030305 F3ts
{0.4,0.3,0.6)" {0.4,0.4,0.6)" (0.4,0.3,0.6)
.
{0.4,0.3,0.6)" {0.4,0.3,0.6)* (0.4,0.3,0.6)
Figure7

COMPOSITION OF NEUTROSOPHIC VAGUE GRAPH

= T(AloAQ) (ka ll) N T(AloAQ)(k, ZQ)

I(B,08,) ((Kl1) (kl2)) = La, (k) A g, (1112)

< Tay (k) ATay (1) Ay (lo)]

= [Ta, (k) A Lay ()] A [La, (k) A Tay (12)]

= Iy, (k1) A (4,0, (K, 12)

F(BloBz)((kll)<k12)> = FAl (k) v FBz(lllg)
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< Fa (k) V [Fay () V Fay (lo)]
= [Fa, (k) V Fa, ()] V [Fa, (k) V Fa, (Io)]
= F(AloAz)(ka L)V F(AIOAQ)(k, l2)

for all kill, kly € Ry o Rs.

Case 2: for k € Ro, 11l € S,

T(Byopy) (1K) (I2k)) = Ta, (k) A T, (I1l2)

IN

TA2 (k) A [TAI (ll) A TAI (12)]
= [TAz (k) A TAI (ll)] A [TAz (k) N TAI (12)]

= Tiayonn (1. k) AT ay0a,) (2, k)

I(B,08,) (1K) (12k)) = 1a, (k) A, (l112)
< Tay (k) A [La, (1) A a, (1))
= [Tay (k) A La, (1)) A [Lay (k) A L, (12)]

= Tiayon) (11, k) A (4,0, (12, k)

F(Bropy) (1K) (12k)) = Fa, (k) V Fp, (I1ly)

AN

Fay (k) V [Fa, (L) V Fa, (I2)]
= [Fa, (k) V Fa, ()] V [Fa, (k) V Fa, (1))
= F(AloAg)(lla k) v F(AloAz)(ZQa k)

for all I1k,lxk € Ry o Rs.

Case 3: For k1ks € S1,11,l2 € Ry such that [; # s,

T(Byrony)((k1l1)(kal)) = T, (k1, k2) A Ta, (1) A T, (lo)
< [Ta, (k) ATa, (k)] A [Ty (1) A Ty (12)]

= [T, (k1) A Tay (L] A [T, (k2) A T, (1))

23
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= T(A10A2)(k‘111) A T(AloAz)(k2l2)

L5108y (k1) (kal2)) = Ip, (K1, k2) A Lay (1) A La, (12)
< [Ta, (k) A La, (B2)] A [Tag () A Tay (12)]
= [T, (k1) ALay (1)) A [La, (R2) A a, (1))

= I(ay0a5) (k1l1) A T a0, (K2l2)

F(B,0,) (k1) (kal2)) = F, (k1,k2) V Fa, (1) V Fa, (I2)
< [Fa, (k1) V Fa, (k2)] V [Fay (1) V Fay (Io)]
= [Fa, (k1) V Fa,(10)] V [Fa, (ko) V Fa, (I)]

= F(AloAg) (k1lh) Vv F(AloAg)(kQZQ)

for all k111, kols € R1 o Rs. O

CONCLUSION

This paper deals with the operations on neutrosophic vague graphs. Moreover, Cartesian product,
cross product, lexicographic product, strong product and composition of neutrosophic vague graph are
investigated and the proposed concepts are illustrated with examples. Further we are able to extend
by investigating the regular and isomorphic properties of the proposed graph.
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