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ABSTRACT. In this paper we introduce new types of functions called
g*bp-continuous function, almost g*bp-continuous function, and weakly
g*bp-continuous function in topological spaces and study some of their
basic properties and relations among them.

1. Introduction

Biswas [8], Husain [17], Levine [23], Noiri and Ahmed [36] and Tong [41]
have introduced and investigated many types of continuity such as simple,
almost, weak, semi, quasi, «, strong semi, semi-weak , weak almost, A- and
B-continuity. Balachandran, Sundaram and Maki [5] have introduced and
studied generalized continuous function in topological spaces. Mashour and
Deeb [30] have introduced pre-continuous and weak pre continuous map-
pings. EL Etik [15] also introduced the concept of gh-continuous function
by utilizing b-open sets. Omari and Noorani [37] introduced and studied
the concept of generalized b-closed sets and gb-continuous function in topo-
logical spaces. Vidhya and Parimelazhgana [43] introduced and studied the
properties of g*b-closed sets, g*b-continuous and g*b-irresolute in topological
spaces.

The aim of this paper is to introduce and study new types of functions called
g*bp (almost g*bp and weakly ¢g*bp)-continuous functions.

Throughout this paper (X, 7) and (Y, o) (or simply X and Y') represents the
non-empty topological spaces on which no separation axiom are assumed,
unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) rep-
resents the closure of A and Interior of A respectively. A subset A is said
to be preopen [30] (resp., a-open [32], semi open [24], regular open[45]) set
if A C IntCI(A) (resp., A C IntClInt(A), A C Clint(A), A = IntCIl(A)).
The complement of a preopen set is called preclosed. The intersection of all
preclosed [6] (resp., semi closed) sets containing A is called the preclosure
(resp. semi closure) of A and is denoted by pCl(A) (resp., sClA). The
preinterior of A is defined by the union of all preopen sets contained in A
and is denoted by pInt(A). It is clear that A is a preopen set if and only if
A = pInt(A) and A is preclosed if A = pCI(A). The family of all preopen
sets of X is denoted by PO(X) and the family of all preclosed sets of X
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containing x is denoted by PC(X,z).

2. Preliminaries

In this section we recall some definitions and results which are used in
the next sections.

Definition 2.1. A subset A of a topological space (X, 7) is called

(1) b-open set [2], if A C Cl(Int(A)) U Int(CIl(A)) and b-closed set if
Cl(Int(A)) U Int(Cl(A)) C A.

(2) generalized closed set ( briefly g-closed)[23] (¢g*-closed [42]), if CI(A)
U whenever A C U and U is open(g-open) in X.

(3) pg-closed (28], if pCI(A) C U whenever A C U and U is preopen in
X.

(4) gb-closed [37], and (g*b-closed [43]) if bC1(A) C U whenever A C U
and U is open(g-open) in X. The complement of a gb-closed (g*b-
closed) set is called gb-open (g*b-open) respectively.

(5) pd-open set [18], if for each = € A, there exists a preopen set U in
X such that x € U C pIntpCl(U) C A.

(6) pre-regular p-open [19] (resp., pre-regular p-closed [20]) if A = pIntpCIl(A)(resp.,
A = pClpInt(A)).

N

Remark 2.2. It is worth to mention that the notion of pre-regular p-open
is called regular preopen in [11]. S. Jafari investigated the fundamental
properties of pre-regular p-open sets in [20]. M. Caldas et al. [9] introduced
and investigated some weak separation axioms via pre-regular p-open sets.
In this paper we use the notions of regular preopen and regular preclosed
sets instead of pre-regular p-open and pre-regular p-closed sets.

Definition 2.3. Let (X, 7) and (Y, 0) be two topological spaces. A function
f:(X,7) = (Y,0) is said to be:

(1) g-continuous [5] (b-continuous [15], gb-continuous [37], g*b-continuous
[43], and pre-continuous [30]) if f~1(A) is g-closed (b-closed,gb-closed,
g*b-closed, and pre-closed) in X for every closed set A in Y.

(2) preirresolute [38] if f~1(A) € PO(X) for each A € PO(Y).

(3) g*b-irresolute [43], if the inverse image of every g*b-closed set in Y
is g*b-closed in X.

(4) weakly continuous [26] (resp., weakly precontinuous [30], and weakly
a-continuous [34])If for each € X and each open set A of Y con-
taining f(x), there exists an open (resp., preopen and a-open) set
U of X containing x such that f(U) C Ci(A).

(5) complete continuous [3], if the inverse image of each open set of Y
is regular open in X.

(6) almost continuous [40] (resp., almost a-continuous [35], R-map [10]
) if the inverse image of each regular open subset of Y is open (resp.,
a-open, regular open)in X.
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(7) o0-continuous [33], if for each x € X and each open set A of Y con-
taining f(x), there exists an open set U of X containing = such that

F(Int(CLU))) C Int(CI(A)).

Lemma 2.4. [18] For any subset A of a topological space X, the following
statements are true:

(1) A is regular open = A is reqular preopen = A is pd-open = A is
preopen.
(2) pIntpCIl(A) is regular preopen set.

Lemma 2.5. [21] Let A be a subset of a space (X, 7). Then A € PO(X,T)
if and only if sCl(A) = IntCI(A).

Theorem 2.6. [25] Let f : X — Y be a function and {B, : a € A} be an
indexed family of subsets of Y. Then the induced function f~':Y — X has
the following properties:

(1) f7HU{Ba s a € A}) =U(f 1 ({Ba : ar € A})).
(2) f7HN({Ba s a € A}) =N(f T ({Ba : @ € A})).

Definition 2.7. [4] A space X is said to be

(1) Pre-Tp if and only if to each pair of distinct points x, y in X, there
exists a preopen set containing one of the points but not the other.

(2) Pre-T; if and only if to each pair of distinct points z, y of X, there
exists a pair of preopen sets one containing x but not y and other
containing y but not x.

(3) Pre-T; if and only if to each pair of distinct points z, y of X, there
exists a pair of disjoint preopen sets one containing x and the other
containing .

Professor M. Ganster in 2003, in a private conversation with the third
author showed that every topological space is pre-Tj.

Definition 2.8. A topological space (X, 7) is said to be:

(1) submaximal [21], if the closure of every dense subset of X is open.

(2) extremally disconnected [27], if the closure of every open set of X is
open in X.

(3) locally indiscrete [13], if every open set of X is closed in X.

(4) pre—T% [28], space if every pg-closed set is preclosed.

(5) r-Ty [14], if for each pair of distinct points z and y of X, there exists

regular open sets U and V containing « and y respectively, such that
y¢Uandz ¢ V.

Definition 2.9. A space X is called:

(1) preregular [7](resp., p-regular [31]) if for each preclosed (resp., closed)
set F' and each point = ¢ F', there exists disjoint preopen sets U and
V such that t € U and FF C V.
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(2) Almost regular [39], if for any regular closed set F' of X and any
point x € X \ F, there exists disjoint open sets U and V such that
rzeUand FCV.

(3) semi-regular [39], if for any open set U of X and each point z € U
there exists a regular open set V' of X such that z € V C U.

(4) almost p-regular [29], if for each A € RC(X) and each point x € X\ A
there exists preopen sets U,V such that xt € U and UNV = ¢.

(5) strongly s-regular [16], if for each closed set A and any point x €
(X \ A), there exists a F' € RC(X) such that z € F' and FNA = ¢.

Theorem 2.10. [13] If R € RO(X) and P € PO(X), then RNP € RO(P).

Lemma 2.11. [21] A space X is submazimal if and only if every preopen
set 18 open.

Theorem 2.12. [1] Let (Y,7y) be subspace of a space (X,7). If A €
PO(X,7) and ACY, then A€ PO(Y,1y).

Theorem 2.13. [44] Let A be a subset of a topological space (X, T), if A € T,
then Clg(A) = Cl(A).

Definition 2.14. [22] A space X is said to be:

(1) g*b-Ty if for each pair of distinct points x,y in X, there exists a
g*b-open set U such that either x € U and y ¢ U or z ¢ U and
yeU.

(2) g*b-Ty if for each pair of distinct points x,y in X, there exist two
g*b-open sets U and V such that z € U but y ¢ U and y € V but
x¢ V.

(3) ¢g*b-Ty if for each distinct points x,y in X, there exist two disjoint
g*b-open sets U and V containing x and y respectively.

3. g*bp-continuous function

In this section, we Introduce the concept of g*bp-continuous function in
topological spaces.

Definition 3.1. Let (X, 7) and (Y, o) be two topological spaces. A function
f:(X,7) = (Y,0) is called g*bp-continuous at a point = € X if for each
preopen set A in Y containing f(z), there exists a g*b-open set U of X
containing x such that f(U) C A.

Proposition 3.2. For a function f : (X,7) — (Y,0) the following are
equivalent.

(1) f is g*bp-continuous.

(2) f~Y(A) is g*b-open in X, for each preopen set A in'Y .

(3) f7Y(B) is g*b-closed in X, for each preclosed set B in'Y .

Proof. (1) = (2). Let A be any preopen set of Y, we have to show that
f7Y(A) is g*b-open in X. Let x € f~1(A). Then f(z) € A. By(1), there
exsits a g*b-open set U in X containing x such that f(U) C A which implies
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that € U C f~!(A). Therefore, f~(A) is g*b-open in X.
(2) = (3). Let B be preclosed set of Y. Then Y \ B is preopen set of Y.
By(2), f7Y (Y \ B) = X \ f~1(B) is g*b-open set in X and hence f~!(B) is
g*b-closed in X.
(3) = (1). Let A be any preopen set of Y. Then (Y \ A) is preclosed in Y.
By(3), f~Y(Y \ A) is g*b-closed set in X. But f~1(Y \ 4) = X\ f1(4).
Thus X \ f~!(A) is g*b-closed in X so f~1(A) is g*b-open in X. Therefore,
we obtain f(f~!(A)) C A, hence f is g*bp-continuous.

O

Proposition 3.3. If a function f : (X,7) — (Y, 0) is g*bp-continuous, then
it is g*b-continuous.

Proof. Let A be any open set in Y, then its preopen set in Y. Since f is g*bp-
continuous, then f~!(A) is g*b-open set in X. Hence f is g*b-continuous. [

The converse of Proposition 3.3 need not be true in general as it is shown
in the following example.

Example 3.4. Let X =Y = {a,b,c}, and 7 = {¢,{b},{a,b}, X}, 0 =
{#,{c},{a,b}, Y}, and a function f : (X,7) — (Y,0) defined by f(a) = ¢
, f(b) =b, f(c¢) =a f is g*b-continuous but not g*bp-continuous, since for
the preclosed set B = {a,b} in Y, f~1(B) = {b,c} is not g*b-closed in X.

Note: If Y is submaximal, then by Lemma 2.11 we have PO(X) = 7.
Hence, every g*b-continuous function is g*bp-continuous.

Proposition 3.5. If a function f: (X,7) — (Y, 0) is g*b-irresolute, then it
is g*bp-continuous but not conversely.

Proof. Let A be preclosed set in Y, then it is g*b-closed in Y. Since f is g*b-
irresolute, then f~1(A) is g*b-closed in X. Hence it is g*bp-continuous. [

The converse of Proposition 3.5 is not true in general.

Example 3.6. Let X = Y = {a,b,c} and let 7={¢, {a}, {a,b}, X},
o = {¢,{c},{a,c},Y}. The identity function f : (X,7) — (Y,0) is g*bp-
continuous but not g*b-irresolute because B = {a,b} is g*b-closed set in Y
and f~1(B) = {a,b} is not g*b-closed in X.

Proposition 3.7. Let X = Ry U Rs, where Ry and Ry are g*b-closed set in

X. Let f: Ry =Y and g: Ry — Y be g*bp-continuous. If f(x) = g(x) for
each x € Ry N Ry. Then h: R1 URy —'Y such that

| flz) difreR
h(z) = { g(z) ifx € Ry
is g*bp-continuous.
Proof. Let A be any preopen set in Y. Clearly h=1(A) = f~1(A)u g~ (A).
Since f is g*bp-continuous, then f~'(A) is g*b-open in Ry. But R is g*b-
open in X. Then by Theorem 3.30 [43], f~!(A) is g*b-open in X. Similarly,
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g (A) is g*b-open in Ry and hence a g*b-open in X. Since a union of two
g*b-open sets is g*b-open. Therefore, =1 (A) = f~1(A)ug!(A) is g*b-open
in X. Hence h is g*bp-continuous. ([l

Theorem 3.8. For a function f: (X,7) — (Y,0) the following are equiva-
lent:

(1) f is g*bp-continuous.

(2) f(g*bCl(B)) C pCI(f(B)), for every subset B of X.

(3) *bCl( L(A)) C f~L1(pCI(A)), for each subset A of Y.
(4) f~Y(pInt(A)) C g*bInt(f~1(A)), for each subset A of Y.
(5) pInt(f(B)) C f(g*bInt(B)), for each subset B of X.

Proof. (1) = (2). Let B be any subset of X .Then f(B) C pCIl(f(B))
and pClf(B) is preclosed in Y. Hence B C f~!(pClf(B)), since f is g*bp-
continuous. By Proposition 3.2, f~1(pClf(B)) is g*b-closed set in X. There-
fore, g*bCI(B) C f~\(pCI(f(B))). Hence f(g*bC1(B)) C (pCI(f(B)).

(2) = (3). Let A be any subset of Y, then f~!(A) is a subset of X. By
(2) we have f(g *ble LA)) C pCI(f(f~1(A))) = pCI(A). It follow that
g*b(Clf~(A)) C f1(pCI(A)).

(3) = (4). Let A be any subset of Y. Then apply(3) to (Y \ A) we obtain
FHCIF LY\ 4) € F1(pCUY \ A)) & gbCUX \ f~1(A)) € F1(Y \
pInt(A)) & X \ gbInt(f~ (A) € X\ f~\(pInt(A)) & 1 (pInt(4) C
g*bInt(f~1(A)).

(4) = (5). Let B be any subset of X, Then f(B) is a subset of Y. By(4),
we have f~1(pInt(f(A))) C g*bInt(f~1(f(A))) = g*bInt(A). Therefore,
pInt(f(A)) C f(gbInt(A)).

(5) = (1). Let x € X and let A be any preopen set of Y containing
f(z). Then z € f~!(A) and ffl(A) is a subset of X. By(5), we have
pInt(f(f~1(A))) C f(g*dInt(f~1(A))). Then pInt(4) C flg*bInt(f~1(A)))
since A is preopen, then A C f(g*bInt(f~(A))) implies that f=1(A4) C
g*bInt(f~1(A)). Therefore f~!(A) is g*b-open in X containing = and clearly
f(f~1(A)) C A. Hence f is g*bp-continuous. O

Proposition 3.9. Let f : X — Y be g*bp-continuous and Y C Z. IfY is
preclosed subset of a topological space Z, then f : X — Z is g*bp-continuous.

Proof. Let F be any preclosed set in Z. Then F NY is preclosed in Z,
by Theorem 2.22 [1], F NY is preclosed in Y. Since f is g*bp-continuous,
so fTY(FNY) is g*b-closed in X but f(z) € Y for each € X, and thus
fYF) = f~YFNY)is g*b-closed subset of X. Therefore, by Proposition
3.2 f: X — Z is g*bp-continuous. ([

Theorem 3.10. If f : (X,7) — (Y,0) is g*bp-continuous and A is g*b-
closed set in X, then f|A: A —Y is g*bp-continuous.

Proof. Let B be preclosed set in Y, since f is g*bp-continuous, then f~!(B)
is g*b-closed in X. Since (f|A)~1(B)=f"1(B) N A, so Since (f|A)~!(B) is
g*b-closed in X because the intersection of two g*b-closed sets is g*b-closed.
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Hence by Theorem 3.30 [43], (f|A)~!(B) is g*b-closed set in A. Therefore
f|A is g*bp-continuous. O

Theorem 3.11. If f : (X,7) — (Y,0) and g : (Y,0) — (Z,6) be any two
functions ,then go f : (X, 7) = (Z,0) is g*bp-continuous if g is preirresolute
function and f is g*bp-continuous.

Proof. Let A be any preclosed set in Z. Since g is preirresolute function,
then g~1(A) is preclosed in Y. Since f is g*bp-continuous, then f~!(g=1(4))
is g*b-closed in X. Hence g o f is g*bp-continuous. O

Proposition 3.12. If a function f : X — Y is g*b-continuous and Y is
p-reqular, then f is g*bp-continuous.

Proof. Let x € X and A be any preopen set of Y containing f(z). Since Y
is p-regular then there exists an open set G of Y such that f(z) € G C A,
since f is g*b-continuous, then there exists a g*b-open set U of X containing
x such that f(U) C G C A. Therefore, f is g*bp-continuous. O

Theorem 3.13. If f : X — Y is a g*bp-continuous injection and Y is
pre-Ty, then X is g*b-T1.

Proof. Assume that Y is pre-T. For any distinct points x and y in X, there
exist preopen sets A and W such that f(x) € A, f(y) ¢ A, f(x) ¢ W and
fly) € W. Since f is g*bp-continuous, so there exist g*b-open sets G and H
such that z € G, y € H, f(G) C A and f(H) C W. Thus we obtain y ¢ G,
x ¢ H. This shows that X is ¢*b-T}. O

Theorem 3.14. If f : X — Y is g*bp-continuous injection and Y is pre-Ts
then X is g*b-T5.

Proof. For any pair of distinct points z and y in X, there exist disjoint
preopen sets U and V in Y such that f(x) € U and f(y) € V. Since f
is g*bp-continuous, there exist g*b-open sets G and H in X containing x
and y, respectively, such that f(G) C U and f(H) C V. Since U and V'
are disjoint, we have U NV = ¢, hence G N H = ¢. This shows that X is
g*b—TQ. [l

4. Almost ¢g*bp-continuous function

Definition 4.1. A function f : (X,7) — (Y,0) is called almost g*bp-
continuous at a point € X if for each preopen set A of Y containing f(x),
there exists a g*b-open set U of X containing x such that f(U) C IntClA.
If f is almost g*bp-continuous at every point of X, then it is called almost
g*bp-continuous.

Definition 4.2. A function f : X — Y is said to be almost g*bp-open if
fU) C IntCI(f(U)) for every g*b-open set U in X.

Theorem 4.3. For a function f: (X,7) — (Y,0), the following statements
are equivalent:
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(1) f is almost g*bp-continuous,

(2) For each x € X and each preopen set A of Y containing f(x), there
exists a g*b-open set U in X containing x such that f(U) C sCIl(A).

(3) For each x € X and each reqular open set A of Y containing f(x),
there exists a g*b-open set U in X containing x such that f(U) C A.

(4) For each x € X and each d-open set A of Y containing f(x), there
exists a g*b-open set U in X containing x such that f(U) C A.

Proof. (1) = (2). Let x € X and A be any preopen set of Y containing
f(x). By (1) there exists a g*b-open set U in X containing = such that
f(U) C IntCI(A). Since A is preopen by Lemma 2.5, f(U) C sCI(A).

(2) = (3). Let € X and A be any regular open set of Y containing
f(x), then A is preopen set in Y. By (2), there exists a g*b-open set U
in X containing x such that f(U) C sCI(A), then by Lemma 2.5, f(U) C
IntCI(A). Since A is regular open, then f(U) C A.

(3) = (4). Let z € X and let A be any d-open set of Y containing f(x).
Then for each f(x) € A, there exists an open set G containing f(z) such
that G C IntCl(G) C A. Since IntCI(G) is regular open set of Y containing
f(x). By(3), there exists a g*b-open set U in X containing z such that
f(U) C IntCIl(G) C A.

(4) = (1). Let x € X and A be any preopen set of Y containing f(x), then
IntCI(A) is 6-open set of Y containing f(z). By(4), there exists a g*b-open
set U in X containing = such that f(U) C IntCIl(A). Therefore, f is almost
g*bp-continuous. O

Theorem 4.4. A function f: X — Y is almost g*bp-continuous if and only
if for each x € X and each reqular open set A containing f(x), there exists
a g*b-open set U in X containing x such that f(U) C A.

Proof. For every x € X and let A be any regular open set containing f(x),
then A is preopen set containing f(z). Since f is almost g*bp-continuous,
then there exists a g*b-open set U in X containing = such that f(U) C
IntCI(A) = A. Conversely. Obvious. O

Theorem 4.5. For a function f: (X, 7) — (Y, 0), the following statements
are equivalent:

(1) f almost g*bp-continuous.

f~YHCUnt(F)) is g*b-closed set in X, for each preclosed set F in'Y .
f=Y(F) is g*b-closed set in X, for each regular closed set F in'Y .
f~Y(A) is g*b-open set in X , for each reqular open set A in'Y .

Proof. (1) = (2). Let A be any preopen set in Y. We have to show that
f~t(IntCI(A)) is g*b-open set in X. Let x € f~1(IntCI(A)). Then f(x) €
IntCI(A) and IntCIl(A) is regular open set in Y. Since f is almost g*bp-
continuous. By Theorem 4.3, there exists a g*b-open set U of X containing
x such that f(U) C IntCI(A). Which implies that z € U C f~(IntCl(A)).
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Therefore, f~!(IntCI(A)) is g*b-open set in X.

(2) = (3). Let F be any preclosed set of Y. Then Y \ F' is preopen set of Y.

By (2), f~Y(IntCI(Y \ F)) is g*b-open set in X and f~'(IntCI(Y \ F)) =

FHInt(Y\Int(F))) = f~YY\ClInt(F)) = X\ f~1(ClInt(F)) is g*b-open

set in X and hence f~1(ClInt(F)) is g*b-closed set in X.

(3) = (4). Let F be any regular closed set of Y. Then F' is preclosed set of

Y. By (3). f~YClnt(F)) is g*b-closed set in X since F is regular closed

set, then f~1(ClInt(F)) = f~1(F). Therefore f~1(F) is g*b-closed set in

X.

(4) = (5). Let A be any regular open set of Y. Then Y \ A is regular closed

set of Y and by (4), we have f~1(Y \ A) = X \ f~1(A) is g*b-closed set in

X and hence f~1(A) is g*b-open set in X.

(5) = (1). Let x € X and let A be any regular open set of Y containing f(x),

sox € f71(A). By (5), we have f~1(A) is g*b-open set in X. Therefore we

obtain f(f~1(A)) C A. Hence by Theorem 4.3, f is almost g*bp-continuous.
O

Proposition 4.6. If a function f : (X,7) — (Y, 0) is g*bp-continuous, then
it is almost g*bp-continuous.

Proof. Let A be any regular open set in Y, so A is preopen. Since f is
g*bp-continuous, then f~1(A) is g*b-open in X. Hence by Theorem 4.5, f
is almost g*bp-continuous. ([

The converse of Propostion 4.6 is not true in general as it is shown by the
following example.

Example 4.7. Consider X =Y = {a,b,c} with the topology 7={¢, {c},
{a,c}, {b,c}, X}, 0 = {¢,{a},Y}. The identity function f : (X,7) —
(Y,0) is almost g*bp-continuous but not g*bp-continuous since the subset
B = {b,c} is preclosed in Y and f~1(B) = {b,c} is not g*b-closed in X.

Proposition 4.8. If a function f: X — Y is almost a-continuous, then f
is almost g*bp-continuous.

Proof. Let A be any regular open set in Y. Since f is almost a-continuous,
then f~!(A) is a-open set in X, hence by Theorem 3.8 [43], f~1(A) is g*b-
open in X. Therefore, f is almost ¢g*bp-continuous. ([

Theorem 4.9. If a function f : X — Y is §-continuous, then f is almost
g*bp-continuous.

Proof. Let x € X and A be any preopen set in Y, then A C IntCI(A). Since
f is é-continuous, there exists an open set U of X containig = such that
fIntCl(U)) C IntCl(IntCIl(A)), then f(IntClL(U)) C IntCl(A). Since
IntCIl(U) is regular open set, so by Lemma 2.4, IntCI(U) is preopen and by
Theorem 3.12 [43], IntCl(U) is g*b-open set of X. Therefore, f is almost
g*bp-continuous. O
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Theorem 4.10. If f : X — Y is an almost g*bp-continuous function and
Y is locally indescrete, then f is g*b-continuous.

Proof. Let x € X and let A be any open set of Y, hence A is preopen in
Y. Since f is almost g*bp-continuous, there exists a g*b-open set U in X
containing z such that f(U) C IntCIl(A) C Cl(A) = A and hence f is
g*b-continuous. O

Theorem 4.11. For a function f : (X, 7) — (Y, 0), the following statements
are equivalent:

(1) f is almost g*bp-continuous.

(2) f(g *bCl(A)) C Cls(f(A)) for every subset A of X.

(3) *bCl( L(B)) C f~1(Cls(B)) for every subset B of Y.
(4) f ( ) is g*b-closed for every d-closed set B of Y.
(5) f~Y(A) is g*b-open for every d-open set A of Y.

Proof. (1) = (2). Let A be a subset of X, since Cls(f(A)) is d-closed in YV
and it is equal to N{F, : F, is regular closed in Y, « € A} where A is an
index set. By Theorem 2.6, we have A C f=1(Cls(f(A))) = f~ 1N {Fs:a €
AY)=n{fYF,) :ac A} By(1), f~Y(Clsf(A)) is g*b-closed in X. Hence
g*bCI(A) C f~Y(Cls(f(A))). This shows that f(g*bCl(A)) C Cls(f(A)).
(2) = (3). Taking A = f~(B) in(2), then we have

F(g"bClU(f~1(B))) € Cls(f(f~1(B))) € Cls(B) and hence g*bCl(f~(B)) <
fH(Cls(B)).

(3) = (4). Let F be d-closed set of Y, then g*bCI(f~1(F)) C f~1(F)) so
f~Y(F) is g*b-closed.

(4) = (5). Let A be d-open set of Y, then Y \ A is d-closed in Y. By(4), we
have f~1(Y'\ A) = X\ f~1(A) is g*b-closed in X. Hence f~1(A) is g*b-open
in X.

(5) = (1). Let A be any regular open set of Y. Since A is §-open in Y then
f~Y(A) is g*b-open and hence from f(f~1(A) C A = IntCI(A). Thus f is
almost g*bp-continuous.

O

Theorem 4.12. If f : X — Y is almost g*bp-continuous function, then we
have f~Y(A) C g*bInt(f~1(IntCI(A))) for every preopen set A in'Y .

Proof. Let A be any preopen set in Y, then A C IntCI(A). Since IntCI(A)
is regular open set in Y, and Since f is almost g*bp-continuous function,
so by Theorem 4.5, f~1(intCI(A)) is g*b-open set in X. Hence f~1(A) C
FH(intClL(A)) = g*bInt(f~1(IntCI(A))). O
Corollary 4.13. If f : X — Y is almost g*bp-continuous function, then we
have f~Y(A) C g*bInt(f~1(sCI(A))), for every preopen set A inY.

Proof. Follows from Lemma 2.5 and Theorem 4.12. ([l

Corollary 4.14. If f : X — Y is almost g*bp-continuous function, then we
have g*bCl(f~1(ClInt(E))) C f~Y(E), for every preclosed set E in'Y .
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Proof. Let E be any preclosed set in Y, so Y \ E is preopen. By The-
orem 4.12, f~YY \ E) C g*bInt(f~'(IntCI(Y \ E))) this implies that
X\ f7YE) C g*bInt(f~1(Y \ ClInt(E))), then X \ f~1(E) C g*bInt(X \
f~HClInt(E))). Tt follows that X \ f~1(E) C X \ g*bCI(f~*(ClInt(E))).
Hence g*bCl(f~1(ClInt(E))) C f~H(E). O

Corollary 4.15. If f : X — Y is almost g*bp-continuous function, then we
have g*bCl(f~1(sInt(E))) C f~1(E), for every preclosed set E inY .

Proof. Follows from Lemma2.5 and Corollary 4.14. U

Theorem 4.16. Let f : X — Y be an almost g*bp-continuous. If Y is
preopen set in Z, then f: X — Z is almost g*bp-continuous.

Proof. Let A be any regular open set of Z. Since Y is preopen, then by
Theorem 2.10, A NY is regular open set in Y. Since f is almost g*bp-
continuous then f~1(ANY) is g*b-open set in X. But f(z) € Y for each
r € X. Thus f~}(A4) = f~}(ANY) is a g*b-open set in X. Therefore f is
almost g*bp-continuous. ([

Theorem 4.17. If f : X — Y be a g*b-irresolute and g : Y — Z is
an almost g*bp-continuous function, then go f : X — Z is almost g*bp-
continuous function.

Proof. Let A be any preopen set in Z. Since g is almost g*bp-continuous
function, then g~1(A) is g*b-open set in Y. Since f is g*b-irresolute, then by
Theorem 4.2 [43], (go f)"1(A4) = f~1(g7(A)) is g*b-open set in X. Hence
g o f is almost g*bp-continuous function. O

Theorem 4.18. If f : X — Y be almost g*bp-continuous and g : Y — Z is
completely continuous function and Z is submazximal, then go f : X — Z is
g*bp-continuous function.

Proof. Let A be any preopen set in Z since Z is submaximal then A is
open in Z, since g is completely continuous, then g~!(A) is regular open in
Y. Since f is almost g*bp-continuous then f~1(g71(A)) = (go f)~1(A) is
g*b-open in X. Hence g o f is g*bp-continuous. O

Theorem 4.19. If f : X — Y be almost g*bp-continuous and g : Y — Z is
R-map, then go f: X — Z is almost g*bp-continuous.

Proof. Let A be any regular open set in Z. Since g is R-map then g~1(A)
is regular open in Y. Since f is almost g*bp-continuous f~!(g7(4)) =
(go f)~Y(A) is almost g*bp-continuous. O

Theorem 4.20. If f : X — Y is an almost g*bp-continuous function and A
is g*b-closed set of X, then the restriction function f|[A: A —Y is almost
g*bp-continuous function.

Proof. Let B be any regular closed set of Y. Since f is almost ¢*bp-
continuous function, then by Theorem 4.5, f~1(B) is g*b-closed set in X
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and (f|A)~Y(B) = An f~Y(B). Since A is g*b-closed, so by Theorem 3.30
[43], AN f~1(B) is g*b-closed set in A. Hence f|A is almost g*bp-continuous
function. O

Theorem 4.21. Let f : X — Y be a function and x € X. If A is both
g*b-closed and g-open set and the restriction f|A is almost g*bp-continuous
function then f is almost g*bp-continuous.

Proof. Suppose that B is any regular closed set in Y containing f(z). Since
f|A is almost g*bp-continuous, there exists a g*b-closed set G of A containing
x such that f(G) = (f|A)(G) C B. Since A is both g*b-closed and g-open
set in X, it follows from Theorem 3.31[43], that G is g*b-closed in X. This
shows that f is almost g*bp-continuous. O

Theorem 4.22. If f : X — Y is an almost g*bp-continuous injection and
Y is r11, then X is g*b — T7.

Proof. Assume that Y is r-T7, then for any distinct points z and y in X,
there exist regular open sets A and W such that f(z) € A, f(y) ¢ A,
f(x) ¢ W and f(y) € W. Since f is almost g*bp-continuous there exist
g*b-open sets G and H such that x € G,y € H, f(G) C A and f(H) C W.
Thus we obtain y ¢ G, « ¢ H. This shows that X is ¢g*b — 1. O

Theorem 4.23. If f : X — Y is almost g*bp-continuous injection and Y
is pre-1y then X is g*b — 1.

Proof. For any pair of distinct points x and y in X, there exist disjoint
preopen sets U and V in Y such that f(z) € U and f(y) € V. Since f is
almost g*bp-continuous, there exists g*b-open sets G and H in X containing
x and y, respectively, such that f(G) C IntCl(U) and f(H) C IntCI(V).
Since U and V are disjoint, we have IntCIl(U) N IntCl(V) = ¢, hence
G N H = ¢. This shows that X is g*b — T5. O

5. Weakly g*bp-continuous function

Definition 5.1. A function f : (X,7) — (Y,0) is called weakly g*bp-
continuous at a point z € X if for each preopen set A of Y containing f(z)
, there exists a g*b-open set U of X containing x such that f(U) C CIA .
If f is weakly g*bp-continuous at every point of X , then it is called weakly
g*bp-continuous.

Theorem 5.2. Let f: X — Y be a function. If f~1(CIA) is g*b-open set
in X for each preopen set A in'Y, then f is weakly g*bp-continuous.

Proof. Let = € X and A be any preopen set of Y containing f(x). Then
r € f71(A) C f~Y(CIA). By hypothesis, we have f~1(CIA) is g*b-open set
in X containing x. Therefore, we obtain f(f~*(CIA)) C CIA. Hence f is
weakly g*bp-continuous. O
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It is obvious that if the function f is almost g*bp-continuous, then it is
weakly g*bp-continuous. However, the converse is not true in general as it
shown in the following example.

Example 5.3. Consider X =Y = {a,b,c,d} with the topology 7 = 0 =
{¢,{b},{c},{a,b},{b,c},{a,b,c}, X}, with identity function f : (X,7) —
(Y,0) f is weakly g*bp-continuous but not almost g*b-continuous since for
a preopen set B = {a,b} in Y f~1(IntCIB) = {a,b} which is not g*b-open
in X.

Theorem 5.4. If f : X — Y is weakly g*bp-continuous function and Y is
almost p-regular, then f is almost g*bp-continuous.

Proof. Let x € X and let A be preopen set of Y. By the almost p-regularity
of Y there exists a regular open set G of Y such that f(z) € G C CI(G) C
IntCI(A). Since f is weakly g*bp-continuous, there exists a g*b-open set
U in X such that f(U) C CI(G) C IntCIl(A). Therefore f is almost g*bp-
continuous. U

Theorem 5.5. If f : X — Y is almost g*bp-open and weakly g*bp-continuous
function, then f is almost g*bp-continuous function.

Proof. Let x € X and A be preopen set of Y containing f(x). Since f is
weakly g*bp-continuous, then there exists a g*b-open set U in X containing
x such that f(U) C CI(A). since f is almost g*bp-open function, then
f(U) C IntCIl(f(U)) C IntCI(A). Hence f is almost g*bp-continuous. [

Corollary 5.6. Let f : X — Y be a function. If f~1(IntF) is g*b-closed
set in X for each preclosed set F' in'Y, then f is weakly g*bp-continuous.

Theorem 5.7. Let f: X — Y be a function. If for each x € X and each
reqular closed set R of Y containing f(x), there exists a g*b-open set U in
X containing x such that f(U) C R, then f is weakly g*bp-continuous.

Proof. Let x € X and A be any preopen set of Y containing f(x). Then put
R = CI(A) which is a regular closed set of Y containing f(x). By hypothesis,
there exists a g*b-open set U in X containing x such that f(U) C R. Hence
f is weakly g*bp-continuous. O

Theorem 5.8. Let f : X — Y be a function. If the inverse image of
each regqular closed set of Y is a g*b-open set in X, then [ is weakly g*bp-
continuous.

Proof. Let A be any preopen set of Y. Then CI(A) is a regular closed set
in Y. By hypothesis, we have f~!(CI(A)) is a g*b-open set in X. Therefore
by theorem5.2, f is weakly g*bp-continuous. O

Corollary 5.9. Let f : X — Y be a function. If the inverse image of
each reqular open set of Y is a g*b-closed set in X, then [ is weakly g*bp-
continuous.



14 ALIAS B. KHALAF, SUZAN N. DAWOD, AND SAEID JAFARI

Proof. Follows from Theorem 5.8 O

Theorem 5.10. Let f : X — Y be weakly g*bp-continuous function, if
A is g*b-closed subset of X, then the restriction flA : A — Y is weakly
g*bp-continuous in the subspace A.

Proof. Let x € A and B be a preclosed set of Y containing f(x). Since
f is weakly g*bp-continuous, so by Corollary 5.9, f~1(IntB) is g*b-closed
set in X, and (f|A)"!(IntB) = AN f~'(IntB) is g*b-closed in X. Hence,
by Theorem 3.30 [43], (f]A)~1(IntB) is g*b-closed in A. Therefore, f|A is
weakly g*bp-continuous. O

Theorem 5.11. Let f : X — Y be weakly g*bp-continuous function and for
each x € X. IfY is any subset of Z containing f(x), then f: X — Z is
weakly g*bp-continuous.

Proof. Let € X and A be any preopen set of Z containing f(z). Then
ANY is preopen in Y containing f(x). Since f : X — Y is weakly g*bp-
continuous, there exists a g*b-open set U of X containing z such that f(U) C
CI(ANY) and hence f(U) C ClA. Therefore, f : X — Z is weakly g*bp-
continuous. ([

Theorem 5.12. Let f : X — Y and g : Y — Z be functions. Then
the composition function go f : X — Z is weakly g*bp-continuous if f is
g*b-irresolute and g is weakly g*bp-continuous.

Proof. Let x € X and A be preopen set of Z containing g(f(z)). Since
g is weakly g*bp-continuous, there exists a g*b-open set U of Y containing
f(z) such that g(U) C CIA. It is clear that g~*(CIA) is g*b-open set
of Y containing f(z). Since f is g*b-continuous, then f~!(g~1(CIA)) =
(g o f)~Y(CIA) is g*b-open set in X containing z and Clearly (g o f)(g o
f)~Y(CI1A) C ClA. Hence (go f) is weakly g*bp-continuous. O

Theorem 5.13. For a function f : (X, 7) — (Y, 0), the following statements
are equivalent:

(1) fis weakly g*bp-continuous.

(2) *ble YIntpCIB) C f~Y(pCIB),for each BCY .

(3) f~Y(pIntB) C g*bIntf~1(ClpIntB),for each B C Y.

(4) f~Y(pIntpCIlA) C g*blntffl(ClA),for each preopen set A of Y.
(5) fYA) C g*bIntf~ (ClA),for each reqular preopen set A of Y.
(6) g*bClf~1(IntF) C f~ ( ),for each regular preclosed set F of Y.
(7) g*bClf~ (IntF) - f YClIntF),for each preclosed set F of Y.
(8) *bC’lf L(A) C f~Y(CIA),for each preopen set A of Y.

(9) f~1(IntF) C g*b]ntf_l(F),for each preclosed set F' of Y.

Proof. (1) = (2). Let B be any subset of Y. Assume that x ¢ f~1(pCIB).
Then f(z) ¢ pCIB and there exists a preopen set A containing f(z) such
that AN B = ¢, hence AN IntpCIB = ¢,then A C (IntpClB)° then
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CIA N IntpCIB = ¢ By(1l), there exists a g*b-open set U of X contain-
ing = such that f(U) C ClA. Therefore, we have f(U) N IntpCIB = ¢
which implies U N f~(IntpCIB) = ¢ and hence x ¢ g*bClf~(IntpCIB).
Therefore, we obtain g*bClf~!(IntpCIB) C f~(pCIB).
(2) = (3). Let B be any subset of Y. Then apply(2) to Y \ B, we ob-
tain g*bClf~1(IntpCl(Y \ B)) C f~Y(pCl(Y \ B)) = g*bClf1(Int(Y \
pIntB)) C f~Y(Y \pIntB) = g*bClf~ (Y \ ClpIntB) C f~1 (Y \pIntB) =
g*bClUX\ f~H(ClpIntB) C X\ f~Y(pIntB) = X\ g*bInt(f 1 (ClpIntB)) C
X\f~YpIntB) = f~Y(pIntB) C g*bInt(f~1(ClpIntB)). Therefore, we ob-
tain f~1(pIntB) C g*bInt(f~1(ClpIntB)).
(3) = (4). Let A be any preopen set of Y. Then apply(3) to pClA, we obtain
fYHpIntpClA) C g*bInt(f~1(ClpIntpCIlA)) C g*bInt(f~1(ClIntCIA)) =
g*bIntf~1(ClA). Therefore we obtain f~(pIntpClA) C g*bIntf~1(CIA).
(4) = (5). Let A be any regular preopen set of Y. Then A is preopen set of
Y. By(4), we have f~1(A) = f~Y(pIntpClA) C g*bInt f~1(CIA). Therefore
we obtain f~1(A) C g*bIntf~1(CIA).
(5) = (6). Let F' be any regular preclosed set of Y. Then Y \ F is a regular
preopen set of Y. By(5), we have f~1(Y'\ F) C g*bIntf~L(CI(Y\F)) = X\
FYF) Cg*bIntf~H(Y \IntF) = X\ f~1(F) C g*bInt(X \ f~1(IntF)) =
X\ fYF) C X\ gbClf~1(IntF) = g*bClf~1(IntF) C f~Y(F). Hence
g*bClf~1(IntF) C f~Y(F).
(6) = (7). Let F be any preclosed set of Y. Then pClpIntF is regular pre-
closed set of Y. By(6), we have g*bClf ! (IntpClpIntF) = g*bClf 1 (IntF) C
f~1(pClpIntF). Therefore we obtain g*bClf~ (IntF) C f~1(pClpIntF).
(7) = (8). Let A be any preopen set of Y. Then by(7) we have ¢g*bCIf~1(A) C
g*bCLf ~L(IntClA) C f~YpClpIntClA) C f~Y(ClIntCIA) = f~1(CIA).
Therefore,g*bCl1f~1(A) C f~1(CIA).
(8) = (9). Let F be any preclosed set of Y. Then Y \ F' is preopen set of Y.
By(8), we have g*bClf =1 (Y \ F) C f~1(CU(Y \ F)) = g"bCUX \ f~(F) €

LY\ IntF) = X\ g*bIntf~1(F) C X\ f~1(IntF) = f~1(IntF) C
g*bIntf~Y(F). Therefor f~'(IntF) C g*bIntf~'(F).
(9) = (1). Let x € X and let A be any preopen set in Y containing
f(x). Then z € f~1(A) and CIA is a closed set, hence preclosed, in Y.
By (9), we have z € f~1(A) C f~1(IntClA) C g*bIntf~1(CIA). If we put
U = g*bIntf~1(ClA), then we obtain that z € U and f(U) C CIA. There-
fore,, f is weakly ¢g*bp-continuous.

]

Theorem 5.14. The followings are equivalent for a function f : X — Y.
(1) f is weakly g*bp-continuous.
(2) f(g *bCl(A)) C Clgp(f(A)) for each subset A of X.

(3) g*bCI(f~Y(B)) C f~Y(Cly(B)) for each subset B of Y.

(4) g*bCI(f~L(Int(Cly(B)))) C f~1(Cly(B)) for every subset B of Y.

Proof. (1) = (2). Let A be any subset of X. Suppose that f(g*bCl(A)) €
Clp(f(A)). Then there exists y € f(g*bCl(A)) such that y ¢ Cla(f(A)),
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then there exists an open set G in Y containing y such that CIGN f(A) = ¢.
If f~'(y) = ¢, then there is nothing to prove. Suppose that z be any
arbitrary point of f~!(y), so f(z) € G. Since G is open then its pre-
open set in Y, by(1), there exists a g*b-open set U of X containing z
such that f(U) C CI(G). Therefore, we have f(U) N f(A) = ¢. Then
x ¢ g*bCl(A). Hence y ¢ f(g*bCI(A)) which is a contradiction. Then
F(g*bCI(A)) C Cly(f(A)).

(2) = (3). Let B be any subset of Y. Set A = f~1(B) in (2) then we have
F(g"bCI(f~1(B))) € Clg(B) and g*bCl(f~1(B)) € f~H(Clo(B)).

(3) = (4). Let B be any subset of Y. Since Cly(B) is closed in Y hence is
preclosed in Y. We have g*bCI(f 1 (Int(Cly(B)))) C f~1(Cla(Int(Cls(B))))
71 (CUInt(Clo(B)))) € £ (Cla(B)).

(4) = (1). Let G be any preopen set of Y, then G C IntCl(G). Apply(4) to
IntCIl(G), we get g*bClf~L(IntCle(IntCl(G))) C f~1(Clg(IntCI(R))). By
Theorem 2.13, we have g*bCIlf~1(IntCl(G)) C f~YHCl(IntCI(G))). So,
we get, g*bCI(f~H(G)) C ¢g*bClf~t(IntCI(G)) C f~HCl(IntCl(G))) C
f~1(CIG). Hence, by Theorem 5.13, f is weakly g*bp-continuous. O

Corollary 5.15. If a function f: X — Y is weakly g*bp-continuous, then
f71(A) is g*b-closed in X for every 0-closed set A in'Y .

Proof. If A is 0-closed, so by Theorem 5.14, we obtain that ¢g*bCI(f~1(A)) C
f1(ClpA) = f~1(A). Therefore, f~1(A) is g*b-closed. O

Corollary 5.16. Let f : X — Y be any function. If f~1(Cle(B)) is g*b-
closed in X for every subset B of Y, then f : X — Y is weakly g*bp-
continuous .

Proof. Since f~1(Clg(B)) is g*b-closed in X, we have g*bCIl(f~}(B)) C
g*bClf~1(Cly(B)) = f~1(Cly(B)). Therefore, by Theorem 5.14, f is weakly
g*bp-continuous. O

Theorem 5.17. A function f: X — Y is is weakly g*bp-continuous if and
only if f~1(A) C g*bIntf~1(CI(A)) for each preopen set A in'Y.

Proof. Necessity. Let f be weakly g*bp-continuous and A be any preopen
set of Y, then A C IntCI(A). Therefore, by Theorem 5.13, we get f~1(A) C
fH(IntCI(A)) C g*bIntf~H(CI(A)). Hence, f~1(A) C g*bIntf~H(CI(A)).

Sufficiency. Let A be any regular preopen set of Y, then A is preopen set
in Y. By hypothesis, we have f~1(A4) C g*bIntf~1(CI(A)). Therefore, by
Theorem 5.13, f is weakly g*bp-continuous. O

Corollary 5.18. A function f : X = Y is is weakly g*bp-continuous if and
only if g*bClf~1(Int(F)) C f~Y(F) for each preopen set F in'Y.
Theorem 5.19. If f: X = Y is a weakly g*bp-continuous function and Y
s extremally disconnected space, then f is almost g*bp-continuous.

Proof. Let x € X and let A be any preopen set of Y containing f(z). Since
f is weakly g*bp-continuous, there exists a g*b-open set U of X containing z

N
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such that f(U) C CI(A). Since Y is extremally disconnected, then f(U) C
IntCI(A). Therefore, f is almost g*bp-continuous. O
Y

Theorem 5.20. If f : X — Y is weakly g*bp-continuous injection and
is pre-1y then X is g*b — T}.

Proof. Assume that Y is pre-T. For any distinct points z and y in X, there
exists preopen set A and W such that f(z) € A, f(y) ¢ A, f(z) ¢ W and
fly) € W. Since f is weakly g*bp-continuous, there exists a g*b-open sets
G and H in X containing x and y respectively, such that f(G) C CI(U),
f(H) CCIl(A), f(H) C Cl(W) since A and W are disjoint then CI(A) and
Cl(W) are disjoint. Thus we obtain y ¢ G, v ¢ H. This show that X is
g*b - Tl. [l

Theorem 5.21. If f : X — Y is weakly g*bp-continuous injection and Y
is pre-Ts, then X is g*b — Tb.

Proof. For any pair of distinct points z and y in X, there exist disjoint
preopen sets U and V in Y such that f(z) € U and f(y) € V. Since f is
weakly g*bp-continuous, there exist g*b-open sets G and H in X containing
x and y, respectively, such that f(G) C CI(U) and f(H) C CI(V). Since
U and V are disjoint, we have Cl(U) N CIl(V) = ¢, hence GN H = ¢. This
shows that X is g*b — T5. O
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