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Preface

The 2014 International Conference on Topology and its Applica-
tions took place from July 3 to 7 in the 3rd High School of Nafpak-
tos, Greece. It covered all areas of Topology and its Applications (especially
General Topology, Set-Theoretic Topology, Geometric Topology, Topological
Groups, Dimension Theory, Dynamical Systems and Continua Theory, Com-
putational Topology, History of Topology). This conference was attended by
235 participants from 44 countries and the program consisted by 147 talks.

The Organizing Committee consisted of S.D. Iliadis (University of Patras),
D.N. Georgiou (University of Patras), I.E. Kougias (Technological Educational
Institute of Western Greece), A.C. Megaritis (Technological Educational In-
stitute of Western Greece), and I. Boules (Mayor of the city of Nafpaktos).

The Organizing Committee is very much indebted to the City of
Nafpaktos for its hospitality and for its excellent support during
the conference.

The conference was sponsored by University of Patras, Technological Educa-
tional Institute of Western Greece, Municipality of Nafpaktos, New Media Soft
– Internet Solutions, Loux Marlafekas A.B.E.E., TAXYTYPO – TAXYEK-
TYPOSEIS GRAVANIS EPE, Alpha Bank, and Wizard Solutions LTD.

This volume is a special volume under the title: “Selected papers of the 2014
International Conference on Topology and its Applications” which will be
edited by the organizers (D.N. Georgiou, S.D. Iliadis, I.E. Kougias, and A.C.
Megaritis) and published by the University of Patras. We thank the authors
for their submissions.

Editors

D.N. Georgiou
S.D. Iliadis
I.E. Kougias
A.C. Megaritis
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Abstract

In this paper , we will continue the study of related irresolute functions with g̃α-open
sets [6]. We introduce and study the notion of completely g̃α-irresolute functions.
Further, we discuss the notion of g̃α-quotient functions and study some of their
properties.
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1991 MSC: 54A05, 54D05 54D10, 54D45.

1. Introduction

The first step of generalizing closed set was done by Levine in 1970 [10].
Recently, as generalization of closed sets, the notion of g̃α-closed sets were
introduced and studied by R.Devi et al. [6]. Functions and of course irres-
olute functions stand amoung the most important researched points in the
whole of Mathematical Science. Crossley and Hildebrand [2] introduced the
notion of irresoluteness in 1972. Its importance is significant in various areas
of Mathematics and related sciences. In this paper, we will continue the study
of related irresolute functions with g̃α-open sets. We introduce and study the
notion of completely g̃α-irresolute functions. Further, we discuss the notion of
g̃α-quotient functions and study some of their properties.

All through this paper, (X, τ), (Y, σ) and (Z, η) stand for topological spaces
with no separation axioms assumed, unless otherwise stated. Let A ⊆ X,
the closure of A and the interior of A will be denoted by cl(A) and int(A)

1 jafaripersia@gmail.com
2 selvam mphil@yahoo.com



respectively. A is regular open [17] if A = int(cl(A)) and A is regular closed
[17] if its complement is regular open; equivalently A is regular closed if A =
cl(int(A)).

2. Preliminaries

We recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called

1. a semi-open set [11] if A ⊆ cl(int(A)) and a semi-closed set [11] if
int(cl(A)) ⊆ A and

2. an α-open set [15] if A ⊆ int(cl(int(A))) and an α-closed set [15] if
cl(int(cl(A))) ⊆ A.

The semi-closure (resp. α-closure) of a subset A of a space (X, τ) is the inter-
section of all semi-closed (resp. α-closed) sets that contain A and is denoted
by scl(A) (resp. αcl(A)).

Definition 2.2. A subset A of a space (X, τ) is called a

1. ĝ-closed set [21] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in
(X, τ); the complement of ĝ-closed set is ĝ-open set,

2. ∗g-closed set [19] if cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in (X, τ);
the complement of ∗g-closed set is ∗g-open set,

3. ]gs-closed set [20] if scl(A) ⊆ U whenever A ⊆ U and U is ∗g-open in
(X, τ); the complement of ]gs-closed set is ]gs-open set and

4. g̃α-closed set [6] if αcl(A) ⊆ U whenever A ⊆ U and U is ]gs-open in
(X, τ); the complement of g̃α-closed set is g̃α-open set.

For a topological space (X, τ), RO(X) (resp. RC(X), G̃αO(X)) denotes the
class of all regular open (resp. regular closed, g̃s-open) subsets of (X, τ).

Definition 2.3. A function f : (X, τ)→ (Y, σ) is called

1. strongly continuous [12] if f−1(V ) is both open and closed in (X, τ) for
every subset V of (Y, σ),

2. completely continuous [1] if f−1(V ) is regular open in (X, τ) for every
open set V of (Y, σ),

3. g̃α-continuous [5] if f−1(V ) is g̃α-closed in (X, τ) for every closed set V
of (Y, σ),

4. g̃α-irresolute [5] if f−1(V ) is g̃α-closed in (X, τ) for every g̃α-closed set
V of (Y, σ),

5. g̃α-open [5] if f(V ) is g̃α-open in (Y, σ) for every open set V of (X, τ),
6. g̃α-closed [5] if f(V ) is g̃α-closed in (Y, σ) for every closed set V of (X, τ)

and
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7. quasi g̃α-open [3] if f(V ) is open in (Y, σ) for every g̃α-open set V of
(X, τ).

3. Completely g̃α-irresolute functions

Definition 3.1. A function f : (X, τ) → (Y, σ) is called completely g̃α-
irresolute if the inverse image of each g̃α-open subset of Y is regular open in
X.

Theorem 3.2.

(a) Every strongly continuous function is completely g̃α-irresolute.
(b) Every completely g̃α-irresolute function is g̃α-irresolute and hence g̃α-

continuous.

Proof. It follows from the definitions. �

The converse of the above Theorem need not be true in general as seen from
the following examples.

Example 3.3.

(a) Let X = {a, b, c} = Y , τ = {X,φ, {b}, {b, c}} and

σ = {Y, φ, {a}, {a, b}, {a, c}}.

Define a function f : (X, τ)→ (Y, σ) by f(a) = c, f(b) = a and f(c) = b.
Clearly, f is completely g̃α-irresolute but not strongly continuous.

(b) Let X = {a, b, c} = Y , τ = {X,φ, {a}, {b}, {a, b}} and σ = {Y, φ, {a, b}}.
Define an identity function f : (X, τ)→ (Y, σ). Clearly, f is g̃α-irresolute
but not completely g̃α-irresolute.

Theorem 3.4. If a function f : (X, τ) → (Y, σ) is completely g̃α-irresolute
then f−1(F ) is regular closed in X for every g̃α-closed set F of Y .

Proof. Let F be any g̃α-closed set of Y . Then Y/f ∈ G̃αO(Y ). By hypothesis,
f−1(Y/F ) = X/f−1(F ) ∈ RO(X). We have f−1(F ) ∈ RC(X).
Converse is similar. �

Lemma 3.5. [13] Let S be an open subset of a space (X, τ). Then the following
hold:

(i) If U is regular open in X, then so is U ∩ S in the subspace (S, τS).
(ii) If B ⊂ S is regular open in (S, τS), then there exists a regular open set

U in (X, τ) such that B = U ∩ S.
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Theorem 3.6. If f : (X, τ) → (Y, σ) is a completely g̃α-irresolute function
and A is any open subset of X, then the restriction f/A : A→ Y is completely
g̃α-irresolute.

Proof. Let F be a g̃α-open subset of Y . By hypothesis, f−1(F ) is regular open
in X. Since A is open in X, it follows from Lemma 3.5 that (f/A)−1(F ) =
A ∩ f−1(F ), which is regular open in A. Therefore, f/A is completely g̃α-
irresolute. �

Definition 3.7. [4] A topological space X is said to be g̃α-normal if each pair
of non-empty disjoint closed sets can be separated by disjoint g̃α-open sets.

Theorem 3.8. If f : (X, τ) → (Y, σ) is completely g̃α-irresolute, g̃α-closed
surjection and X is g̃α-normal, then Y is g̃α-normal.

Proof. Let F1 and F2 be any distinct g̃α-closed sets of Y . Since f is completely
g̃α-irresolute, f−1(F1) and f−1(F2) are disjoint g̃α-closed sets of X. By g̃α-
normal of X, there exist U1, U2 ∈ G̃αO(X) such that f−1(F1) ⊂ U1 and
f−1(F2) ⊂ U2 and U1 ∩ U2 = φ. Let Vi = Y − f(X − Ui) for i = 1, 2. Since f
is g̃α-closed, the sets V1, V2 are g̃α-open in Y and Fi ⊂ Vi for i = 1, 2. Since
U1 and U2 are disjoint and f−1(Fi) ⊂ Ui for i = 1, 2, we obtain V1 ∩ V2 = φ.
This shows that Y is g̃α-normal. �

Definition 3.9. A space X is said to be almost connected [8] (resp. g̃α-
connected [4]) if there does not exist disjoint regular open (resp. g̃α-open)
sets A and B such that A ∪B = X.

Theorem 3.10. If f : (X, τ) → (Y, σ) is completely g̃α-irresolute surjective
function and X is almost connected, then Y is g̃α-connected.

Proof. Suppose that Y is not g̃α-connected. Then there exists disjoint g̃α-
open sets A and B of Y such that A ∪ B = Y . Since f is completely g̃α-
irresolute surjective, f−1(A) and f−1(B) are regular open sets in X. Moreover,
f−1(A)∪f−1(B) = X, f−1(A) 6= φ and f−1(B) 6= φ. This shows that X is not
almost connected, which is contradiction to the assumption that X is almost
connected. By contradiction, Y is g̃α-connected. �

Definition 3.11. A space (X, τ) is said to be g̃α-T1 [4] (resp. r-T1 [8]) if for
each pair of distinct points x and y of X, there exist g̃α-open (resp. regular
open) sets U1 and U2 such that x ∈ U1 and y ∈ U2, x /∈ U2 and y /∈ U1.

Theorem 3.12. If f : (X, τ) → (Y, σ) is completely g̃α-irresolute injective
function and Y is g̃α-T1, then X is r-T1.

Proof. Suppose that Y is g̃α-T1. For any two distinct points x and y of X,
there exist g̃α-open sets F1 and F2 in Y such that f(x) ∈ F1, f(y) ∈ F2, f(x) /∈
F2 and f(y) /∈ F1. Since f is injective completely g̃α-irresolute function, we
have X is r-T1. �
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Definition 3.13. A space (X, τ) is said to be g̃α-T2 [4] for each pair of distinct
points x and y in X, there exist distinct g̃α-open set A and B in X such that
x ∈ A and y ∈ B.

Theorem 3.14. If f : (X, τ) → (Y, σ) is completely g̃α-irresolute injective
function and Y is g̃α-T2, then X is T2.

Proof. Similar to the proof of Theorem 3.12. �

Definition 3.15. A space X is said to be

(i) Nearly compact [16] if every regular open cover of X has a finite subcover.
(ii) Nearly countably compact [9] if every countable cover by regular open

sets has a finite subcover.
(iii) Nearly Lindelof [8] if every cover of X by regular open sets has a countable

subcover.
(iv) g̃α-compact if every g̃α-open cover of X has a finite subcover.
(v) countably g̃α-compact if every g̃α-open countable cover of X has a finite

subcover.
(vi) g̃α-Lindelof if every cover of X by g̃α-open sets has a countable subcover.

Theorem 3.16. If f : (X, τ) → (Y, σ) is completely g̃α-irresolute surjective
function. Then the following statements hold:

(i) If X is nearly compact, then Y is g̃α-compact
(ii) If X is nearly Lindelof, then Y is g̃α-Lindelof
(i) If X is nearly countably compact, then Y is countably g̃α-compact

Proof. (i) Let f : (X, τ) → (Y, σ) be a completely g̃α-irresolute function of
nearly compact space X onto a space Y . Let {Uα : α ∈ ∆} be any g̃α-open
cover of Y . Then, {f−1(Uα) : α ∈ ∆} is a regular open cover of X. Since X
is nearly compact, there exists a finite subfamily, {f−1(Uαi)/i = 1, 2, ....n} of
{f−1(Uα) : α ∈ ∆} which cover X. It follows that {Uαi : i = 1, 2, ..n} is a finite
subfamily of {Uα : α ∈ ∆} which cover Y . Hence, space Y is a g̃α-compact.
The proof of other cases are similar. �

Definition 3.17. A space (X, τ) is said to be:

(i) S-closed [18] (resp. g̃α-closed compact) if every regular closed (resp. g̃α-
closed) cover of X has a finite subcover.

(ii) countably S-closed compact [7] (resp. countably g̃α-closed compact) if
every countable cover of X by regular closed (resp. g̃α-closed) sets has a
finite subcover.

(iii) S-Lindelof [14] (resp. g̃α-closed Lindelof) if every cover of X by regular
closed (resp. g̃α-closed) sets has a countable subcover.

Theorem 3.18. Let f : (X, τ)→ (Y, σ) be a completely g̃α-irresolute surjec-
tive function. Then the following statements hold:

(i) If X is S-closed, then Y is g̃α-closed compact
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(ii) If X is S-Lindelof, then Y is g̃α-closed Lindelof
(iii) If X is countably S-closed-compact, then Y is countably g̃α-closed com-

pact

Proof. It can be obtained similarly as the Theorem 3.16. �

Theorem 3.19. The following hold for function f : (X, τ) → (Y, σ) and
g : (Y, σ)→ (Z, η).

(i) If f is completely g̃α-irresolute and g is strongly g̃α-continuous, then g◦f
is completely continuous.

(ii) If f is completely g̃α-irresolute and g is g̃α-irresolute, then g ◦ f is com-
pletely g̃α-irresolute.

(iii) If f is completely continuous and g is completely g̃α-irresolute functions,
then g ◦ f is completely g̃α-irresolute.

Proof. It is obvious. �

4. G̃α-Quotient function

Definition 4.1. A surjective function f : (X, τ) → (Y, σ) is said to be a
g̃α-quotient function if f is g̃α-continuous and g̃α-open.

Theorem 4.2. Every quotient function is g̃α-quotient function.

Proof. Follows from the definitions. �

The following example shows that g̃α-quotient function need not be a quotient
function in general.

Example 4.3. Let X = {a, b, c} = Y , τ = {X,φ, {a}, {b}, {a, b}} and σ =
{Y, φ, {a, b}}. Clearly, the identity function f : (X, τ)→ (Y, σ) is g̃α-quotient
but not quotient function.

Theorem 4.4. Let f : (X, τ) → (Y, σ) be an open surjective g̃α-irresolute
function and g : (Y, σ) → (Z, η) be a g̃α-quotient function. Then the compo-
sition g ◦ f : (X, τ)→ (Z, η) is a g̃α-quotient function.

Proof. Let V be any open set in (Z, η). Then g−1(V ) is a g̃α-open set, since g
is a g̃α-quotient function. Since f is g̃α-irresolute, f−1(g−1(V )) = (g ◦f)−1(V )
is a g̃α-open in X. This shows that g ◦ f is g̃α-continuous. Also, assume that
V is open in (X, τ). Since f is open in (Y, σ). Then g(f(V )) is also open in
(Z, η), because g is g̃α-quotient function. It follows that (g ◦ f)(V ) is open in
(Z, η). Therefore, (g ◦ f)(V ) is g̃α-open in (Z, η). Thus, (g ◦ f) is g̃α-quotient
function. �

Theorem 4.5. If h : (X, τ) → (Y, σ) is a g̃α-quotient function and g :
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(X, τ) → (Z, η)is a continuous function where (Z, η) is a space that is con-
stant on each set h−1({y}), for y ∈ Y , then g induces a g̃α-continuous function
f : (Y, σ)→ (Z, η) such that f ◦ h = g.

Proof. Since g is constant on h−1({y}), for each y ∈ Y , the set g(h−1({y}))
is a point set in (Z, η). Let f(y) denote this point x ∈ X, f(h(x)) = g(x). We
claim that f is g̃α-continuous. Let V be any open set on (Z, η), then g−1(V ) is
open, as g is continuous. But g−1(V ) = h−1(f−1(V )) is open in (X, τ). Since
h is a g̃α-quotient function, f(V ) is g̃α-open in Y . �

Definition 4.6. A surjective function f : (X, τ) → (Y, σ) is said to be a
strongly g̃α-quotient function if f is g̃α-continuous and quasi g̃α-open.

Theorem 4.7. Every strongly g̃α-quotient function is g̃α-quotient function.

Proof. It follows from the definitions. �

The converse of the above Theorem need not be true by the following example.

Example 4.8. Let X = {a, b, c} = Y , τ = {X,φ, {a}, {b}, {a, b}} and σ =
{Y, φ, {a, b}}. Clearly, the identity function f : (X, τ)→ (Y, σ) is g̃α-quotient
but not strongly g̃α-quotient function.

Definition 4.9. A function f : (X, τ) → (Y, σ) is called a completely g̃α-
quotient function if f is g̃α-irresolute and quasi g̃α-open.

Theorem 4.10. Every completely g̃α-quotient function is strongly g̃α-quotient
function.

Proof. Suppose V is an open set in Y , then it is a g̃α-open in Y . Since f is
g̃α-irresolute, f−1(V ) is a g̃α-open in X. Thus V is open in Y gives f−1(V )
is a g̃α-open set in X. Suppose f−1(V ) is a g̃α-open set in X. Since f is
a completely g̃α-quotient function, V is open set in Y . Hence, f is strongly
g̃α-quotient function. �

Definition 4.11. A function f : (X, τ)→ (Y, σ) is called a pre g̃α-open [4] if
the image of every g̃α-open set in X is an g̃α-open in Y .

Theorem 4.12. Let f : (X, τ) → (Y, σ) be a surjective pre g̃α-open and
g̃α-irresolute function and g : (Y, σ) → (Z, η) be a completely g̃α-quotient
function. Then g ◦ f is completely g̃α-quotient function.

Proof. Let V be a g̃α-open set in Z. Then g−1(V ) is a g̃α-open in Y because
g is a completely g̃α-quotient function. We claim that g ◦ f is g̃α-irresolute.
Since f is g̃α-irresolute, f−1(g−1(V )) is a g̃α-open set in X, that is g ◦ f is
g̃α-irresolute. Suppose V be a g̃α-open set in X. Since f is pre g̃α-open , f(V )
is a g̃α-open in Y . Since g is completely g̃α-quotient function, g(f(V )) is open
in Z. Therefore, (g◦f)(V ) is open in Z. Hence, g◦f is completely g̃α-quotient
function. �
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Theorem 4.13. Let f : (X, τ) → (Y, σ) be a completely g̃α-quotient func-
tion and g : (Y, σ) → (Z, η) be a g̃α-irresolute, quasi g̃α-open, then g ◦ f is
completely g̃α-quotient function.

Proof. Let V be a g̃α-open set in Z. Then g−1(V ) is a g̃α-open in Y ,
f−1(g−1(V )) is a g̃α-open set in X. Hence g ◦ f is g̃α-irresolute. Assume that
V be a g̃α-open in X. Since f is completely g̃α-quotient, f(V ) is open in Y .
Implies that f(V ) is g̃α-open in Y . Then g(f(V )) is open in Z. Therefore,
g ◦ f is completely g̃α-quotient function. �

Corollary 4.14. Let f : (X, τ) → (Y, σ) be a strongly g̃α-quotient function
and g : (Y, σ) → (Z, η) be a strongly g̃α-quotient, then g ◦ f is strongly
g̃α-quotient function.

Proof. It follows from the Theorem 4.13. �

Theorem 4.15. If f : (X, τ)→ (Y, σ) be g̃α-quotient surjective function and
X is g̃α-connected (resp. Y is g̃α-connected), then Y is connected (resp. X is
connected).

Proof. Suppose that Y is not connected. Then there exist disjoint open sets A
and B of Y such that A∪B = Y . Since f is g̃α-quotient surjective, f−1(A) and
f−1(B) are g̃α-open sets in X. Moreover, f−1(A) ∩ f−1(B) = X, f−1(A) 6= φ
and f−1(B) 6= φ. This shows that X is not g̃α-connected, which is a con-
tradiction to the assumption that X is g̃α-connected. By contradiction, Y is
connected. �

Theorem 4.16. If f : (X, τ) → (Y, σ) is completely g̃α-quotient surjective
function and X is g̃α-connected (resp. Y is connected), then Y is g̃α-connected
(resp. X is g̃α-connected).

Proof. Suppose that Y is not g̃α-connected. Then there exist disjoint g̃α-
open sets A and B of Y such that A ∪ B = Y . Since f is completely g̃α-
quotient surjective, f−1(A) and f−1(B) are g̃α-open sets in X. Moreover,
f−1(A) ∩ f−1(B) = X, f−1(A) 6= φ and f−1(B) 6= φ. This shows that X
is not g̃α-connected, which is a contradiction to the assumption that X is
g̃α-connected. By contradiction, Y is g̃α-connected. �

Theorem 4.17. If f : (X, τ) → (Y, σ) is strongly g̃α-quotient surjective
function and X is g̃α-connected (resp. Y is connected), then Y is connected
(resp. X is g̃α-connected).

Proof. Suppose that Y is not connected. Then there exist disjoint open sets
A and B of Y such that A∪B = Y . Since f is strongly g̃α-quotient surjective
function, f−1(A) and f−1(B) are g̃α-open sets in X. Moreover, f−1(A) ∩
f−1(B) = X, f−1(A) 6= φ and f−1(B) 6= φ. This shows that X is not g̃α-
connected, which is a contradiction to the assumption that X is g̃α-connected.
By contradiction, Y is connected. �
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