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Abstract. In this paper we discuss the Erdós-Straus conjecture. Using a very

simple method we show that for each L ∈ N with L > n− 1 there exist some

(x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that
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In particular, for each L ≥ 3 there exist some (x1, x2, x3) ∈ N3 with x1 6= x2,

x2 6= x3 and x3 6= x1 such that

c1
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L
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L

for some c1, c2 > 1.

1. Introduction

The Erdós-Straus conjecture is the assertion that for each n ∈ N for n ≥ 3 there
exist some x1, x2, x3 ∈ N such that

1

x1
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1
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1
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4

n
.

More formally the conjecture states

Conjecture 1.1. For each n ≥ 3, does there exist some x1, x2, x3 ∈ N such that

1

x1
+

1

x2
+

1

x3
=

4

n
?

Despite its apparent simplicity, the problem still remain unresolved. However
there has been some noteworthy partial results. For instance it is shown in [1]
that the number of solutions to the Erdós-Straus Conjecture is bounded poly-
logarithmically on average. The problem is also studied extensively in [2] and
[3]. In this paper, using a somewhat different and a much simpler method, we show
that

Theorem 1.1. For each L ∈ N with L > n− 1 there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that
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In particular, for each L ≥ 3 there exist some (x1, x2, x3) ∈ N3 with x1 6= x2,
x2 6= x3 and x3 6= x1 such that

3
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+
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� 3

L
.

2. Main result

In this section we introduce the notion of compression of points (x1, x2, . . . , xn) ∈
Rn for xj 6= 0 for all j = 1, 2, . . . , n. This notion is of independent interest and
can be developed further but we deem it necessary in our studies. We launch the
following language in that regard.

Definition 2.1. By the compression of scale m ≥ 1 on Rn we mean the map
V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. The notion of compression is in some way the process of re scaling
points in Rn for n ≥ 2. Thus it is important to notice that a compression pushes
points very close to the origin away from the origin by certain scale and similarly
draws points away from the origin close to the origin.

Proposition 2.1. A compression of scale m ≥ 1 with Vm : Rn −→ Rn is a bijective
map.

Proof. Suppose Vm[(x1, x2, . . . , xn)] = Vm[(y1, y2, . . . , yn)], then it follows that(
m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
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m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective. �

Remark 2.3. In order to get a handle on the general case of the problem, we
introduce the notion of the mass of compression on points (x1, x2, . . . , xn) ∈ Rn for
n ≥ 2.

Definition 2.4. By the mass of a compression of scale m ≥ 1 we mean the map
M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

Remark 2.5. We find the following elementary estimate useful.

Lemma 2.6. The estimate remain valid∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · .

Remark 2.7. Next we prove upper and lower bounding the mass of the compression
of scale m ≥ 1. We use these estimates as a black box in obtaining our result.
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Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2. Then the estimates hold

m log

(
1− n− 1

sup(xj)

)−1

�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2 with xj ≥ 1.

Proof. Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 with xj ≥ 1. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by applying Lemma 2.6. The lower estimate also
follows by noting the lower bound and applying Lemma 2.6

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Theorem 2.8. There exist some (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i <
j ≤ n for each n ≥ 2 with xj ≥ 1 such that

m
n

L1
�M(Vm[(x1, x2, . . . , xn)])� m

n

L2

for some L1, L2 ∈ N.

Proof. First choose (x1, x2, . . . , xn) ∈ Nn such that sup(xj) > Inf(xj) > n − 1 for
j = 1, . . . n. Then from Proposition 2.2, we have the upper bound

M(Vm[(x1, x2, . . . , xn)])� m log
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1 +

n− 1

Inf(xj)
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The lower bound also follows by noting that

M(Vm[(x1, x2, . . . , xn)])� m log
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and the inequality follows by taking sup(xj) = L1 and Inf(xj) = L2. �
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Remark 2.9. It is quite implicit from the estimates in Theorem 2.8 that the implicit
constants arising from the inequality are each of scale bigger than 1.

Theorem 2.8 is redolent of the Erdòs-Straus conjecture. Indeed It can be con-
sidered as a weaker version of the conjecture. It is quite implicit from Theorem 2.8
that there are infinitely many points in Nn that satisfy the inequality with finitely
many such exceptions. Therefore in the opposite direction we can assert that there
are infinitely many L1, L2 ∈ N that satisfies the inequality. We state a consequence
of the result in Theorem 2.8 to shed light on this assertion.

Corollary 2.1. For each L ∈ N with L > n− 1 there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for all 1 ≤ i < j ≤ n such that
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1

xj
� n

L

In particular, for each L ≥ 3 there exist some (x1, x2, x3) ∈ N3 with x1 6= x2,
x2 6= x3 and x3 6= x1 such that

3
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� 1

x1
+

1
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+

1

x3
� 3

L
.

Proof. Let L ∈ N with L > n − 1 and take K = sup(xj) and L = Inf(xj) for any
such point (x1, x2, . . . , xn) ∈ Nn. Then it follows that

n

L
� n
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�
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� n
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.

The special case follows by taking n = 3. �

It is important to recognize that the condition (x1, x2, . . . , xn) ∈ Nn with xi 6= xj
for 1 ≤ i < j ≤ n in the statement of the result is not only a quantifier but
it a necessity; otherwise, the estimate for the mass of compression will be flawed
completely. To wit, suppose that we take x1 = x2 = . . . = xn, then it will follow
that Inf(xj) = sup(xj), in which case the mass of compression of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension one could
also try to equalize the sub-sequence on the bases of assigning the Supremum and
the Infimum and obtain an estimate but that would also contradict the mass of
compression inequality after a slight reassignment of the sub-sequence. Thus it
is important for the estimates to make any good sense to ensure that any tuple
(x1, x2, . . . , xn) ∈ Nn must satisfy xi 6= xj for all 1 ≤ i < j ≤ n. Thus it is required
in our result that any tuple we use has to have distinct entry.
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3. Further discussions

The result can be interpreted as saying that for each L ≥ 3 there exist some
(x1, x2, x3) ∈ N3 with x1 6= x2, x2 6= x3 and x3 6= x1 such that

c1
3

L
≤ 1

x1
+

1

x2
+

1

x3
≤ c2

3

L

for some constants c1, c2 > 1. The Erdós-Straus conjecture will follow if we can
take c1 = c2 = 4

3 . Investigating the scale of these constants is the motivation for
our next quest, which we do not pursue in this paper. Indeed the method we have
employed not only does it put a constraint on the unit sum of possible solutions to
the Erdós-Straus conjecture but also provides a lower threshold below which the
size of the constituent triple should not fall. On much general setting, the result
has the following twist

Theorem 3.1. For each L ∈ N with L > n− 1, there exist some (x1, x2, . . . , xn) ∈
Nn with xi 6= xj for all 1 ≤ i < j ≤ n and some constant c1, c2 > 1 such that

c1
n
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≤

n∑
j=1
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xj
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n

L
.
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