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Abstract: Calculations are done to determine the age of the Sun using data collected by
the Genesis Space Craft, and interpretation is accomplished with the General Theory of
Stellar Metamorphosis. As it turns out, when D/H ratios found on the Earth and other
celestial bodies are pitted against one another, a much different picture of the solar
system comes to light. I have calculated the Sun as being between 5.8 and 13.13 million
years old. This means it is nowhere near the proposed 4.5 billion years accepted and
taught by the mainstream. As well the author's previous calculations were also off.
Explanation is provided.

Scanned is the original paper where the data on the D/H ratios of the Sun is
taken from. Ignore the intrepretation provided by the authors on why the ratio is so
low, just look at the data first and draw your own conclusions. The highlighted area is
where the measurements were taken from. Keep in mind the authors of the paper do
not understand how stars evolve (the Earth is a very highly evolved star), so using D/H
ratios to give them an age does not occur to them. It is clear to me though. If you
measure the D/H ratio of the Earth, and do a few quick calculations comparing the
Earth to the Sun you wind up with the Sun being a very young star. This method can
also be used to date other stars, stellar remains and can be used to determine when a
layer of sediment was formed during a star's late term evolution due to crystallization
and trapping of the D/H ratio at the time. It would be similar to taking core samples of
ice, the ice traps samples of the atmosphere when it solidifed, the same goes with the
crust. This method can be used all the way to Venus aged objects which are into the
hundreds of billions of years old. Earth's initial D/H ratio is close to the Sun's current
one, as it is 5.8 - 13.13 million years old. A good initial D/H ratio therefore for all stars
right after they are born is about 1* 107, or .1 ppm (part per million).
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A NEW UPPER LIMIT ON THE D/H RATIO IN THE SOLAR WIND. G. R. Huss'
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Introduction: The deuterium (D) abundance in the
Sun provides a direct test of our understanding of solar
structure and nuclear burning history as well as a probe
of spallation processes at the Sun’s surface. According
to standard models, the original inventory of D in the
Sun was converted to “He as nuclear burning began,
while the protosun was still fully convective [1]. The
*He/*He ratio currently inferred for the Sun is consistent
with near-complete conversion of D to “He. Today,
spallation reactions in the outer layers of the Sun pro-
duce D. Solar D has been observed in solar energetic
particles, but not so far in normal solar wind [2]. Deu-
terium produced by spallation is converted to *He at the
base of the Sun’s outer convective zone. However,
there is insufficient data to constrain the efficiency of D
production and the steady-state abundance of D in the
Sun’s outer layers.

The only sample-based data on D/H in the solar
wind come from lunar samples. Ion probe measure-
ments of alunar regolith sample gave 8D as low as
-950%0 (D/H = 8x10) [3]. Extrapolation of a correla-
tion between 8D of H, and mole fraction of H in H,O
gives 8D for the solar wind of <-980%. (D/H < 3x10°°)
[4, 5]. But these values have large uncertainties.

Although the Genesis Mission did not specifically
propose to measure D/H in the solar wind, the high
concentration of solar wind hydrogen in the Genesis
array collectors allows us to improve the estimate of
D/H in the Sun. We therefore used the Cameca ims
1280 at the University of Hawai‘i to measure D/H in
diamond-like carbon on silicon (DOS) and silicon (Si)
collectors from the B/C-array, which sampled the bulk
solar wind, and a DOS collector from the H-array,
which sampled only the “fast” solar wind [6].

Experimental: Standard implants for H (DOS, Si)
and Genesis collectors 60628 (DOS, B/C-array), 60631
(DOS, H-array), and 60442 (Si, B/C-array) were
mounted together in a single 9-place holder and
pumped down in the ion probe airlock for three days
before the analysis session. The Ti sublimation pump
gettered H in the sample chamber for 24 hours prior to
the session. A liquid nitrogen trap used during the
measurements further reduced the sample-chamber
pressure during measurements to ~1x107° torr

A Cs’ primary ion beam generated negative second-
ary ions of H and D. On DOS, *C", >CH", and "°C,
were also monitored to help identify and constrain in-
strument fractionation. Before each measurement, the
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Figure 2: Background-corrected count-rate profiles for the
Genesis DOS B/C-array collector compared to H and D pro-
files calculated by SRIM. Vertical positions of SRIM profiles
are adjusted to match the measured H profile and the maxi-
mum amount of D permitted by the measurement.

Three different methods were used to estimate D/H
in the solar wind (Table 1). The first method is to di-
vide the measured D count rate by the measured H
count rate for each measurement cycle. The blue sym-
bols in Fig. 3 show the D/H ratios by cycle for the
measurement shown in Fig. 1. An average of the low-
est ratios calculated from these data, which by chance
occur at the depth where the simulated D profile peaks,
is 2.0x10°. In the second method, we subtract from the
measured data an average value for the baseline H and
D below the implant (background-corrected profiles
shown in Fig. 2). The pink symbols in Fig. 3 show ra-
tios calculated from the background-corrected data.
The average low ratio calculated from these data is
6.6x107. The third method uses SRIM profiles calcu-
lated for the appropriate collector material and the solar
wind energy distribution. Figure 2 overlays the SRIM
profiles for H and D in DOS onto the background-
corrected profiles. The H profile is scaled vertically to
match the measured H profile, and the D profile is
scaled to give the maximum solar wind D consistent
with the measured profile. Note that the D profile is
deeper than the H profile. The D/H ratio is estimated
by integrating the scaled SRIM profiles. For the profile
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Figure 3: D/H ratios by cycle calculated from the “raw”

count rates compared to the ratios calculated from data cor-

rected for background H in the DOS B/C-array collector.
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in Fig. 2, the upper limit for D/H in the solar wind is

3.9x107.

The H array has a deeper solar wind implant, so we
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etween the solar wind
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three samples using three data-reduction techniques.

Detector “Raw data” BG corr data  SRIM profile
DOSB/C  2.0x10° 6.6x[107 3.9x107
DOSH 1.1x107 1.1x10°¢ 9.7x107
SiB/C 4.5%107 2.3x(107 2.0x107
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Can the Sun really be 6 - 13 million years old? Is it really just a large,
homogeneous star without a nuclear burning core? Are all the astronomers wrong yet
again? Were the scientists correct in the past that the Sun is providing most of its energy
via slow gravitational collapse? I think we need to re-examine the facts. I do not believe
the Sun is as old as the Earth. It could easily be ~1000 times younger, at least, this is a
much more reasonable conclusion given the facts at hand interpreted in the light of the
General Theory. Just so it is made clear to the reader, the youngest stars shine, the old
stars don't. Good physics is surprisingly simple.
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