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Abstract

In this paper it is proposed a nice rational estimator of the fractional
part of the square root of any positive integer n.

1 Main result

Theorem. Let it be n some positive integer number, |\/n] the integer part of
the square root of n, and {\/n} the fractional part of the square root of n. Then,

we can affirm that
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2 Proof of the main result

2.1 Proof of the Theorem
Expanding, we find that
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Using the identity
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And asigning the value a = 2|/n], we get that
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Substituting, we find that
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Substituting, we get that

(o320 -

(n=1val®)® n— |/

IO

Expanding, we obtain that
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The maximum of n — |[y/n]? can be found at 2|\/n|, as by definition of the
integer part |\/n],

n< (Vn)+1) = [Va)? +2[vn) +1

Subsequently, the value of the expression (n — [v/n]?) — (2|v/n] + 1) is always
less than 0.

Besides, the expression (n — [y/n]?) ((n — [v/n)?) — (2[v/n] + 1)) is maximized
at the value n — [/n]? = N# As this value can not exist, being n — |/n|?
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some positive integer and not being some positive integer, we get that
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Expanding the right side of the inequation, we get that
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Subsequently, substituting, we find that
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And therefore, we get that
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As we wanted to prove.

2.2 Proof of the Corollary
By definition,
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By the Theorem proved,
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Therefore, substracting, we get that
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As we wanted to prove.




