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Special relativity and the Lorentz sphere
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Abstract: The special theory of relativity demands, by Einstein’s two postulates (i) the principle of
relativity and (ii) the constancy of the speed of light in vacuum, that a spherical wave of light in
one inertial system transforms, via the Lorentz transformation, into a spherical wave of light (the
Lorentz sphere) in another inertial system when the systems are in constant relative rectilinear
motion. However, the Lorentz transformation in fact transforms a spherical wave of light into a
translated ellipsoidal wave of light even though the speed of light in vacuum is invariant. The
special theory of relativity is logically inconsistent and therefore invalid. © 2020 Physics Essays
Publication. [http://dx.doi.org/10.4006/0836-1398-33.1.15]

Résumé: La théorie de la relativité restreinte exige, d’aprés les deux postulats d’Einstein (i) le
principe de relativité et (ii) la constance de la vitesse de la lumiére dans le vide, qu’une onde
sphérique de lumiére dans un systéme inertiel transforme, via la transformation de Lorentz, en une
onde sphérique de lumiere (la sphére de Lorentz) dans un autre systéme inertiel, lorsque les
systémes sont en mouvement rectiligne relatif constant. Cependant, la transformation de Lorentz
transforme en fait une onde de lumiére sphérique en une onde de lumiére ellipsoidale déplacé,
méme si la vitesse de la lumiére dans le vide est invariante. La théorie de la relativité restreinte est

logiquement incohérente et donc invalide.
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I. INTRODUCTION

Light plays a central role in the special theory of relativ-
ity. According to the latter, in the absence of accelerations,
the speed of light is invariant, independent of the motion of
its emitter and any other observer. The laws of physics are
said to be invariant with respect to Lorentz transformation.
Thus, an expanding sphere of light remains a sphere of light
under Lorentz transformation; a contention advanced by
Einstein' in 1905 upon form-invariance of the theorem of
Pythagoras under Lorentz transformation. The theory of rela-
tivity has been lauded as superseding Newton’s penetrating
mechanical masterpiece; the latter does not satisfy Lorentz
transformation. But form-invariance of the theorem of
Pythagoras under Lorentz transformation does not in fact
lead to invariance of the spherical form of an expanding
sphere of light. Investigation of the geometry associated with
the Lorentz transformation reveals that it does not maintain
spherical symmetry despite satisfaction of the theorem of
Pythagoras. It is proven herein that Lorentz transformation
transforms an expanding spherical wave of light into an
expanding translated ellipsoidal wave of light, the center of
which is not static with respect to its coordinate system, thus
proving that the theory of relativity is logically inconsistent
and cannot therefore serve as a basis for mechanics or optics.
Newton’s mechanics and optics remain intact.

In preparation for the proof, denote two inertial reference
systems (frames of reference) by K and k, and their
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respective coordinate systems (x, y, z, t) and (&, 5, ¢, 1),
where ¢ and T represent time. In keeping with Einstein’s
nomenclature, K is his “stationary system” and k is his
“moving system.” A set of such coordinates is called an
“event.” These inertial systems are in constant relative recti-
linear motion with speed v and must obey Einstein’s two
postulates:'> (i) the principle of relativity and (ii) the con-
stancy of the speed of light in vacuum:

“... the same laws of electrodynamics and optics
will be valid for all frames of reference for which
the equations of mechanics hold good. We will
raise this conjecture (the purport of which will
hereafter be called the ‘Principle of Relativity’)
to the status of a postulate, and also introduce
another postulate, which is only apparently
irreconcilable with the former, namely, that light
is always propagated in empty space with a
definite velocity ¢ which is independent of the state
of motion of the emitting body.”*

According to the theory of relativity, space and time are
subjective. Every inertial system has its own space and its
own time. Only an event has physical reality and “there is an
infinite number of spaces, which are in motion with respect
to each other.”* Given the coordinates of an event according
to the stationary system K, the coordinates of the same event
according to the moving system k are ascertained only by
means of the Lorentz transformation.”> Recall the Lorentz
transformation,’
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The geometric demonstration of the logical inconsis-
tency of special relativity proceeds herein by first construct-
ing parametric equations for a spherical wave of light in the
stationary system K, transforming these equations by Lorentz
transformation into the moving system &, then elimination of
the parameter in the transformed parametric equations to
obtain the equation for the resultant geometric form in sys-
tem k: A translated ellipsoidal wave of light the center of
which moves with time.

Il. THE LORENTZ SPHERE

Eliminating x from the first of Eqgs. (1), the Lorentz
transformation can be written

RS

T_E_§7

é:ﬂ(xilﬁ)a

n=y, @)
szv

B=1//1—v2/c2

It now becomes clear that for some time # common to all
observers in the stationary system K there is no time t com-
mon to all observers in the moving system k upon Lorentz
transformation because the time 7 depends upon the position
¢ in system k.

Let the inertial system k move at constant speed v rela-
tive to the inertial system K. The coordinate axes of the sys-
tems are oriented in the very same way, and the motion is in
the positive direction of the x-axis. At time t=1 =0, let the
origins of the systems coincide (x = ¢ =0); i.e., the two coor-
dinate systems are initially superposed when a light wave is
emitted in all directions from their coincident origins. After
a time ¢ > 0, the inertial systems are separated by a distance
vt according to system K. All observers on the x-axis of sys-
tem K within the light sphere perceive a common time ¢. An
expanding sphere of light centered at the origin of K has the
radius r = ct, which is the same for all positions on the x-axis
within the sphere of light in system K, as shown in Fig. 1.

The time ¢ and the radius r are independent of any posi-
tion on the x-axis of K within the light sphere. From position
x =0, there expands a great circle of light of radius = ct in
the y-z plane, indicated by the shaded area in Fig. 1. The
equation of the spherical wavefront is, by the theorem of
Pythagoras,

X4+ 422 =R 3)
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FIG. 1. After atime ¢ > 0, a sphere of light of radius r = ¢t expands in iner-
tial system K. All positions on the x-axis within the sphere record the same
time ¢ and the same radius r = ct. The expanding great circle of light in the
y-z plane (shaded area) has the same radius as the wavefront on the x-axis.

Taking the radius r in the x-y plane (z =0) of Fig. 1, con-
struct a straight line from the tip of the radius r, perpendicu-
lar to the x-axis, as in Fig. 2. Let n > 1 be a real number.

Since the position of the wavefront on the positive x-axis
at any instant of time ¢ is x =r=ct, every position on the
positive x-axis within the sphere of light at any time # can be
specified by x = c¢t/n. Then, by the theorem of Pythagoras,

n n

20
2 _ 2 2_ 2 cr 2o 1
V=rr—x* =" - z—ct<l—z>. 4)

Thus, from Eq. (4), at any time ¢ there is a circle of

radius R = cty/1 — 1/n? in cross-section parallel to the y-z
plane of the sphere Eq. (3), with center on the x-axis at the
value of x associated with the value of #. This circle has the
equation

y2—|—22 :c2t2<1 _n_lz) 5)

FIG. 2. At any time ¢, the radius r = ¢t is the same for every position on the
x-axis within the light sphere.
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Hence the perpendicular distance R from the x-position
designated by n to the wavefront expanding from the origin
of Eq. B)isR =cty/1 —1/n*>. Whent>0and n=1, x=ct
and R =0, so the cross-section circle is degenerate to a point
at the wavefront on the x-axis. Furthermore,

't
Lt x= Lt $=o, (6)

n—o00o n—oo n

in which case, in Eq. (4), at x=0, y =r =ct. To locate posi-
tions on the negative x-axis at any time ¢, set n = —m for
m > 1. The radius of the spherical wave of light is always
r=ct for any time 7> 0 for every position x = ct/n in the
stationary system K. Time ¢ is independent of the position x
in K. The radius r of the expanding great circle of light in the
y-z plane (x=0), from Eq. (3), shown in Fig. 1, is r=ct.
Hence, the equation of the expanding great circle of light in
the y-z plane is

V2422 =P, (7

in accord with Eq. (3) (i.e., x=0) and Eq. (5) (i.e., Lt,— o).
In formulating his special theory of relativity, Einstein
invoked an expanding spherical wave of light in his station-
ary system K, which, according to his principle of relativity
(or “postulate of relativity”), must also be a spherical wave
of light in his moving system k by means of the Lorentz

transformation.'’

“At the time t =1t =0, when the origin of the
co-ordinates is common to the two systems, let a
spherical wave be emitted therefrom, and
be propagated with the velocity c in system K. If
(x,y, z) be a point just attained by this wave, then
P4y 4+ =32

“Transforming this equation with the aid of our
equations of transformation we obtain after a

simple calculation & + n* + (* = 22

“The wave under consideration is therefore no less
a spherical wave with velocity of propagation c
when viewed in the moving system. This shows that
our two fundamental principles are compatible.”"

Einstein’s argument is incorrect. Given an expand-
ing spherical wave of light of radius r described by > =
x> +y?> + 22 = *F in his stationary system K, it does not
follow that the equation p* = &4 0+ {? = 7% obtained
by means of the Lorentz transformation is also that of an
expanding spherical wave of light in his moving system k.
Without further information, it can only be concluded that
the theorem of Pythagoras is form-invariant under Lorentz
transformation. Equations (1) and (2) however, do not in fact
transform an expanding spherical wave of light in system K
into an expanding spherical wave of light in system &, even
though the speed of light is ¢ in all directions in both sys-
tems. Consequently, Einstein’s principle of relativity is not
consistent with Lorentz transformation. This fact entirely
subverts Einstein’s theory of relativity.
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FIG. 3. Einstein’s scenario: After a time 7> 0, the expanding spherical
wave of light has radius r=ct in system K and p=c7 in system k. At
t=1=0, the two systems are superposed (so their origins coincide) when
the light wave is emitted in all directions. The origins are separated by the
distance d = vt according to system K.

Einstein’s scenario after a time ¢ > 0 is depicted in Fig. 3
(the spherical waves of light being separated for clarity).

The question that now arises is; for some time ¢ in K so
that » = ¢t therein, what is the time 7 for the radius p =c7t in
k? By Eqgs. (2), the time 7 varies with the position &. Thus, at
some time ¢ in K, the time 7 at position £ =0 in £ is

T=1t/1—-v2/c2, (8)

as obtained by Einstein,! and at position & =cr,

cC—V
=t/
T P )

as obtained by Einstein.?

The time 7 at position ¢ =0 is not the same as the time t
at position & = ct, unless v =0. Consequently, at the time ¢ in
K, light has travelled the distance r = ct in K in all directions
from the origin O and the distance p that light has travelled
from the origin O’ of system k along the positive ¢-axis
therein is, in Eq. (9),

p:cr:ct,/z;:, (10)

whereas the distance p that light has travelled from the origin
O’ of k along the 5-axis at the same time ¢ is, in Eq. (8),

p=ct=ct\/1—v/c2 (11)

The distances given in Egs. (10) and (11) are not equal,
unless v=0. The wavefront in system k is therefore not
spherical, illustrated in Fig. 4.

Setting x = ct/n and using Eqs. (1) and (4),

X:;, y:Cl ﬁ’ r—Cf, = VZ’
I-a
(1—1 ‘ (1—l>cz
nc o nc
T= = p—cr——vz ;
1—C—2 1—C—2
2 2 1
n=y\/p*—¢& =ct L——=). (12)
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B —vt t . ct
é —‘}2a T v2’ p= vza
: V-2 V-2 Vi-2
nect=y. (16)

For the negative x and ¢ axes set n=-—m, m>1;
Egs. (12) then become

FIG. 4. The radius p, =ct of the expanding light-circle in the 5-¢ plane A= ;o y=cenfl——, r=ct
(shaded area) is not the same as p; = ct of the light wavefront on the &-axis
in the direction of motion v, because the respective times t are not the same

since time depends upon position ¢ in system k under Lorentz transformation c n ' 14 v i
=4y _
from system K. : m mce

2

= T =——
) 2 )
Note the following particular cases of n: v v
n=1: c? c?
a7
x=ct, y=0, r=ct, (1+L)ct
e —v fe—v fc—v I me
=ct =t =ct 13 p=Ct=""""r—-
<= crv " crv PNy (13) 17\’_2
n=0=y, c?
n=clv: 1
n=\/p? =& =ct[l —— =y
m
2
x=vt, y=ct\/1 5 =l
Note the following particular cases of m:
2 2 m=1:
E=0, 1=t 1—v—2, p=ct 1—v—2, (14)
c c
x=—ct, y=0, r=ct,
2
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c
¢ p c+v ; c+v ; c+v
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V2
Al - -3 =0=y, (18)
X =
v

y=ct 5 , Ir=ct, 5
v X=—vt, y=ct l—v—z, r=ct,
c
201 _ __2 )
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2
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m = v/[c-|(c*-v)]:

¢
2 9
v
\% 17;
2 2
v v
= =
T= vz ) p_ v2 )
I—C—2 l—c2
3\ 2
&(1 1%)
¢
n=er\|1- : =y. 0)
v
Lt, . :
x=0, y=ct, r = ct,
- —vt . t ct
- \)27 T= \)27 p = v27
1 a2 lfc—2 lfc—2
n=ct=y. (21)

Equations (21) are the same as Eqgs. (16).

Equations (12)—(21) reveal that Einstein’s principle of rel-
ativity does not hold under Lorentz transformation. In fact, the
Lorentz transformation cannot satisfy Einstein’s principle of
relativity in any case other than v =0. Einstein’s rigid meter-
rod allegedly undergoes a length contraction in the direction of
its motion but not in directions orthogonal to the direction of its
motion."”” The length of Einstein’s moving rigid meter-rod
does not depend upon time or position in his moving system £,
only upon the relative speed v. (Although it is not the rod which
contracts, it is the “moving space” in which the rod is “at rest”
that contracts, and imparts its contraction to the rod in the
direction of motion of the space containing the rod.) In the case
of light, however, the distance light travels in any direction in
the moving system k depends upon time 7t which, by the
Lorentz transformation, depends upon the associated position &
in system & and time 7 of system K.

Eliminating the parameter n in Egs. (12) for the moving
system k gives

vt 2
S
< L-vje T_q. (22)
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Thus, the wave of light in the x-y plane of stationary sys-
tem K is circular but by Lorentz transformation is an ellipti-
cal wave of light in the &-n plane of moving system &k,

centered at (—vt/ 1 —v2/c2, O) therein, with the length of

the semimajor axis a and semiminor axis » given by

t
a=—  p=cr (23)

25
Si-s
C

Note that ¢ seems shortened in the positive ¢&-axis
because the center of the ellipse is actually translated in the
direction of the negative ¢-axis of moving system k. By
Eq. (22),at ¢ =0,

2
n=+en/1-2. (24)
c
Atn=0,
Tc—v)t
gyt (25)
V
-2
that is,

ézct,/;—:, and &= —ct zt: (26)

The focal length f of the ellipse is

Feva =21 27)

V2

1——
2

The eccentricity e of the ellipse is
e=L_-"L (28)

As v — 0, the ellipse of system k closes in on the circle
of system K with the origin of system k£ moving toward the
origin of K as the center of the ellipse approaches the origin
of k and hence also of K. As v increases the origins of k£ and
K separate, the ellipse in k increases its eccentricity and is
translated further from the origin of k. The center of the
ellipse is not at the origin of coordinates of system k and is
not fixed, as it moves with time.

Solving Egs. (22) for 7,

—+ |2 (1 Vz) ¢ vt :
C T N (*4ﬁ)

—ct C+v§£§ctﬂc_v. (29)
c—V c+v

To simplify the graphical representation of Eq. (29), set
c=1so that 0 <v < 1; and set time =1 unit. The figures
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are separated for clarity. The origins are actually separated
by the distance d = vt according to system K (Figs. 5-7).

Owing to symmetry of the # and ¢ axes, the ellipsoid
corresponding to Eq. (22) is

vt 2
§+ ) 2 2
( VI—v/e) o E (30)

22 AR 3R
[(1 vz/c2>]

The intercepts on the coordinate axes of system
k for this ellipsoid are: (cty/(c —v)/(c+v),0,0),
(—ety/Tet /(e =), 0,0). (0. +ery/T— 122, 0). and
(0.0, zery/T—272).

Each trace parallel to the n-¢ plane is either a circle
or a single point. For —cty/(c+Vv)/(c—v)<é<

cty/(c —v)/(c +v), Eq. (30) reduces to

P+ = — (50 1—v2/c2+ vt) %, €3]

which is the equation of a circle of radius

2
R\/cth(go 1—v2/62+v1). 32)
y n
1 -
K Y
\ J &
1
FIG.5. v=0.1.
y n
T 1
v
f (
Q
=1 0 1 X* o' 6
-1.7321 %
L .
FIG. 6. v=0.5.
y n
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At y=cty/(c—v)/(c+v) and at &=
—cty/(c +v)/(c —v),R=0and Eq. (31) reduces to
n”+¢ =0, (33)

which is a point on the £-axis.
Denoting by 7. the t-time at the center of the ellipsoid in
the moving system k, Eq. (30) can be written as

(€ +ve.)? "’ -

+ =1
22 (2=v2)12 (2—v2)2 7

7. > 0.

(34)

The intercepts on the coordinate axes of system k for
ellipsoid Eq. (34) are

((c =v) 1, 0,0), (=(c+V) 7, 0, 0),
(O, 1.V e? -2, O), (0, 0, =t.Vc? — v2>.

Each trace parallel to the #7-¢ plane is either a circle or a sin-
gle point. For — (¢ + v)t. < &y < (¢ — v)1, Eq. (34) reduces to

(2 —v2) (& +vi.)?
2

2= )P - . (35

which is the equation of a circle of radius

2
- \/<c2 g bt (36)

At {y=(c—v)t. and at & = —(c+ V)1, R=0 and
Eq. (35) reduces to

N +¢ =0, 37)

which is a point on the £-axis.
The semimajor axis a and the semiminor axis b are then

b=r1.Vc*—H2, (38)

and the focal length f and eccentricity e are

a = ct

f=vi; ezg. (39)

For the ellipsoid Eq. (30),
G+ 4+ =777 (40)

always holds: By Eqgs. (2), (5), and (12),

2
c
LN
2 2 2 (" V) 2.2 1
En+d = +er(1-—

c? (1 — 1>2t2
__\ nj 2.2 (41)
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and by Eqgs. (2), (5), and (17),

2
(£+v> 12 .
52+n2+g2:m7+c2t2(1——2>
m

2
c2<l —|—l> 2
=\ T/ _ 22 42)

From Egs. (12) and (34),

= <£—v> T, T= (1 —l> Tey
n ne

p=ct= (1 _ i) ct., (43)
nc

"+ = (1 — —> (2 —+?) 1(2 (44)

p=ct= (l + L) CTe, 45)
mc

1
N+ = (1 - 2) (c® —v?) 2. (46)
m
Then for the ellipsoid Eq. (34),
EdpP+P =P (47)

always holds: By Eqgs. (43) and (44),

2
: 1
R (1-%)@-me
n n
= 72, (48)

and by Eqgs. (45) and (46),

2
c 1
4+ = (m+v) 7+ <1 —m2)(cz —?) 72
— 22 (49)

Ellipsoids Egs. (30) and (34) are exactly the same.

By the Lorentz transformation Egs. (2), the relation
between any position ¢ and its time 7 is fixed. Consequently,
the ellipsoid Eq. (34), and hence Eq. (30), can be written in
terms of any time t. For example, let 7, denote the time at
£=0, i.e., the origin of coordinates for system k. Then from
Eqgs. (2), the ellipsoid in system k due to Lorentz transforma-
tion of Eq. (3) becomes

21
V10 2
{f + (- Vz/cz)} . 772
czrz 2 —? 5
(1—v2/c2)? (1=v2/c2? ) °
2
+ =1, 1,2>0. (50)

2 _ 2 , -
((1 - V2/62)2> K

All such recasting of the equation of the ellipsoid in sys-
tem k describes exactly the same ellipsoid. In all cases, p is
the distance to the wavefront from the origin of coordinates
for system k.

Equation (3) is the equation of a sphere and also the
equation of a hypotenuse. This is not the case with Egs. (30)
and (34). The ellipsoids described in Egs. (30) and (34) have
the associated hypotenuse given in Eq. (40): The distance
from the origin of the coordinate system & to the wavefront
in k. It is Eq. (40) that is produced directly from Eq. (3) by
the Lorentz transformation: Form-invariance of the theorem
of Pythagoras. Nevertheless, the Lorentz transformation pro-
duces the ellipsoidal wavefront of Egs. (30) and (34) from
the spherical wavefront Eq. (3). The dual character of Eq. (3)
(i.e., hypotenuse and sphere) is incorrectly attributed to Eq.
(40) by the special theory of relativity. Moreover, Egs. (1)
and (2) actually pertain to only one observer in particular,
(privileged) in system K, an observer Einstein incorrectly
permitted to speak for all observers in system K, owing to
his tacit assumption of the existence of systems of clock-
synchronized stationary observers consistent with Lorentz
transformation. However, systems of clock-synchronized sta-
tionary observers consistent with Lorentz transformation do
not exist.>® For the same reason, Minkowski’s four-
dimensional spacetime continuum violates the theorem of
Pythagoras. 10

The ellipsoidal wavefront generated from a spherical
wavefront by the Inverse Lorentz transformation is obtained
from Eq. (30) by interchange of the coordinates of systems K
and k and changing v to —v

VT 2
——
< /1T — v2/c2> ¥ 2

+I-+——=1. (51)

212 22 22
(/)

lll. ANGULAR RELATIONS

Let 0 be the angle between the positive x-axis and the
radius 7= ct in the x-y plane, and let 0, be the angle between
the positive ¢-axis and the radius p = ¢t in the &-n plane. Set
1/n=cos 0, for 0 < 0 <90". Set —1/m=cos 0, for 0 < O <
90" or equivalently, 1/m=cos 0 for 90 < 0 < 180 . Then
taking symmetry into account, Egs. (12) and (17) can be
combined and written as



22
x=ctcosO, y=ctsinb, r=ct,
1_vcos@ ,
(ccosh—v)t c
6: 9 T=—F
V2 V2
-5 -5
0
(1vcos )ct
p:CT_ < 9
2
-z
n=1/p>— & =ctsinf=y, 0<0<360°. (52)

From Egs. (52), cos 0, = ¢/p, hence,

ccosl —v

cosl, = (53)

c—vcosO’

If v=0 then 0,= 0 and p =r. When v >0, the condition
p =r occurs, from Eqgs. (15), only for,

S RN
cos ) = ﬁ. (54)
\

Substituting Eq. (54) into Eq. (53) gives the angle 0, for
which p=r
Ve -2 —¢

cosl, = — (55)

which depends only upon v.
By Eq. (53), for =0, 0,=0, for 0=180°, 0,=180°,
and for 0 =90° and 6 =270°,

0, = arccos (— X) = arccos (—e), (56)
c

where e =v/c is the eccentricity of the ellipsoid. For
cos =v/c,

0, = arccos (0) = 90° and 270°. (57)

Solving Eq. (53) for cos 0,

0
c+vcosl,
Putting Eq. (58) into Egs. (52) for p gives
2 2
— t
(@ —v) (59)

P (c+veosl,)y/T—v2/c2
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But 7/4/1 —v?/c? = 1. Therefore,

(2 =)z,

B > 0. 60
(c+vcosl,)’ w=0 (60)

p=p0,1)=

Putting Eq. (55) into Eq. (60) gives
p=ct=r. (61)

Once again, by the Lorentz transformation Egs. (2), the
ellipsoid described in Eq. (60) can be recast in terms of any
time t. All positions ¢ within the expanding wavefront
describe the very same ellipsoid. In all cases, p is the
distance to the wavefront from the origin of coordinates
for system k. For example, if 7y denotes the time at ¢ =0,
then by the Lorentz transformation Egs. (2), Eq. (60)
becomes

22
(@ =) m , T02>0.
c+vcost,) (1 —v?/c?)

p=p(0y,70) = (
(62)

IV. CONCLUSIONS

The postulates of the theory of relativity are incompati-
ble. A spherical wave of light is not transformed into a spher-
ical wave of light by the Lorentz transformation but into a
translated ellipsoidal wave of light with a moving center,
even though the speed of light in vacuum is invariant. Conse-
quently, the theory of relativity is logically inconsistent. It is
therefore invalid.
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