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Abstract
We present some thoughts about a coloring of an arbitrary map

1 Introduction

Since the paper [1] of two US Americans Kenneth Appel and Wolfgang Haken it is well-known
that the ‘Four Color Theorem’ is true. It was proven 1976 by the aid of computers, which
have to consider nearly 2000 subcases. The four mathematicians Neil Robertson, Daniel P.
Sanders, Paul Seymour and Robin Thomas in the year 1996 presented a new proof [2], where
they reduced the number of subcases to about 600, but still it lacks an elementary proof without
the aid of a computer. The following paper arose by the futile attempts to prove the Four Color
Theorem.

Let Map be a map of N disjunct contries, Map = {S1, S2, S3, . . . , SN−1, SN}. We assume
that each country Sk is homeomorphic to the open unit circle {(x, y) ∈ R2 | x2 + y2 < 1}, and
that the border of a country is homeomorphic to the unit circle {x2 + y2 = 1} for x, y ∈ R.
Two countries are neighboring if and only if they have some common border homeomorphic to
{x ∈ R | 0 < x < 1}. If A and B are neighboring countries, then A is called a neighbor of B and
B is a neighbor of A. We call (A,B) a neighboring pair . Two neighboring countries are also
topological neighboring. A coloring of the map means that neighboring countries get different
colors. In this case we call the map colorable. Note that two countries which meet only in a
finite set of points are not neighboring.

2 Propositions

The following proposition is trivial, but we think it is important, and we read it nowhere.

Proposition 1. Let Map be any map. This map is colorable with four colors if and only if
Map is the union of Map1 and Map2, i.e. Map = Map1 ∪Map2, and both Map1 and Map2 are
colorable with just two colors.

Remark 1. We can choose disjunct sets Map1 and Map2.
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We call a half-plane every subset of R2 which is homeomorphic to the upper half plane
{(x, y) | x, y ∈ R, y > 0}, which is homeomorphic to R2. A subset of R2 which is homeomorphic
to the vertical axis {(0, y) | y ∈ R} and which splits R2 into two disjunct half-planes is called a
line. The set of all lines is called Lines.

A subset of R2 which is homeomorphic to the unit circle {(x, y) | x2+y2 = 1} for x, y ∈ R
is called a circle. The set of all circles is called Circles. A circle seperates R2 into two disjunct
parts, due to the Jordan curve theorem.
The following proposition is well-known. Please see [3], p. 166.

Proposition 2. Assume a map where the borders of all countries are generated by a finite
number of straight lines. Then two colors suffice for a coloring.

Proposition 3. Assume a map where the borders of all countries are generated by a finite
number of elements from Lines. Additionally we assume that two arbitrary elements of the
generating lines have only a finite set of common points. Two colors suffice for a coloring.

Proof. Assumption of the induction: Let {L1, L2, . . . , LR−1, LR} be a set of lines. The generated
map can be colored with two colors.

Beginning of the induction: We start with one color for the entire space R2. L1 splits R2

in two subsets. We color one part with the first color, the other part with the second color.
On one side of L2 we change the colors, on the other side we keep them. As a result we get a
coloring of the whole R2.

The induction step of k to k + 1: Let {L1, L2, . . . , Lk−1, Lk} already be drawn. The
R2 is parted in regions and it is colored with two colors. The line Lk+1 splits the R2 in two
half-planes. On an arbitrary side we leave the colors, on the other side we change all colors.
As a result we get a coloring of the space R2. Note that we have only finite many intersection
points between Li and Lk+1, 1 ≤ i ≤ k. Hence two regions with a same color only meet in a
finite set of points.

Proposition 4. Assume a map where the borders of all countries are generated by a finite
number of elements from Lines and from Circles. We assume that two elements of the generating
curves have only a finite set of common points. It follows that two colors suffice.

Proof. We use a corresponding proof as before in Proposition 3.

We extend the above considerations to the usual space with three dimensions. We consider
the Euclidean space R3. Recall that for two points ~a = (a1, a2, a3), ~b = (b1, b2, b3) ∈ R3 the
distance is

dist(~a,~b) :=
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2.
We take N subsets of R3. N ∈ N , Map := {S1, S2, S3, . . . , SN−1, SN}. An element Sk ∈ Map is
called a country . We assume that the countries are disjunct, and we assume that each country
Sk, 1 ≤ k ≤ N , is homeomorphic to the open unit ball of R3, i.e. to

{(a, b, c) ∈ R3 | a2 + b2 + c2 < 1}.
We define the border of a country is the closure of that country, i.e. it is homeomorphic

to the unit sphere, i.e. to
{(a, b, c) ∈ R3 | a2 + b2 + c2 = 1}.

We define the space disk . A disk is any space homeomorphic to {(x, y) ∈ R2 | x2+y2 ≤ γ}
for a γ > 0.

We say that two countries S 6= T in the R3 are neighboring if and only if the border of S
and the border of T contain a common disk.
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It is well-known that there is no corresponding theorem to the ‘Four Color Theorem’ in
three dimensions. The number would be infinite. This is proven by the example of a number
of lengthy cuboids on the bottom, and on the top the same number of cuboids shifted by 90
degrees. Every cuboid on the bottom touches every cuboid on the top.

It lacks the description of those maps which need only two or three or four or ‘many’ or
a finite number of colors. Related are the questions if we restrict the shapes of the contries.

We call a half-space every subset of R3 which is homeomorphic to the upper half-space
{(x, y, z) | x, y, z ∈ R, z > 0}.

A subset of R3 which is homeomorphic to the horizontal plane {(x, y, 0) | x, y ∈ R} and
which splits R3 into two disjunct half-spaces is called a plane. The set of all planes is called
Planes.

A subset of R3 which is homeomorphic to the unit sphere {(x, y, z) ∈ R3 | x2+y2+z2 = 1}
for x, y, z ∈ R is called a sphere. The set of all spheres is called Spheres. A sphere seperates R3

into two disjunct parts, due to the Jordan-Brouwer seperation theorem.

Proposition 5. Assume a map in R3 where the borders of all countries are generated by a
finite number of elements from Planes and from Spheres. We assume that two of the generating
elements contain no common disk. (As a consequence we get that all generating elements are
pairwise different.)
Then two colors suffice for a coloring.

Proof. Essentially it is the same proof as before in Proposition 3.

Now we regard the contrary of the above proposition.

Remark 2. Assume a map where the borders of all countries are generated by some ele-
ments {L1, L2, . . . , LR−1, LR} in R3. We assume that two elements A and B are elements
of {L1, L2, . . . , LR−1, LR}, and A and B contain a common disk. Then the above proof of
Proposition 5 does not work. As a consequence the map may not be colorable with only two
colors.

We add a trivial proposition.

Proposition 6. Take an arbitrary map. Assume that every country has at most n neighbors,
n ∈ {0} ∪ N. Then n+ 1 colors suffice for a coloring.

By the work of Appel and Haken four colors are always sufficient to color an arbitrary
map in R2 . This produces further questions. It lacks a characterization out of graph theory
of those maps which are colorable by only three colors. Please see [3], p. 167 and Proposition
7. Related are the questions if we restrict the shapes of the countries. For instance we can
constrict to squares or triangles or squares and triangles. This opens a lot of possibilities.

3 Questions

Now we mention other possibilities to color a map.
Recall that for two points ~a = (a1, a2, a3, . . . , an−1, an), ~b = (b1, b2, b3, . . . , bn−1, bn) ∈ Rn

the usual distance is

dist(~a,~b) :=
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 + . . .+ (an − bn)2. (1)

Let subset be any subset of a metric space (X, d). A function f : subset → Rn is called a
distance preserving function if and only if it holds d(s, t) = dist (f(s), f(t)) for all s, t ∈ subset.
We define finite subsets of natural numbers.
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Definition 1. Let for n ∈ N the set Nn := {1, 2, 3, . . . , n − 2, n − 1, n} ⊂ N be the set of the
first n natural numbers.

Let n be an arbitrary natural number. We determine that if two elements of f : Nn → Map
from the image are in different countries, these countries are colored with different colors. We
ask how many colors we need to color all maps, where f runs through the set of all distance
preserving functions. We call this number ♥n.

Lemma 1. For n = 2 it includes the Four Color Theorem.

Proof. Let be n = 2. Let Map be an arbitrary map. The map Map has a finite number of
countries. We enlarge every country A of Map into a country which we call A and we get a
new map called MAP such that the pair (A,B) is a neighboring pair of countries in Map if and
only if the pair (A,B) is a neighboring pair in MAP. Further we make the enlargements such
that for three countries A,B,C of Map with neighboring pairs (A,B) and (B,C) but A and C
are not neighboring, then it holds for all a ∈ A and c ∈ C that dist(a, c) > 1. Further we make
the enlargements such that for a neighboring pair (X,Y ) in Map there is an element x ∈ X
and y ∈ Y such that dist(x, y) = 1. Now the problem to color this map MAP by the set N2 is
the same as the ordinary coloring problem, and MAP can be colored if and only if Map can be
colored with the same number of colors.

As a conclusion we get ♥2 ≥ 4.

See the famous example of a map with only four countries. Four colors are necessary.

On the left hand side we show the example

of a map with four countries.

It requires four colors.

4



Questions on Coloring

We call a triple three countries such that each country is a neighbor of the two others.
We call a way a finite ordered set (L1, L2, L3, . . . , LK−1, LK) of countries such that Li−1 and
Li are neighboring for 2 ≤ i ≤ K. The beginning of the way is L1, the end is LK . The number
K is called the length of the way. We name an odd circle a way (L1, L2, L3, . . . , LK−1, LK) of
countries such that additionally (L1, LK) is also a neighboring pair. Furthermore we demand
that the set {L1, L2, L3, . . . , LK−1, LK} has an odd number larger than four of elements.

It follows an important proposition.

Proposition 7. Any map is colorable with two colors if and only if it contains neither a triple
nor an odd circle.

Proof. This proposition is known from graph theory. A proof beyond graph theory is yielded
by [4] in the internet.

We show an example of a triple.

A triple is not colorable with two colors.

We need three colors.

We show another example of a triple.

E

I

G

H

F

On the left hand side is an odd circle

with countries {E,F,G,H, I}.

Note that it is not colorable with two colors.
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From Map we make a metric space. Let A,B be different contries in Map. The distance
of A and B is defined by the natural number J−1, where J is the minimal length of a way from
A to B, i.e. there is a way that connects A and B, i.e. there is a set {Q1, Q2, . . . , QJ−1, QJ}
with the beginning A = Q1 and the end B = QJ and (Qi, Qi+1) is a neighboring pair for
1 ≤ i ≤ J − 1, and there is no shorter way from A to B. We define distance(X,X) := 0 for
X ∈ Map, and we have distance(A,B) = 1 if and only if (A,B) is a neighboring pair.

We introduce an infinite set of coloring constants. We generalize the ordinary neighbor-
hood relation.
Let S be any subset of the natural numbers = {1, 2, 3, . . .}, and let Map be any map. We define
that two countries A,B ∈ Map are neighboring related to S if and only if both countries have
a distance in S. Note that for S = {1} we get the ordinary neighborhood relation. We ask how
many colors we need to color each map, where two countries which are neighboring related to
S get different colors. We will call this number ♠S. Note that for S = {1} this is the question
of the Four Color Theorem. By this theorem we get ♠{1} = 4.

We get corresponding questions if we restrict the shapes of the countries, for instance we
take rectangles or triangles or something else.

We extend the above concept into higher dimensions. We consider the spaces Rn, which
we will call n-dimensional space, for n > 1. We take N subsets of Rn. N ∈ N , Map :=
{S1, S2, S3, . . . , SN−1, SN}. An element Sk ∈ Map is called a country . We assume that the
countries are disjunct, and we assume that each country is homeomorphic to the open unit ball
of Rn, i.e. to

{(a1, a2, a3, . . . , an−1, an) ∈ Rn | a21 + a22 + a23 + . . .+ a2n−1 + a2n < 1}.
We define that the border of each country is the closure of the country. It follows that the
border is homeomorphic to

{(a1, a2, a3, . . . , an−1, an) ∈ Rn | a21 + a22 + a23 + . . .+ a2n−1 + a2n = 1}.

Definition 2. Any finite subset of Rn is called a set of vertices.

Remark 3. Note that the set of vertices is a generalization of the sets Nn, since Nn ⊂ N ⊂
R ⊂ Rk.

Let f be a function with any set of vertices of the Rn as the domain and the codomain
Rn. We define that if two elements of the image are in different countries these countries are
colored with different colors. We ask how many colors we need to color all maps in the Rn,
where f runs through all distance preserving functions.

Proposition 8. Let the set of vertices be consist of K points. Then the number of the needed
colors is at least K. It may be infinite.

Proof. We take a map such that each element of the image points of the set of vertices is in a
different country.

Proposition 9. Let the set of vertices be consist of more than one point. Let be n ≥ 2. The
above question is an extension of the ‘Four Color Theorem’. The sought number is at least four.

Proof. If it is necessary we make an enlargement of a country as we described it in the proof
of Lemma 1.

Remark 4. In the definition Definition 2 we have in our minds some geometrical shape. The
set of vertices could be the vertices of a polygon, or a star, or something else. Only the image
points of the set of vertices are important.
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We can change also the maps. Recall the town Kaliningrad (the former Königsberg in
Prussia). It lies in an exclave of Russia, this means that one has to transit a foreign territory
to reach the town. Russia consists of two parts. We formulate a question. We ask how many
colors we need to color an arbitrary map, where one of the countries consists of two parts. Each
part is homeomorphic to a square. This concept can be generalized. Let Map be a map of K1

countries. Up to K2 countries consist of two parts, up to K3 countries consist of three parts . . .
up to KL countries consist of L parts. Of course it holds K1 ≥ K2 ≥ K3 ≥ . . . ≥ KL. We can
repeat the question. What is the number of colors to color all such maps? We also can restrict
the shape of the countries.

We mention also the question how many colors we need to color the Rn, where we use a
set of vertices of the Definition 2. We ask how many colors we need to color the entire Euclidean
space Rn, where different image points of f : set of vertices → Rn have different colors, where
f runs through all distance preserving functions. Note that this does not include Erdös’s Open
Problem 4.4, which is mentioned in [3], p.38. Further note that for a set of vertices of two
points it is the well-known problem of Hadwiger-Nelson. See [3], where if n = 2 it is called the
‘Chromatic Number of the Plane’, its symbol is χ. Recently it is discovered that this number
is at least 5. See [5]. Another problem is named the ‘Polychromatic Number of the Plane’ with
the symbol χP , which asks for the smallest number of colors which is needed for a coloring of the
plane, where no color realizes all distances. Please see [3], p. 32. We create our own problems
with symbols χ1A , χ1B , χM and χT . For χ1A we ask for the smallest number of colors needed
for coloring the plane in such way that there is at least one color which has exactly one distance
that is not realized. For χ1B we ask also for the smallest number of colors needed for coloring
the plane in such way that all covering colors have exactly one distance that is not realized.
For χM we ask for the smallest number of colors to color the entire plane, and it holds that
for all covering colors there is exactly one distance which is not realized. This distance is the
same for all colors. For χT we ask for the smallest number of colors needed for coloring the
plane in such way that all colors have exactly the same nonempty set of distances which are
not realized. For χM we suggest the name ‘Monochromatic Number of the Plane’, and for χT

we suggest ‘Thuerey Number of the Plane’. It holds

5 ≤ χ ≤ 7 and 4 ≤ χ
P ≤ 6 and χ

P ≤ χ .

In the case that there is a coloring of the plane which fulfills the conditions for χM also the
conditions for χT , χ1A and χ

1B are satisfied, and there are inequalities

χ
1A ≤ χ

1B ≤ χ
M and 4 ≤ χ

P ≤ χ
T ≤ χ

M and χ ≤ χ
M .

We pose the same questions, where we replace the entire Rn by a subset.

Proposition 10. Let the set of vertices be consist of two points. If n = 1 two colors suffice.

Proof. The two points have a distance of α, i.e. α > 0. We take half-open intervals. We use
the intervals [α · k, α · (k + 1)[, k ∈ Z. We color these intervals alternating with two colors.

Instead of the usual distance from line (1) finally we got the idea to change also the
distance. For two vectors ~a = (a1, a2, . . . , an) and ~b = (b1, b2, . . . , bn) from Rn we can take the
‘taxicab metric’

dist(~a,~b) := |a1 − b1|+ |a2 − b2|+ . . .+ |an−1 − bn−1|+ |an − bn|
or the ‘maximum metric’

dist(~a,~b) := max {|a1 − b1|, |a2 − b2|, . . . , |an−1 − bn−1|, |an − bn|}.
With this other distances in the Rn we can consider the questiones of χ, χP , χ1A, χ1B, χM and
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χ
T which we mentioned above.
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Hegelstrasse 101
28201 Bremen, Germany
T: 49 (0) 421 591777
E-Mail: volker@thuerey.de

8


