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Abstract

We motivate and give a proof of the fundamental theorem of algebra

using high school algebra.

Introduction

How close can a typical high school student come to understanding the fun-

damental theorem of algebra? Currently some of the ingredients for a good

understanding are present after a typical algebra 1, algebra 2, and pre-calc

(or trigonometry) sequence, but the dots aren’t connected. Thus students

are familiar with quadratics and cubics and general polynomials, as well as

Euler’s and DeMoivre’s formula and theorem; they are also told the fun-

damental theorem of algebra [1]; but, in no course are they encouraged to

explore why, relative to their knowledge of algebra, the theorem might be

true.

The standard proofs of the FTA use complex analysis. One proof uses

Liouville’s theorem and another Rouche’s [3]; each of these theorems re-

quires complex differentiation and integration and, hence, are not within the

realm of high school algebra. But there is a proof given in Rudin [2] that

doesn’t reference these results. We make his proof simple enough that a

good high school student could understand and appreciate it. There is no

new proof here, exactly, except for one step (more of a gloss) that motivates

the whole proof.

We will first show how high school topics can be re-glossed to make

the theorem plausible. Then we will generalize and synthesize the plausible

cases and find the pattern of interest. A proof of the FTA will be given.
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There will be wholes in the argument. In the last part of the paper we will

discuss these.

The FTA is plausible

How can you come to believe that all polynomials will have roots in the

complex field? Well some examples where that is true will help. Consider

f(z) = zn + a = 0. (1)

(1) is a polynomial and we know its roots. They are

z = n

√
−a = n

√

| − a|(cos
θ + 2πk

n
+ sin

θ + 2πk

n
),

where 0 ≤ k ≤ n − 1 and −a = cos θ + i sin θ. So at least one type of

polynomial of degree arbitrary n can be solved with complex numbers. This

result is just a re-gloss of DeMoivre’s theorem: every number has nth roots.

If this is true, if we transform (1) shouldn’t it remain true. Consider

f(z − b) = (z − b)3 + a = 0. (2)

Here we get a polynomial with all its terms via the binomial theorem. To wit

f(z) = (z − b)3 + a = z3 − 3bz2 + 3b2z − b3 + a = 0.

But this can be solved with some algebra.

(z − b)3 = −a implies z − b = 3
√
−a implies z = 3

√
−a + b.

Finding the key pattern

The quadratic case shows the essence of the problem of solving general

polynomials. The graphs of x2 +1 indicates that there are no real zeros. The

constant term has moved x2 up by one and we know by the end behavior of

polynomials, its parabola shape, no real value will move x2 + 1 back to the

x-axis for a root. But we also know x2 + 1 can be solved with ±i, complex

numbers. This pattern is the same with the examples of the previous section:

(1) and (2). Complex numbers enable a unsolvable polynomial in the real

numbers to drop below their constants and reach the origin of the complex

plane.

We can use this to construct a proof of the FTA.
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Proof

After two easy lemmas, we give a proof of the FTA.

Lemma 1. For every real non-zero number a there exists a real θ such that

aeiθ = −|a|. This is also true for complex a.

Proof. If a < 0 then let θ = 0 and ae0i = −|a|. If a > 0 then let θ = π and

aeπi = −a = −|a|.
For complex a, we just note aeiθ = −|a| implies

eiθ =
−|a|

a
.

Not that it is necessary to note, we note | − |a|/a| = 1, so r in the polar

coordinate representation of this number is 1.

Lemma 2. |p(z)| can be made less than the absolute value of its constant.

Proof. Cubic case: Let p(z) = a0+a1z+a2z
2+a3z

3. We always will have

a non-zero constant and here we assume a1 is the first non-zero coefficient.

It could be a2 or a3. The argument won’t change. Then

p(reiθ) = a0 + a1re
iθ + a2r

2e2iθ + a3r
3e3iθ.

Using Lemma 1, there exists θ such that a1e
iθ = −|a1|. So now we have

|p(reiθ)| = |a0 − |a1|r + a2r
2e2iθ + a3r

3e3iθ|
and taking the absolute value of the first constant term and the terms after

−|a1|r increases the value of the right hand side. So

|p(reiθ)| ≤ |a0| − |a1|r + |a2|r2 + |a3|r3. (3)

We’ve used r > 0 and |eikθ| = 1. Rearranging (3),

|p(reiθ)| ≤ |a0| − r{|a1| − |a2|r1 − |a3|r2}.
Now for small enough r the value in the braces is positive, so the right hand

side drops below |a0|, as needed.

Theorem 1. If p(z) is a polynomial it has complex root.

Proof. Suppose p(z) is a polynomial with no complex root. Then |p(z)| has

a non-zero minimum at a value, call it z0. Consider the polynomial

Q(z) =

∣

∣

∣

∣

p(z + z0)

p(z0)

∣

∣

∣

∣

.

Then Q(0) = 1 and for all z, Q(z) ≥ 1. But this says that the absolute

value of a polynomial never is below the absolute value of its constant. This

contradicts Lemma 2.
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Wholes in argument

The proof is simple, but we are assuming that the absolute value of a poly-

nomial has a minimum. This in turn is dependent on polynomials being

continuous functions on some closed set. This is easily understood for p(x),

p a polynomial, and x real. The closed intervals are of the form [a, b], by

inspection a pencil never is lifted off the page (the function is continuous),

so there is a strong intuition that this result is true. But when one moves to

complex arguments, what is the equivalent of a closed interval and can we

assume p(z) and |p(z)| are continuous? We can’t visually see maximums

and minimums with p(z) as we can in the real case p(x).

Rudin fills in the gaps [2]. Here are quick statements of the theorems

necessary. A theorem says that if f(z) is continuous then |f(z)| and 1/|f(z)|
are too, provided in the latter case f(z) 6= 0 – which is good with our as-

sumption that p(z) has no roots. A bounded continuous real function on a

closed interval reaches its minimum; i.e. there is a value in the domain that

gives the minimum for the function. A function 1/|f(z)| is bounded below

by 0, so there is a value which gives its minimum. The first statement in

the proof are thus made good, but isn’t all plausible enough to be stated to a

student early on?

Conclusion

Should curious students wait for a course in real and complex analysis before

getting a pretty good feel for why the FTA is true?
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