Multi-Dimensional Asset Allocation
Strategy with DA-RNN

T.Y. Lee

Abstract

Most RoboAdvisors reflect the perspective of investment banks, which differs from
commercial banks in Korea.

Most customers who use commercial banks have a conservative approach.

In customer-focused thinking, the more you design your Robo Advisor, the more
important it is to minimize customer losses.

It was designed with the belief that the guarantee of principal through defense of the
bear market would be a solid foundation to be returned to profits from the bear market.
The traditional asset allocation model is dedicated to simple predictions that take risk as
a parameter of volatility and draw the expected return to calculate the optimal share of
the asset. This is not a big problem when the market is good, but it's going to cause a
loss of the customer's principal in a booming market. This is not in line with the bank's
robovisor idea, and we have created deep learning algorithms to defend against the
bear market.

Introduction

RoboAdvisor's favorite traditional asset allocation model is Black-litterman, which is
typically implemented by human input in the form of a house view. In order to use the
results of deep learning in the traditional asset allocation model, the first thing that
needs to be done is the Data-Transform and the data architecture that will
accommodate it.

The ultimate differentiation is that it is designed to seamlessly combine the periodicity of
deep learning data with existing data processes.

We introduced the Data Fusion Layer through analysis of existing batch data and
introduced the Data Fusion Pipeline for the first time in the financial sector, creating an
architecture to support it and creating a service model.

After deploying the traditional asset strategy allocation model in a multiple form, we
applied the value as a prediction of the DA-RNN model generated from the index data.



As a result, the market flow was reflected and the portfolio was generated by calculating
the share of investment by asset through this algorithm.

Deep Learning Model Adaptation Layer

The most important thing to apply deep learning is to check the periodicity of the data
and the batch scheduler of the existing system. This allows us to reduce the size of a
large amount of data, which is a significant contribution to infrastructure cost reduction
and performance improvement.

The most important thing for customers in real service is the fast response speed.

We have configured the pretreatment and posttreatment processes as follows to
maximize this.

Pre-Processing Modeling Post-Processing
outlier value handling ‘Outlier handling
Missing value handling DARNN Model Recover Min Max Scaling
Min Max Scaling Data Rolling Mean

Input Data

Input data consists of the closing price of major national indices, MSCI benchmark
indices, exchange rates, bond yields and economic indicators, including investment
universes. Currently, 130 indexes are used as of 08-20-20, and indexes can be added /



removed through user view or empirical simulation. The 130 indices mentioned were
selected with reference to the prop trader views / reserch reports.

Research on Input Data

Financial Research Team Enhances Data Prediction Using FFT Algorithm

Pre-Processing
Outlier value handling

Outlier value elimination is used for faster convergence when training data on the
network. Allow up to 6 months of volatility (standard deviation) * 2 if the change with
the previous data exceeds that number, then interpolate with the average of the next
and previous data. However, as the 2018-08-10 Turkish Lira exchange rate fluctuations
can be normalized, outliers will be removed for less than five-year bonds and national
economic indicators.

Missing value handling

Missing values basically use backward fill for daily data and interpolation for
quarterly/monthly data such as economic indicators. However, unlike the general
application, in the DaRNN model described below, when the economic indicator data
was also backward filled, the simulation result was 2 ~ 3% better on average based on
Hit Ratio. The exact reason is not known, but interpolation is likely to act as a noise
because short-term forecasts of 1 to 3 months are more affected by exchange rates,
bonds, and major indices than economic indicators. Therefore, rather than simply using
the economic index, it is necessary to develop complementary economic indicators
such as the Bank of Korea's BOK-COIN.

Min-Max Scaling

Min-Max scaling is used to stabilize the network's loss calculation and to achieve faster
convergence. Among the cost functions, Euclidean distance is used when MSE Loss is
used. When the scale range of a particular feature is wide, the cost can be deflected. It
is also known that the learning convergence speed of the data scaled by the gradient
decent is faster. [loffe et al., 2015].

X — sz'n
Xma;r. e Xm-i-n

Xsc —



The formula uses the above scaling expression that is used by default.

Modeling

A Dual-Staged Attention-Based Recurrent Neural Network for Time Series Prediction
[Qin et al., 2017] was used. This model is basically an autoregressive model, and
predicts the target item value by inputting exogenous input and time series data of the
target item.

Yo = F(y 1, Y2, Y3,y Up, Up 1, Up 2, Uy 3, .. )
y, : Target event closing price at time t

u,: Exogenous Input at time t
F : Neural Network

The Layer and Model implementations are the same, but the DataLoader
implementations differ.

Batch — Normalization

In many NN models such as CNN, GAN, and ANN, adding Batch Normalization Layer is
doing better than not. And prevents Gradient Vanishing / Gradient Exploding from
happening, enabling more stable and faster learning [loffe et al., 2015].

The normalization of data is done with Min-Max Scaling before data enters the network,
but there is a problem that the average and the variance of the data change as it passes
through many layers. To solve this problem, batch batch normalization layer between
layers helps to keep data normalized.

Encoder

The Encoder section aims to learn abstract patterns of the exogenous input time series.
Through Attention Layer, we learn variables to be weighted per sequence, and learn
abstract patterns through LSTM.

Attention Layer

It is a variable learning method that combines the whole sequence data and the
previous sequence to determine which variable weight is added at each time point. For
example, let's say the stock prices of four stocks a, b, ¢, and d are predicted for 30 days
and predict the stock price of stock a after 20 days. At this point, 3-vectors, excluding a,
will be entered as inputs until the first, second, and nth days. Learning the weights wa,
wb, wc, and wd for each item a, b, ¢, and d for the input of the k th day and passing [wat
at, wbt bt, wct ct, wdt dt] to the input of the LSTM cell.



LSTM Layer

Learn the abstract pattern of sequential data with weighted inputs of the form [wat at,
wbt bt, wct ct, wdt dt] created in the Input Attention Layer.

Decoder

Based on the abstract pattern of exogenous input learned in the encoder, the abstract
pattern of endogenous input is studied.

Attention Layer

In the sequential pattern of exogenous input learned in the Encoder, we learn the
weights of which sequence is important. Then, it is compressed with the self-attention
vector by combining with the pattern of exogenous input.

Fully Connected Layer

Create a context vector that combines the information of the self-attention vector and
the endogenous input.

LSTM Layer

The abstract pattern of the entire sequence is learned by combining the context vector
containing the information of the endogenous input and the abstract pattern of the
exogenous input learned in the encoder.

Fully Connected Layer

The target values of t are predicted by combining the result values of the LSTM layers.

Post-Processing
Outlier value handling

In order to increase the Hit Ratio of the relatively recent data, the students re-learn
using the previous 60-90 days of data every 10-20 days. Lower network convergence
For this reason, outlier values often occur at the beginning of the initial results.

Recover Min-Max Scaling

Since Min-Max Scaling was used in the pretreatment, the results are also generally
between [0-1]. However, for the intuitive result analysis of the user, it is easy to come
out in the form of the existing index, so it is restored to the original score.

Data Rolling Mean

Due to the backward filling of the missing weekend / holiday, the oscillating part of the



result is observed. To correct this, we get a smooth prediction graph through rolling
mean (5 days).

OUTPUT DATA

BASC_DT

2018-11-14 00:00:00
2018-11-13 00:00:00
2018-11-12 00:00:00
2018-11-11 00:00:00
2018-11-10 00:00:00
2018-11-09 00:00:00
2018-11-08 00:00:00
2018-11-07 00:00:00
2018-11-06 00:00:00
2018-11-05 00:00:00
2018-11-04 00:00:00
2018-11-03 00:00:00

K511

2353.06339328289
2353.06339328289
2375.02148692608
2375.02148692608
2388.61146977425
2375.02148692608
2388.95824939728
2376.73164656162
2388.61146977425
2373.58451762676
2388.61146977425
2375.02148692608

SPX

2765.7852576983

2769.7852576983

2751.28005176663
2751.28005176663
2785.254987465501
2788.25053544998
2788.38105477929
2816.52112690806
2786.64450623035
2812.74431381822
2786.64450623035
2751.28005176663

.dMIAPO0000G

272,45494734174
272,49494734174
273.425941756785
273.425941756785
275.9050150089
276.28708562994
275.944836621821
277. 166920415044
275.9050150069
277.523555809915
275.9050150069
273.425941756785

BSESN

36305.6767759413
36305.6767759413
35799.3148254269
35799.3148254269
36285.8970678753
36295.4843165833
36301.7233263719
36883, 1794583279
36285,8970678753
36898.8401739114
36285.8970678753
35799.3148254269

BVSP
76310.6093505886
76310.6093505886
76248.2111803696
76248.2111803696
77827.3581996887
76623.2976787276
77827.3581996887
79384.8973107687
77827.3581996887
79935.7931347936
77827.3581996887
76248.2111803696

.STOXXS0E
3454,46565979302
3454.46565979302
3454.06766646683
3454.067656646683
3463, 58845075548
3454.06766646683
3463.58845075548
3467. 17747617841
3463, 58845075548
3465.26364084661
3463. 58845075548
3454.06766646683

As shown in the above figure, data is created with the date as the index value and the

individual index as the column.

Optimization

Multi-Dimensional Choice of Traditional Asset Allocation Models for the Market
(Black-litterman, Risk-Parity, Momentum, etc.)

Leveraging deep-market forecasts as input to traditional asset allocation models
Prototype verification of various models using Pytorch to detect optimal model
generation parameters and auto-ml implementation

In order to commercialize, stable verification of the output value and generated

parameters after source conversion with Tensorflow is performed.

Conclusion

As a result, | constructed the following architecture.
It is a configuration that can flexibly apply data flexibility and new technology.



Efficient Return Guarantee Layer

Trading Execution Layer

Investment Probability Threshold Optimization

Portfolio Optimization

Optimal Asset Allocation Method Detection

Tactical Asset Allocation

Strategic Asset Allocation
Deep Learning Model

Data Abstraction Layer

Adaptation Layer

Data Fusion Layer

Customer Data H Fund Data

Bond Data H Portfolio Data H Market Data




