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ABSTRACT 

 
The Special Theory of Relativity takes us to two results that presently are considered “inexplicable” to many 
renowned scientists, to know: 
 
-The dilatation of time, and  
-The contraction of the Lorentz Length. 
 
The solution to these have driven the author to the development of the Undulating Relativity (UR) theory, 
where the Temporal variation is due to the differences on the route of the light propagation and the lengths 
are constants between two landmarks in uniform relative movement. 
 
The Undulating Relativity provides transformations between the two landmarks that differs from the 
transformations of Lorentz for: Space (x,y,z), Time (t), Speed (u


), Acceleration (a


), Energy (E), Momentum 

( p


), Force ( F


), Electrical Field ( E


), Magnetic Field ( B


), Light Frequency ( y ), Electrical Current ( J


) and 

“Electrical Charge” ( ρ ). 

 
From the analysis of the development of the Undulating Relativity, the following can be synthesized:  
 
- It is a theory with principles completely on physics;  
- The transformations are linear;  
- Keeps untouched the Euclidian principles;  
- Considers the Galileo’s transformation distinct on each referential;  
- Ties the Speed of Light and Time to a unique phenomenon;  
- The Lorentz force can be attained by two distinct types of Filed Forces, and  
- With the absence of the spatial contraction of Lorentz, to reach the same classical results of the special 
relativity rounding is not necessary as concluded on the Doppler effect. 
 
Both, the Undulating Relativity and the Special Relativity of Albert Einstein explain the experience of Michel-
Morley, the longitudinal and transversal Doppler effect, and supplies exactly identical formulation to:  
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Along with the equations of transformations between two references of the UR, we get the invariance of 
shape to Maxwell’s equations, such as: 
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We also get the invariance of shape to the equation of wave and equation of continuity under differential 
shape: 
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Undulating Relativity 

 
§ 1 Transformation to space and time 

 
The Undulating Relativity (UR) keep the principle of the relativity and the principle of Constancy of light 
speed, exactly like Albert Einstein’s Special Relativity Theory defined: 
 
a) The laws, under which the state of physics systems are changed are the same, either when referred to a 
determined system of coordinates or to any other that has uniform translation movement in relation to the 
first. 
 
b) Any ray of light moves in the resting coordinates system with a determined velocity c, that is the same, 
whatever this ray is emitted by a resting body or by a body in movement (which explains the experience of 
Michel-Morley). 
 
Let’s imagine first that two observers O and O’ (in vacuum), moving in uniform translation movement in 
relation to each other, that is, the observer don’t rotate relatively to each other. In this way, the observer O 
together with the axis x, y, and z of a system of a rectangle Cartesian coordinates, sees the observer O’ 
move with velocity v, on the positive axis x, with the respective parallel axis and sliding along with the x axis 
while the O’, together with the x’, y’ and z’ axis of a system of a rectangle Cartesian coordinates sees O 
moving with velocity  –v’, in negative direction towards the x’ axis with the respective parallel axis and sliding 
along with the x’ axis. The observer O measures the time t and the O’ observer measures the time t’ (t ≠ t’). 
Let’s admit that both observers set their clocks in such a way that, when the coincidence of the origin of the 
coordinated system happens t = t’ = zero.  
 
In the instant that t = t’ = 0, a ray of light is projected from the common origin to both observers. After the 
time interval t the observer O will notice that his ray of light had simultaneously hit the coordinates point A (x, 
y, z) with the ray of the O’ observer with velocity c and that the origin of the system of the O’ observer has 
run the distance v t along the positive way of the x axis, concluding that: 
 
x2 + y2 + z2 – c2 t2 = 0             1.1 
 
x’ = x – v t.               1.2 
 
The same way after the time interval t’ the O’ observer will notice that his ray of light simultaneously hit with 
the observer O the coordinate point A (x’, y’, z’) with velocity c and that the origin of the system for the 
observer O has run the distance v’t’ on the negative way of the axis x’, concluding that: 
 
x’2 + y’2 + z’2 – c2 t’2 = 0             1.3 
 
x = x’ + v’ t’.                1.4 
 
Making 1.1 equal to 1.3 we have 
 
x2 + y2 + z2 – c2 t2 = x’2 + y’2 + z’2 – c2 t’2.          1.5 
 
Because of the symmetry y = y’ end z = z’, that simplify 1.5 in 
 
x2 – c2 t2 = x’2 – c2 t’2.             1.6 
 
To the observer O x’ = x – v t (1.2) that applied in 1.6 supplies 
 
x2 – c2 t2 = (x – v t)2 – c2 t’2 from where 
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To the observer O’ x = x’ + v’ t’ (1.4) that applied in 1.6 supplies 
 
(x’ + v’ t’)2 – c2 t2 = x’2 – c2 t’2 from where 
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Table I, transformations to the space and time 
x’ = x – v t  1.2 x = x’ + v’ t’ 1.4 
y’ = y 1.2.1 y = y’ 1.4.1 
z’ = z 1.2.2 z = z’ 1.4.2 
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From the equation system formed by 1.2 and 1.4 we find 
 

v t = v’ t’ or '' tvtv   (considering t>o e t’>0)         1.9 

 
what demonstrates the invariance of the space in the Undulatory Relatitivy.  
 
From the equation system formed by 1.7 and 1.8 we find 
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To the observer O the principle of light speed constancy guarantees that the components ux, uy and uz of 
the light speed are also constant along its axis, thus 
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and then we can write 
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With the use of 1.7 and 1.9 and 1.14 we can write 
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Differentiating 1.9 with constant v and v’, or else, only the time varying we have 

''dtvdtv   or 
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dt

v
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'
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but from 1.15 
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Being v and v’ constants, the reazons 
'v

v
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t

t '
 in 1.15 must also be constant because fo this the 

differential of 
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2 2
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 , that is exactly 

the same as 1.13. 
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To the observer O’ the principle of Constancy of velocity of light guarantees that the components u’x’, u’y’, 
and u’z’ of velocity of light are also constant alongside its axis, thus 
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and with this we can write , 
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With the use of 1.8, 1.9, and 1.19 we can write  
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Differentiating 1.9 with v’ and v constant, that is, only the time varying we have 
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Replacing 1.14 and 1.19 in 1.10 we have 
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To the observer O the vector position of the point A of coordinates (x,y,z) is 

kzjyixR


 ,              1.24 

 
and the vector position of the origin of the system of the observer  O’ is 
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To the observer O’, the vector position of the point A of coordinates (x’,y’,z’) is 

kzjyixR


''''  ,              1.26 

 
and the vector position of the origin of the system of the observer O is 
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Due to 1.9, 1.25, and 1.27 we have, oRoR ''


 .         1.28 
 
As 1.24 is equal to 1.25 plus 1.26 we have 
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Applying 1.28 in 1.29 we have, oRRR ''


 .         1.30 
 
 



6/155 

To the observer O the vector velocity of the origin of the system of the observer O’ is 
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To the observer O’ the vector velocity of the origin of the system of the observer O is 
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From 1.15, 1.20, 1.31, and 1.32 we find the following relations between v
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Observation: in the table I the formulas 1.2, 1.2.1, and 1.2.2 are the components of the vector 1.29 and the 
formulas 1.4, 1.4.1, and 1.4.2 are the components of the vector 1.30. 

 
§2 Law of velocity transformations u
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Table 2, Law of velocity transformations u
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Multiplying 2.1 by itself we have 
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If in 2.7 we make u = c then u’ = c as it is required by the principle of constancy of velocity of light. 
Multiplying 2.2 by itself we have 
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If in 2.8 we make u’ = c then u = c as it is required by the principle of constancy of velocity of light. 

If in 2.3 we make ux = c then c
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The direct relations between the times and velocities of two points in space can be obtained with the 
equalities vuxxuu  0''0'


 coming from 2.1, that applied in 1.17, 1.22, 1.20, and 1.15 supply 
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Aberration of the zenith  
 
To the observer O’ along with the star u’x’ = 0, u’y’ = c and u’z’ = 0, and to the observer O along with the 
Earth we have the conjunct 2.3 
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  exactly as foreseen by the principle of relativity.  

To the observer O the light propagates in a direction that makes an angle with the vertical axis y given by  
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that is the aberration formula of the zenith in the special relativity . 
If we inverted the observers we would have the conjunct 2.4 
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that is equal to  2.15, with the negative sign indicating the contrary direction of the angles. 
 

Fresnel’s formula 
 
Considering in 2.4, ncxu /''   the velocity of light relativily to the water, vv '  the velocity of water in 

relation to the apparatus then 'cux   will be the velocity of light relatively to the laboratory  
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Doppler effect 
 

Making 2222 zyxr   and 2222 z'y'x'r'   in 1.5 we have 222222 t'cr'tcr   or 
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Resulting in the expression    t'w'r'k'wtkr   symmetric and invariable between the observers. 

 

To the observer O an expression in the formula of    wtkrftr,ψ        2.19 

represents a curve that propagates in the direction of R


. To the observer O’ an expression in the formula of 

   t'w'r'k'f',t'r'ψ'              2.20 

represents a curve that propates in the direction of 'R


.  
 

Applying in 2.18 
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Considering the relation of Planck-Einstein between energy ( E ) and frequency ( y ), we have to the 

observer O hyE   and to the observer O’ 'hy'E   that replaced in 2.22 supply 

 

KEE '  and '' KEE  .            2.23 
 
If the observer O that sees the observer  O’ moving with velocity  v in a positive way to the axis x, emits 
waves of frequency y  and velocity c in a positive way to the axis x then, according to 2.22 and cux   the 

observer O’ will measure the waves with velocity c and frequency 




 

c
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that is exactly the classic formula of the longitudinal Doppler effect.  
 
If the observer O’ that sees the observer O moving with velocity –v’ in the negative way of the axis x’, emits 
waves of frequency 'y  and velocity c, then the observer O according to 2.22 and 'v'x'u   will measure 

waves of frequency y  and velocity c in a perpendicular plane to the movement of O’ given by 
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that is exactly the formula of the transversal Doppler effect in the Special Relativity. 
 

§3 Transformations of the accelerations a
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Differentiating 2.2 and dividing it by 1.22 we have 
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Table 3, transformations of the accelerations a


 and 'a
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From the tables 2 and 3 we can conclude that if to the observer O zeroa.u 


 and 2222 uzuyuxc  , 

then it is also to the observer O’ zero'a'.u 


 and 2222 z'u'y'u'x'u'c  , thus u
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 as the vectors theory requires. 
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The direct relations between the modules of the accelerations a and a’ of two points in space can be 
obtained with the vuxvu0'x'a0'x'u0'u 


 coming from 2.1, that applied in 3.8 and 

3.9 supply 

2

2

22

2

c

v
1

a

c

vv2

c

v
1

a
'a





  and 

2

2

22

2

c

'v
1

'a

c

0'v2

c

'v
1

'a
a





 .      3.10 

That can also be reduced from 3.1 and 3.2 if we use the same equalities 
vuxvu0'x'a0'x'u0'u 


 coming from 2.1. 

 
§4 Transformations of the Moments p


 and 'p


 

 

Defined as  uump


  and   'uu'm''p


 ,          4.1 

where  um  and  'u'm  symbolizes the function masses of the modules of velocities  uu


  and 'uu'


 .  

We will have the relations between  um  and  u'm'  and the resting mass mo, analyzing the elastic 

collision in a plane between the sphere s that for the observer o moves alongside the axis y with velocity uy 
= w and the sphere s’ that for the observer O’ moves alongside the axis y’ with velocity u’y’ = -w. The 
spheres while observed in relative resting are identical and have the mass mo. The considered collision is 
symmetric in relation to a parallel line to the axis y and y’ passing by the center of the spheres in the moment 
of. Collision. 
 
Before and after the collision the spheres have velocities observed by O and O’ according to the following 
table gotten from table 2 
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 Sphere Observer O Observer O’ 
 
Before 

 
s 

 
zerouxs  , wuys   'vs'x'u  , 

2

2

c

'v
1ws'y'u   

 
Collision 

 
s’ v'uxs  , 

2

2

c

v
1w'uys   

 
zero's'x'u  , w's'y'u   

 
After 

 
s 

 
zerouxs  , wuys   'vs'x'u  , 

2

2

c

'v
1ws'y'u   

 
Collision 

 
s’ v'uxs  , 

2

2

c

v
1w'uys   

 
zero's'x'u  , w's'y'u   

 

To the observer O, the principle of conservation of moments establishes that the moments  uxumpx   

and  uyumpy  , of the spheres s and s’ in relation to the axis x and y, remain constant before and after 

the collision thus for the axis x we have  
 

       uxs'uys'uxs'muxsuysuxsmuxs'uys'uxs'muxsuysuxsm 22222222  , 

 
where replacing the values of the table we have 

v
c

v
1wvmv

c

v
1wvm

2

2

2
2

2

2

2
2























































  from where we conclude that ww  , 

and for the  axis y  
 

       uys'uys'uxs'muysuysuxsmuys'uys'uxs'muysuysuxsm 22222222  , 

 
where replacing the values of the table we have 
 

   
2

2
2

2

2
2

2

2
2

2

2
2

c

v
1w

c

v
1wvmwwm

c

v
1w

c

v
1wvmwwm 























































 , 

simplifying we have 
 

 
2

2

2

2
22

c

v
1

c

v
1wvmwm 






















 , where when 0w  becomes 

         

2

22

2

2

2

2

2
22

c

v
1

0m
vm

c

v
1vm0m

c

v
1

c

v
10vm0m

























 , 

but  0m  is equal to the resting mass mo thus 

 
2

2

0

c

v
1

m
vm



 , with a relative velocity  
2

2

0

c

u
1

m
umuv



       4.2 

that applied in 4.1 supplies  
2

2

0

c

u
1

um
uump







.        4.1 

 
With the same procedures we would have for the O’ observer 
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2

2

0

c

'u
1

m
'u'm



              4.3 

and  
2

2

0

c

u'
1

'um
'uu'm''p







.           4.1 

Simplifying the simbology we will adopt  
2

2

0

c

u
1

m
umm



        4.2 

and  
2

2

0

c

'u
1

m
'u'm'm



             4.3 

that simplify the moments in ump


  and 'um''p


 .        4.1 

 
Applying 4.2 and 4.3 in 2.9 and 2.10 we have 
 

'K'mm
c

'x'u'v2

c

'v
1'mm

22

2

  and Km'm
c

vux2

c

v
1m'm

22

2

 .  4.4 

 

Defining force as Newton we have 
 
dt

umd

dt

pd
F


  and 

 
'dt

'u'md

'dt

'pd
'F


 , with this we can define then 

kinetic energy  kk 'E,E as  

 

       
u

0

2
u

0

u

0

u

0

k mududmuu.umdRd.
dt

umd
Rd.FE


, 

 

and 
       

u'

0

2
u'

0

u'

0

u'

0

k du'u'm'dm'u''u.'um'd'Rd.
dt'

'um'd
'Rd'.FE'


. 

Remodeling 4.2 and 4.3 and differentiating we have dmcmududmucmumcm 2222
0

2222   and 

dm'cdu'u'm'dm'u'cmu'm'cm' 2222
0

2222  , that applied in the formulas of kinetic energy 

supplies  
m

m

0
2

0
22

k

0

EEcmmcdmcE  and  
'm

m

0
2

0
22

k

0

E'Ecmc'm'dmc'E ,  4.5 

 

where 2mcE   and 2c'm'E             4.6 
 

are the total energies as in the special relativity and 2
oo cmE         4.7 

the resting energy. 
 
Applying 4.6 in 4.4 we have exactly 2.23.  
 
From 4.6, 4.2, 4.3, and 4.1 we find 
 

222
o pcmcE   and 222

o p'cmcE'           4.8 

 
identical relations to the Special Relativity. 
 
Multiplying 2.1 and 2.2 by mo we get 
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v
c

E
p'pvmum'u'm

c

u
1

vm

c

u
1

um

c

u'
1

'um
2

2

2

o

2

2

o

2

2

o 














     4.9 

 

and 'v
c

E'
'pp'v'm'u'mum

c

u'
1

'vm

c

u'
1

'um

c

u
1

um
2

2

2

o

2

2

o

2

2

o 














.    4.10 

 
Table 4, transformations of moments p


 and 'p


 

v
c

E
p'p

2


  

 
4.9 'v

c

E'
'pp

2


  

 
4.10 

v
c

E
px'x'p

2
  

 
4.11 v'

c

E'
x'p'px

2
  

 
4.12 

py'y'p   4.11.1 'y'ppy   4.12.1 

pz'z'p   4.11.2 'z'ppz   4.12.2 

KE'E   2.23 K'E'E   2.23 

 
2

2

0

c

u
1

m
umm



  
 
4.2  

2

2

0

c

u'
1

m
u'm'm'



  
 
4.3 

Km'm   4.4 'K'mm   4.4 

ok EEE   4.5 
ok EE'E'   4.5 

2mcE   4.6 2cm'E'   4.6 

2
oo cmE   4.7 2

oo cmE   4.7 

222
o pcmcE   

4.8 222
o p'cmcE'   

4.8 

 
Wave equation of Louis de Broglie 

 
The observer O’ associates to a resting particle in its origin the following properties: 
 
-Resting mass mo 
 

-Time ot't   

-Resting Energy 2
oo cmE   

-Frequency 
h
cm

h
E

y
2

oo
o   

-Wave function ooo ty2πasenψ   with a = constant. 

 
The observer O associates to a particle with velocity v the following: 

-Mass  
2

2

o

c

v
1

m
vmm



  (from 4.2 where vu  ) 

-Time 

2

2

o

22

2

o

c

v
1

t

c

vv2

c

v
1

t
t







  (from 1.7 with vux   and ot't  ) 

-Energy 

2

2

2
o

2

2

o

c

v
1

cm

c

v
1

E
E







  (from 2.23 with vux   and oE'E  ) 
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-Frequency 

2

2

2
o

2

2

o

c

v
1

/hcm

c

v
1

y
y







  (from 2.22 with vux   and oy'y  ) 

-Distance x = vt (from 1.2 with x’ = 0) 

-Wave function 





 

u
x

tyπ2asen
c

v
1t

c

v
1yπ2asenty2asenψ

2

2

2

2

oo  with 
v

c
u

2

  

-Wave length 
p
h

λ
p
hy

p
E

v
c

λyu
2

  (from 4.9 with 0p'p o 


) 

To go back to the O’ observer referential where 0x'u'0'u 


, we will consider the following variables: 
 
-Distance x = v’t’ (from 1.4 with x’ = 0) 

-Time 
2

2

22

2

c

v'
1t'

c

v'02

c

v'
1t't   (from 1.8 with 0'x'u  ) 

-Frequency 
2

2

c

v'
1'yy   (from 2.22 with 0'x'u  ) 

-Velocity 

2

2

c

v'
1

v'
v



  (de 2.13) 

that applied to the wave function supplies 

t''yasen

c

v'
1c

t'v'

c

v'
1t'

c

v'
1'yπ2asen

c

vx
tyπ2asenψ'

2

2
2

2

2

2

2

2

2
2





























  , 

but as ot't   and oyy'   then oψψ'  . 

§5 Transformations of the Forces F


 and 'F


 
 
Differentiating 4.9 and dividing by 1.17 we have 
 

  



 



 

222 c

v
u.FF

K

1
'F

c

v

dt

dE
F

K

1
'F

c

v

Kdt

dE

Kdt

pd

dt'

'pd



.   5.1 

 
Differentiating 4.10 and dividing by 1.22 we have 
 

  



 



 

222 c

'v
'u'.F'F

K'

1
F

c

'v

dt'

dE'
'F

K'

1
F

c

'v

K'dt'

dE'

K'dt'

'pd

dt

pd



.  5.2 

 
From the system formed by 5.1 and 5.2 we have  
 

dt'

dE'

dt

dE
  or 'u'.Fu.F


 ,            5.3 

 
that is an invariant between the observers in the Undulating .Relativity. 
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Table 5, transformations of the Forces  F


 and 'F


 

  



 

2c

v
u.FF

K

1
'F




  
5.1 

  



 

2c

'v
'u'.F'F

K'

1
F




  
5.2 

  



 

2c

v
u.FFx

K

1
x'F'


  

5.4 
  



 

2c

v'
'u'.Fx'F'

'K

1
Fx


  

5.5 

KFy/y'F'   5.4.1 K'/y'F'Fy   5.5.1 

KFz/z'F'   5.4.2 K'/z'F'Fz   5.5.2 

dt

dE

'dt

'dE
  

 
5.3 

 

'u'.Fu.F


  
 
5.3 

 

§6 Transformations of the density of charge ρ , ρ'  and density of current J


 and 'J


 

Multiplying 2.1 and 2.2 by the density of the resting electric charge defined as 
o

o dv

dq
ρ   we have 

vρJ'Jvρuρ'uρ'

c

u
1

vρ

c

u
1

uρ

c

u'
1

'uρ

2

2

o

2

2

o

2

2

o 














     6.1 

and 'vρ''JJ'vρ''uρ'uρ

c

u'
1

'vρ

c

u'
1

'uρ

c

u
1

uρ

2

2

o

2

2

o

2

2

o 














.    6.2 

Table 6, transformations of the density of charges ρ , ρ'  and density of current J


 and 'J


 

vρJ'J


  6.1 'vρ''JJ


  6.2 

ρvJxx'J'   6.3 'ρ'vJ'x'Jx   6.4 

Jy'y'J   6.3.1 'y'JJy   6.4.1 

Jz'z'J   6.3.2 'z'JJz   6.4.2 

uρJ


  6.5 'u'ρ'J


  6.6 

2

2

o

c

u
1

ρ
ρ



  
 
 
6.7 

2

2

o

c

u'
1

ρ
ρ'



  
 
 
6.8 

Kρρ'   6.9 Κ'ρ'ρ   6.10 

From the system formed by 6.1 and 6.2 we had 6.9 and 6.10. 
 

§7 Transformation of the electric fields E


, 'E


 and magnetic fields B


, 'B


 
 

Applying the forces of Lorentz  BuEqF


  and  'B'u'Eq'F


  in 5.1 and 5.2 we have  

       



 

2c

v
u.BuEqBuEq

K

1
'B'u'Eq




 

and        



 

2c

'v
'u.'B'u'Eq'B'u'Eq

K'

1
BuEq




, that simplified become  

 

      



 

2c

v
u.EBuE

K

1
'B'u'E




 and       



 

2c

'v
'u'.E'B'u'E

K'

1
BuE




 from 

where we get the invariance of 'u'Eu.E


  between the observers as a consequence of 5.3 and the 
following components of each axis  

 



16/155 





 

222 c

Ezuzv

c

Eyuyv

c

Exuxv
uzByuyBzEx

K

1
y'B'z'u'z'B'y'u'x'E'    7.1 

 zBxuxBzuyE
K

1
'zB''xu''xB''zu''yE'         7.1.1 

 xByuyBxuzE
K

1
'xB''yu''yB''xu''zE'         7.1.2 











2c

v'z'u'z'E'
2c

v'y'u'y'E'
2c

v'x'u'x'E'
y'B'z'u'z'B'y'u'x'E'

K'

1
uzByuyBzEx   7.2 

 'zB''xu''xB''zu''yE'
K'

1
zBxuxBzuyE         7.2.1 

 'xB''yu''yB''xu''zE'
K'

1
xByuyBxuzE         7.2.2 

To the conjunct 7.1 and 7.2 we have two solutions described in the tables 7 and 8. 
 

Table 7, transformations of the electric fields E


, 'E


 and magnetic fields B


 e 'B


 







 

2c

vux
1

K

Ex
x'E'  

 
7.3 






 

2c

x'u'v'
1

K'

x'E'
Ex  

 
7.4 

K

vBz

c

vux

c

v
1

K

Ey
y'E'

22

2









  

 
7.3.1 

K'

z'B'v'

c

x'u'v'

c

v'
1

K'

y'E'
Ey

22

2









  

 
7.4.1 

K

vBy

c

vux

c

v
1

K

Ez
z'E'

22

2









  

 
7.3.2 

K'

y'B'v'

c

x'u'v'

c

v'
1

K'

z'E'
Ez

22

2









  

 
7.4.2 

Bxx'B'   7.5 x'B'Bx   7.6 

Ez
c

v
Byy'B'

2
  

 
7.5.1 z'E'

c

v'
y'B'By

2
  

 
7.6.1 

Ey
c

v
Bzz'B'

2
  

 
7.5.2 y'E'

c

v'
z'B'Bz

2
  

 
7.6.2 

KEyy'E'   7.7 K'y'E'Ey   7.8 

KEzz'E'   7.7.1 K'z'E'Ez   7.8.1 

Ez
c

ux
By

2
  

 
7.9 z'E'

c

x''u
y'B'

2
  

 
7.10 

Ey
c

ux
Bz

2
  

 
7.9.1 y'E'

c

x''u
z'B'

2
  

 
7.10.1 

 

Table 8, transformations of the electric fields  E


, 'E


 and magnetic fields B


 e 'B


 

  



 

2c

v
u.EEx

K

1
x'E'



 

 
7.11   



 

2c

v'
'u'.Ex'E'

K'

1
Ex



 

 
7.12 

 vBzEy
K

1
E'y' 

 

 
7.11.1  z'B'v'y'E'

K'

1
Ey 

 

 
7.12.1 

 vByEz
K

1
E'z' 

 

 
7.11.2  y'B'v'z'E'

K'

1
Ez 

 

 
7.12.2 

Bxx'B'   7.13 x'B'Bx   7.14 

Byy'B'   
7.13.1 y'B'By   

7.14.1 

Bzz'B'   7.13.2 z'B'Bz   7.14.2 
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Relation between the electric field and magnetic field 
 

If an electric-magnetic field has to the observer O’ the naught magnetic component zero'B 


 and the 

electric component 'E


. To the observer O this field is represented with both components, being the 
magnetic field described by the conjunct 7.5 and hás as components  
 

zeroBx  , 
2c

vEz
By  , 

2c

vEy
Bz  ,         7.15 

that are equivalent to  Ev
c

1
B

2


 .           7.16 

 
Formula of Biot-Savart 

 
The observer O’ associates to a resting electric charge, uniformly distributed alongside its axis x’ the 
following electric-magnetic properties: 

-Linear density of resting electric charge 
'dx

dq
ρo   

-Naught electric current zero'I   

-Naught magnetic field zero'uzero'B 


 

-Radial electrical field of module 
Rπε2

ρ
'z'E'y'E'E

o

o22   at any point of radius 22 z'y'R   with 

the component zerox'E'  . 
 
To the observer O it relates to an electric charge uniformly distributed alongside its axis with velocity vux   
to which it associates the following electric-magnetic properties: 

-Linear density of the electric charge 

2

2

o

c

v
1

ρ
ρ



  (from 6.7 with u = v) 

-Electric current 

2

2

o

c

v
1

vρ
ρvI



  

-Radial electrical field of module 

2

2

c

v
1

E'
E



  (according to the conjuncts 7.3 and 7.5 with 

zero'uzero'B 


 and vux  ) 

-Magnetic field of components zeroBx  , 
2c

vEz
By  , 

2c

vEy
Bz   and module 

R2

I

Rπε2

ρ

c

v
1

1

c

v

c

v
1

'E

c

v

c

vE
B o

o

o

2

22

2

222 










  where 
2

o
o c

1


 , being in the vectorial form 

u
R2

I
B o 




                7.17 

where u


 is a unitary vector perpendicular to the electrical field E


 and tangent to the circumference that 

passes by the point of radius  22 zyR   because from the conjunct 7.4 and 7.6 zeroB.E 


. 
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§8 Transformations of the differential operators 
 
Table 9, differential operators  

tc

v

xx' 2 










 
 
8.1 

t'c

v'

x'x 2 










 
 
8.2 

yy' 






 
 
8.1.1 

y'y 






 
 
8.2.1 

zz' 






 
 
8.1.2 

z'z 






 
 
8.2.2 

ttc

vx

c

v
1

K

1

xK

v

t' 22

2





















 
 
8.3 

t't'c

x'v'

c

v'
1

K'

1

x'K'

v'

t 22

2





















 
89.4 

 
From the system formed by 8.1, 8.2, 8.3, and 8.4 and with 1.15 and 1.20 we only find the solutions  
 

o
tc

x/t

x 2









 and o
t'c

/t'x'

x' 2









.         8.5 

 
From where we conclude that only the functions ψ  (2.19) and ψ'  (2.20) that supply the conditions  

 

o
t

ψ

c

x/t

x

ψ
2









  and  o
t'

ψ'

c

/t'x'

x'

ψ'
2









,         8.6 

 
can represent the propagation with velocity c in the Undulating Relativity indicating that the field propagates 
with definite velocity and without distortion being applied to 1.13 and 1.18. Because of symmetry we can also 
write to the other axis  
 

o
t

ψ

c

/ty

y

ψ
2









, o
t'

ψ'

c

/t''y

'y

ψ'
2









 and o
t

ψ

c

/tz

z

ψ
2









, o
t'

ψ'

c

/t''z

'z

ψ'
2









.   8.7 

 
From the transformations of space and time of the Undulatory Relativity we get to Jacob’s theorem 
 

 
  K

c

vux
1

z,ty,x,

,t'z',y',x'
J

2






  and 

 
  K'

c

x'u'v'
1

t',z',y',x'

tz,y,x,
J'

2






 ,     8.8 

 
variables with ux and u’x’ as a consequence of the principle of contancy of the light velocity but are equal ais 

J'J   and will be equal to one  1J'J   when cx'u'ux  . 
 

 
Invariance of the wave equation 

 
The wave equation to the observer O’ is  
 

zero
t'c

1

z'y'x' 2

2

22

2

2

2

2

2

















 

 
where applying to the formulas of tables 9 and 1.13 we get  

zero
tc

xuv

c

v
1

K

1

xK

v

c

1

zytc

v

x

2

22

2

22

2

2

22

2

















































 

 
from where we find  
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zero
tc

v

tc

uxv

tc

uxv2

tc

vux2

tc

v2

txc

uxv2

txc

v2

txc

v2

xc

v

tc

uxv2

tc

v

tc

v

txc

uxv4

txc

v2

txc

v2

tc

1

z
K

y
K

x
K

2

2

6

4

2

2

6

22

2

2

6

3

2

2

42

2

4

22

4

22

4

32

22

2

2

2

2

2

6

3

2

2

6

4

2

2

4

22

4

22

4

32

22

2

22

2

2

2

2

2



















































































 
that simplifying supplies  

zero
tc

uxv

tc

vux2

tc

v

xc

v

txc

uxv2

tc

1

z
K

y
K

x
K

2

2

6

22

2

2

42

2

4

2

2

2

2

22

4

2

2

2

22

2

2

2

2

2






































 

 
where reordering the terms we find  

zero
tc

ux

txc

ux2

xc

v

tc

1

c

vux2

c

v
1

z
K

y
K

x
K

2

2

4

22

22

2

2

2

2

2

222

2

2

2

2

2

2

2
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but from 8.5 and  1.13 we have  zero
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that applied in 8.9 supplies the wave equation to the observer  O zero
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. 8.10 

 
To return to the referential of the observer O’ we will apply 8.10 to the formulas of tables 9 and 1.18, getting 
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from where we find  
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that simplifying supplies  
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where reordering the terms we find  
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but from  8.5 and 1.18 we have  
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that replaced in the reordered equation supplies the wave equation to the observer O’. 
 

Invariance of the Continuity equation 
 
The continuity equation in the differential form to the observer O’ is  
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        8.11 

 
where replacing the formulas of tables 6, 9, and 1.13 we get  
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making the operations we find  
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that simplifying supplies  
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where applying ρuxJx   with ux constant we get  
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  8.12 

 
that is the continuity equation in the differential form to the observer O. 
 
To get again the continuity equation in the differential form to the observer O’ we will replace the formulas of 
tables 6, 9, and 1.18 in 8.12 getting  
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making the operations we find  
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that simplifying supplies  
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where applying x'u'ρ'x'J'   with u’x’ constant we get 
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 that is the continuity equation in the differential form to the observer O’. 

 
Invariance of Maxwell’s equations 

 
That in the differential form are written this way  
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Without electrical charge zero'   and zero'JJ 
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We demonstrate the invariance of the Law of Gauss in the differential form that for the observer O’ is 

o

'

'z

'z'E

'y

'y'E

'x

'x'E
















             8.14 

 
where replacing the formulas from the tables 6, 7, 9, and 1.18, and considering u’x’ constant, we get 
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making the products, summing and subtracting the term 
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that reordering results  
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where the first parentheses is 8.5 and because of this equal to zero , the second blank is equal to  
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from where we get  
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that is the Law of Gauss in the differential form to the observer O. 
 
To make the inverse we will replace in 8.13 the formulas of the tables 6, 7, 9, and 1.13, and considering ux 
constant, we get  
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making the products, adding and subtracting the term  
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that reordering results in  
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where the first blank is  8.5 and because of this equals to zero, the second blank is equal to 
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from where we get 
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 that is the Law of Gauss in the differential form to the O’ 

observer. 
 
Proceeding this way we can prove the invariance of form for all the other equations of Maxwell.  
 

§9 Explaining the Sagnac Effect with the Undulating Relativity 
 
We must transform the straight movement of the two observers O and O’ used in the deduction of the 
Undulating Relativity in a plain circular movement with a constant radius. Let’s imagine that the observer O 
sees the observer O’ turning around with a tangential speed v in a clockwise way (C) equals to the positive 
course of the axis x of UR and that the observer O’ sees the observer O turning around with a tangecial 
speed v’ in a unclockwise way (U) equals to the negative course of the axis x of the UR. 
 
In the moment  t = t’ = zero, the observer O emits two rays of light from the common origin  to both 
observers, one in a unclockwise way of arc ctU and another in a clockwise way of arc ctC, therefore ctU = ctC 
and tU = tC, because c is the speed of the constant light, and tU and tC the time. 
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In the moment t = t’ = zero the observer O’ also emits two rays of light from the common origin to both 
observers, one in a unclockwise way (useless) of arc ct’U and another one in a clockwise way of arc ct’C, thus 
ct’U = ct’C and t’U = t’C because c is the speed of the constant light, and t’U and t’C the time. 
 
Rewriting the equations 1.15 and 1.20 of the Undulating Relativity (UR): 
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Making ux = u’x’ = c ( ray of light projected alongside the positive axis x ) and splitting the equations we 
have: 
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When the origin of the observer O’ detects the unclockwise ray of the observer O, will be at the distance 

UC 't'vvt   of the observer  O and simultaneously will detect its clockwise ray of light at the same point of 

the observer O, in a symmetric position to the diameter that goes through the observer O because 

CUCU ttctct   and CUCU 't't'ct'ct  , following the four equations above we have: 
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When the origin of the observer O’ detects the clockwise ray of the observer O, simultaneously will detect its 

own clockwise ray and will be at the distance U2C2 't'vvt   of the observer O, then following the equations 

1,2,3 and 4 above we have: 
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The time difference to the observer O is: 
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The time difference to the observer O’ is: 
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Replacing the equations 5 to 10 in 1 to 4 we prove that they confirm the transformations of the Undulating 
Relativity. 
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§10 Explaining the experience of Ives-Stilwell with the Undulating Relativity 
 
We should rewrite the equations (2.21) to the wave length in the Undulating Relativity: 
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 ,        2.21 

 
Making ux = u’x’ = c ( Ray of light projected alongside the positive axis x ), we have the equations: 
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If the observer O, who sees the observer O’ going away with the velocity v in the positive way of the axis x, 

emits waves, provenient of a resting source in its origin with velocity c and wave length F  in the positive 

way of the axis x, then according to the equation 10.1 the observer O’ will measure the waves with velocity c 

and the wave length D'  according to the formulas: 
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If the observer O’, who sees the obsesrver O going away with velocity v’ in the negative way of the axis x, 

emits waves, provenient of a resting source in its origin with velocity c and the wave length F'  in the 

positive way of the axis x, then according to the equation 10.1 the observer O will measure waves with 

velocity c and wave lenght A  according to the formulas: 
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The resting sources in the origin of the observers O and O’ are identical thus FF ' . 

 

We calculate the average wave length   of the measured waves  DA ',  using the equations 10.2 and 

10.3, the left side in each equation: 
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We calculate the diffrence between the average wave length   and the emited wave length by the sources 

F : 
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Reference 
http://www.wbabin.net/physics/faraj7.htm 
 

§10 Ives-Stilwell (continuation) 
 
The Doppler’s effect transversal to the Undulating Relativity was obtained in the §2 as follows: 
 
If the observer O’, that sees the observer O, moves with the speed  –v’ in a negative way to the axis x’, emits 
waves with the frequency 'y  and the speed c then the observer O according to 2.22 and 'v'x'u   will 

measure waves of frequency y  and speed c in a perpendicular plane to the movement of O’ given by 
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  with this we can write the relation between 

the transversal frequency tyy  and the source frequency F'y'y   like this 
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               10.5 

With FFtt ''yyc   we have the relation between the length of the transversal wave t and the length of 

the source wave F'  
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The variation of the length of the transversal wave in the relation to the length of the source wave is: 
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that is the same value gotten in the Theory of Special Relativity. 
 
Applying 10.7 in 10.4 we have 
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With the equations 10.2 and 10.3 we can get the relations 10.9, 10.10, and 10.11 described as follows 
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And from this we have the formula of speed 
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Applying 10.10 and 10.11 in 10.6 we have 
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From 10.8 and 10.12 we conclude that DtFA ' .       10.13 

 

So that we the values of A  and D'  obtained from the Ives-Stiwell experience we can evaluate t , F , 

c
v  and conclude whether there is or not the space deformation predicted in the Theory of Special Relativity. 

 
§11 Transformation of the power of a luminous ray between two referencials in the Special Theory of 
Relativity 
 
The relationship within the power developed by the forces between two referencials is written in the Special 
Theory of the Relativity in the following way: 







 




2c

vux
1

vFxu.F
'u'.F




             11.1 

The definition of the component of the force along the axis x is: 
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For a luminous ray, the principle of light speed constancy guarantees that the component ux of the light 
speed is also constant along its axis, thus 
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From the definition of energy we have u.F
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  that applying in 4 and 3 we have 
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Applying 5 in 1 we heve: 
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From where we find that u.F'u'.F
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A result equal to 5.3 of the Undulating Relativity that can be experimentally proven, considering the ‘Sun’ as 
the source. 

 
§12 Linearity 

 
The Theory of Undulating Relativity has as its fundamental axiom the necessity that inertial referentials be 
named exclusively as those ones in which a ray of light emitted in any direction from its origin spreads in a 
straight line, what is mathematically described by the formulae (1.13, 1.18, 8.6 e 8.7) of the Undulating 
Relativity: 
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         1.18 

 
Woldemar Voigt wrote in 1.887 the linear transformation between the referentials os the observers O e O’ in 
the following way: 
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'Bt'Axx                12.1 

'Ft'Ext                12.2 
 
With the respective inverted equations: 

t
BEAF

B
x

BEAF

F
'x







             12.3 

 

t
BEAF

A
x

BEAF

E
't







             12.4 

 
Where A, B, E and F are constants and because of the symmetry we don’t consider the terms with y, z and 
y’, z’. 
We know that x and x’ are projections of the two rays of lights ct and ct’ that spread with Constant speed c 
(due to the constancy principle of the Ray of light), emited in any direction from the origin of the respective 
inertials referential at the moment in which the origins are coincident and at the moment where: 
 
 t = t’ = zero               12.5 
 
because of this in the equation 12.2 at the moment where t’ = zero we must have E = zero so that we also 
have t = zero, we can’t assume that when t’ = zero,  x’ also be equal to zero, because if the spreading 
happens in the plane  y’z’ we will have x’ = zero plus zero't  . 
 
We should rewrite the corrected equations (E = zero): 

'Bt'Axx                12.6 

'Ftt                 12.7 
 
With the respective corrected inverted equations: 

AF

Bt

A

x
'x                12.8 

F

t
't                 12.9 

If the spreading happens in the plane y’ z’ we have x’ = zero and dividing 12.6 by 12.7 we have: 
 

v
F

B

t

x
                12.10 

 
where v is the module of the speed in which the observer O sees the referential of the observer O’ moving 
alongside the x axis in the positive way because the sign of the equation is positive. 
 
If the spreading happens in the plane y z we have x = zero and dividing 12.8 by 12.9 we have: 
 

'v
A

B

't

'x
  or 'v

A

B
             12.11 

 
where v’ is the module of the speed in which the observer O’ sees the referential of the observer O moving 
alongside the x’ axis in the negative way because the signal of the equation is negative. 
 
The equation 1.6 describes the constancy principle of the speed of light that must be assumed by the 
equations 12.6 to 12.9: 
 

222222 'tc'xtcx               1.6 
 
Applying  12.6 and 12.7 in 1.6 we have: 
 

  2222222 'tc'x'tFc'Bt'Ax   

 
From where we have: 
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where making A2 = 1 in the brackets in arc and 1
'tc
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B
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  in the straight brackets we have 

the equality between both sides of the equal signal of the equation. 
 

Appllying A = 1 in 1
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'ABx2

c

B
F
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2
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  we have 
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Appllying A = 1 in 12.11 we have 'vB
1

B

A

B
          12.11 

 
That applied in 12.12 suplies: 
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            12.12 

 
as F(x’, t’) is equal to the function F depending of the variables x’ and t’. 
 
Applying 12.8 and 12.9 in 1.6 we have: 
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From where we have: 
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  in the straight bracket we 

have the equality between both sides of the equal signal of the equation. 
 

Applying A = 1 and 12.10 in 1
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  we have: 
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             12.13 

 
as F(x, t) is equal to the function F depending on the variables x and t. 
 
We must make the following naming according to 2.5 and 2.6: 
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As the equation to F(x’, t’) from 12.12 and F(x, t) from 12.13 must be equal, we have: 
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Thus: 
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Exactly equal to 1.10. 
 
Rewriting the equations 12.6, 12.7, 12.8 and 12.9 according to the function of v, v’ and F we have: 
 

't'v'xx                 12.6 
 

'Ftt                 12.7 
 
With the respective inverted corrected equations: 
 

vtx'x                 12.8 
 

F

t
't                 12.9 

We have the equations 12.6, 12.7, 12.8 and 12.9 finals replacing F by the corresponding formulae: 
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              12.7 

 
With the respective inverted final equations: 
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That are exactly the equations of the table I 
 

As 
F

B
v   and B'v   then the relations between v and v’ are 

F

'v
v   or F.v'v      12.18 

 
We will transform F (12.12) function of the elements v’, x’, and t’ for F (12.13) function of the elements v, x 
and t, replacing in 12.12 the equations 12.8, 12.9 and 12.18: 
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That is exactly the equation 12.13.  
 
We will transform F (12.13) function of the elements v, x, and t for F (12.12) function of the elements v’, x’ 
and t’, replacing in 12.13 the equations 12.6, 12.7 and 12.18: 
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That is exactly the equation 12.12. 
 
We have to calculate the total diferential of F(x’, t’) (12.12): 
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we have: 
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where applying 1.18 we find: 
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From where we conclude that F function of x’ and t’ is a constant. 
 
We have to calculate the total diferential of F(x, t) (12.13): 
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we have: 
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where applying 1.13 we find: 
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From where we conclude that F function of x and t is a constant. 
 
The equations 1.13 and 1.18 represent to the observers O and O’ the principle of constancy of the light 
speed valid from infinitely small to the infinitely big and mean that in the Undulating Relativity the space and 
time are measure simultaneously. They shouldn’t be interpreted with a dependency between space and 
time. 
 
The time has its own interpretation that can be understood if we analyze to a determined observer the 
emission of two rays of light from the instant t=zero. If we add the times we get, for each ray of light, we will 
get a result without any use for the physics. 
 
If in the instant t = t’ = zero, the observer O’ emits two rays of light, one alongside the axis x and the other 
alongside the axis y, after the interval of time t’, the rays hit for the observer O’, simultaneously, the points Ax 

and Ay to the distance ct’ from the origin, although for the observer O, the points won’t be hit simultaneously.  
For both rays of lights be simultaneous to both observers, they must hit the points that have the same radius 
in relation to the axis x and that provide the same time for both observers (t1

 = t2 and t’1 = t’2), which means 
that only one ray of light is necessary to check the time between the referentials. 
According to § 1, both referentials of the observers O and O’ are inertial, thus the light spreads in a straight 
line according to what is demanded by the fundamental axiom of the Undulating Relativity § 12, because of 
this, the difference in velocities v and v’ is due to only a difference in time between the referentials. 

t
'xxv    1.2   

't
'xx'v    1.4 

We can also relate na inertial referential for which the light spread in a straight line according to what is 
demanded by the fundamental axiom of the Undulating Relativity, with an accelerated moving referential for 
which the light spread in a curve line, considering that in this case the difference v and v’ isn’t due to only the 
difference of time between the referentials. 
 
According to § 1, if the observer O at the instant t = t’ = zero, emits a ray of light from the origin of its 
referential, after an interval of time t1, the ray of light hits the point A1 with coordinates (x1, y1, z1, t1) to the 
distance ct1 of the origin of the observer O, then we have: 
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After hitting the point A1 the ray of light still spread in the same direction and in the same way, after an 
interval of time t2, the ray of light hits the point A2 with coordinates (x1 + x2, y1 + y2, z1 + z2, t1 + t2) to the 
distance ct2 to the point A1, then we have: 
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and with this we get: 
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The geometry of space and time in the Undulating Relativity is summarized in the figure below that can be 
expanded to An points and several observers. 
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In the figure the angles have a relation  '  and are equal to the following segments: 

 

O1 to 'OO  is equal to 'OO  to O’1    1111 't'vvt'OO   

 

O2 to O1 is equal to O’1 to O’2       211222212122 'O'OOO't'vvt't't'vttv'OO   

And are parallel to the following segments: 
 
O2 to A2 is parallel to O1 to A1 
 
O’2 to A2 is parallel to O’1 to A1 
 

'XX   is parallel to 11 'XX   

 
The cosine of the angles of inclination   and '  to the rays for the observers O and O’ according to 2.3 and 

2.4 are: 
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And with this we have: 
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And with this we have 
'K
'sen

sen
            12.26 

The cosine of the angle   with intersection of rays equal to: 
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And with this we have: 
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The invariance of the cos  shows the harmony of all adopted hypotheses for space and time in the 

Undulating Relativity. 
 
The cos  is equal to the Jacobians of the transformations for the space and time of the picture I, where the 

radicals  
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  K

c
vux1

K
tc

vx1

tc
vx

c
v1

K
100

K
c/v

0100
0010
v001

t,z,y,x

't','z,'y,'x

x
'xJcos

22

22

22j

i












 








    8.8 

 

 
  'K

c
'x'u'v1

'K
'tc
'x'v1

'tc
'x'v

c
'v1

'K
100

'K
c/'v

0100
0010
'v001

't,'z,'y,'x

t,z,y,x

'x
x'Jcos

22

22

22l

k












 






   8.8 

 
 

§13 Richard C. Tolman 
 
The §4 Transformations of the Momenta of Undulating Relativity was developed based on the experience 
conducted by Lewis and Tolman, according to the reference [3]. Where the collision of two spheres 
preserving the principle of conservation of energy and the principle of conservation of momenta, shows that 
the mass is a function of the velocity according to: 
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c
u
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m
m



  

where om  is the mass of the sphere when in resting position and uuuu


  the module of its speed. 

 
Analyzing the collision between two identical spheres when in relative resting position, that for the observer 
O’ are named S’1 and S’2 are moving along the axis x’ in the contrary way with the following velocities before 
the collision: 
 
Table 1 
Esphere S’1 Esphere S’2 

'v'x'u 1  'v'x'u 2   

zero'y'u 1  zero'y'u 2   

zero'z'u 1   zero'z'u 2   

 
For the observer O the same spheres are named S1 and S2 and have the velocities 

 zerouzuy,ux,ux ii21  before the collision calculated according to the table 2 as follows: 
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The velocity 1ux  of the sphere S1 is equals to: 
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The transformation from v’ to v according to 1.20 from Table 2 is: 
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That applied in 1ux  supplies: 
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The velocity 2ux  of the sphere S2 is equal to: 
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Table 2 
Sphere S1 Sphere S2 

v2

c
'v31

'v2ux

2

1 


  
zeroux2   

zerouy1   zerouy2   

zerouz1   zerouz2   

 
For the observers O and O’ the two spheres have the same mass when in relative resting position. And for 
the observer O’ the two spheres collide with velocities of equal module and opposite direction because of 

this the momenta  21 'p'p   null themselves during the collision, forming for a brief time  't  only one 

body of mass  
 

210 'm'mm  . 

 
According to the principle of conservation of momenta for the observer O we will have to impose that the 
momenta before the collision are equal to the momenta after the collision, thus: 
 

 wmmuxmuxm 212211    

 

Where for the observer O, w is the arbitrary velocity that supposedly for a brief time  t  will also see the 

masses united  21 mmm   moving. As the masses im  have different velocities and the masses vary 

according to their own velocities, this equation cannot be simplified algebraically, having this variation of 
masses: 
 
To the left side of the equal sign in the equation we have: 
 

v2uxu 1   
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To the right side of the equal sign in the equation we have: 
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Applying in the equation of conservation of momenta we have: 
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From where we have: 
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As vw  for the observer O the masses united  21 mmm   wouldn’t move momentarily alongside to the 

observer O’ which is conceivable if we consider that the instants 'tt  are different where supposedly the 
masses would be in a resting position from the point of view of each observer and that the mass acting with 
velocity 2v is bigger than the mass in resting position.  
 
If we operate with these variables in line we would have: 
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From where we conclude that 'vw  which must be equal to the previous value of w, that is: 
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A relation between v and v’ that is obtained from Table 2 when v2ux1   that corresponds for the observer O 

to the velocity acting over the sphere in resting position. 
 

§14 Velocities composition 
 
Reference – Millennium Relativity 
 
URL: http://www.mrelativity.net/MBriefs/VComp_Sci_Estab_Way.htm 
 
Let’s write the transformations of Hendrik A. Lorentz for space and time in the Special Theory of Relativity: 
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From them we obtain the equations of velocity transformation: 
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Let’s consider that in relation to the observer O’ an object moves with velocity: 
 

 c50,0s/km10.5,1'x'u 5  . 
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And that the velocity of the observer O’ in relation to the observer O is: 
 

 c50,0s/km10.5,1v 5  . 

 
The velocity ux  of the object in relation to the observer O must be calculated by the formula 14.6a: 
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 . 

 

Where we use  c00,1s/km10.0,3c 5  . 

 

Considering that the object has moved during one second in relation to the observer O  s00,1t   we can 

then with 14.2 calculate the time passed to the observer O’: 
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To the observer O the observer O’ is away the distance d given by the formula: 
 

km10.5,100,1.10.5,1vtd 55  . 
 
To the observer O’ the observer O is away the distance d’ given by the formula: 
 

km10.03923,1
75,0
60,010.5,1'vt'd 5.5  . 

 

To the distance of the object  OO 'd,d  in relation to the observers O and O’ is given by the formulae: 

 

km10.4,200,1.10.4,2uxtd 55
O  . 

 

km10.03923,1
75,0
60,0.10.5,1't'x'u'd 55

O  . 

 
To the observer O the distance between the object and the observer O’ is given by the formula: 
 

km10.90,010.5,110.4,2ddd 555
O  . 

 
To the observer O the velocity of the object in relation to the observer O’ is given by: 
 

s/km10.90,0
s00,1
km10.90,0

t
d 5

5

 (=0,30c) 

 

Relating the times t and t’ using the formula 
2

2

c
v1t't   is only possible and exclusively when vux  and 

zero'x'u   what isn’t the case above, to make it possible to understand this we write the equations 14.2 and 
14.4 in the formula below: 
 

2

2

c
v1

cos
c
v1t

't







 

  14.2 

2

2

c
v1

'cos
c
v1't

t







 

  14.4 
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Where 
ct
xcos   and 

'ct
'x'cos  . 

 
The equations above can be written as: 
 

  ,tf't  e  ','t'ft              14.7 

 
In each referential of the observers O and O’ the light propagation creates a sphere with radius ct  and 'ct  

that intercept each other forming a circumference that propagates with velocity c. The radius ct  and 'ct   

and the positive way of the axis x  and 'x  form the angles   and '  constant between the referentials. If for 

the same pair of referentials te angles were variable the time would be alleatory and would become useless 

for the Physics. In the equation   ,tf't  we have t’ identical function of t and  , if we have in it   

constant and  t’ varies according to t we get the common relation between the times t and t’ between two 
referentials, however if we have t constant and  t’ varies according to   we will have for each value of    

one value of t’ and t between two different referentials, and this analysis is also valid for  ','t'ft  . 

 
Dividing 14.5a by c we have: 
 











cos
c
v1

c
vcos

'cos

c
vux1

c
v

c
ux

c
'x'u

2

.           14.8 

Where 
c
ux

ct
xcos   and 

c
'x'u

'ct
'x'cos  . 

 
Isolating the velocity we have: 
 

 
 'coscos1

'coscos

c
v




   or  

2
1

c

'x'uxu
'x'uux

v



          14.9 

 
From where we conclude that we must have angles   and '  constant so that we have the same velocity 

between the referentials. 
 
This demand of constant angles between the referentials must solve the controversies of Herbert Dingle. 
 

§15 Invariance 
 
The transformations to the space and time of table I, group 1.2 plus 1.7, in the matrix form is written like this: 
 































 


















t
z
y
x

K

v

't
'z
'y
'x

000
0100
0010

001

             15.1 

 
That written in the form below represents the same coordinate transformations: 
 































 


















ct
z
y
x

K

c/v

'ct
'z
'y
'x

000
0100
0010

001

             15.2 

 
We call as:  
 



































4

3

2

1

'cx
'x
'x
'x

'ct
'z
'y
'x

'x'x i , 














 



K

c/v

ij

000
0100
0010

001

 , 


































4

3

2

1

cx
x
x
x

ct
z
y
x

xx j        15.3 
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That are the functions      ctzyxxcxxxxxxxx iijii ,,,',,,''' 4321        15.4 

 
That in the symbolic form is written: 

xx .'   or in the indexed form j
ij

i
4

1j

j
ij

i x'xx'x 


       15.5 

 
Where we use Einstein’s sum convention. 
 
The transformations to the space and time of table I, group 1.4 plus 1.8, in the matrix form is written: 
 

















































't
'z
'y
'x

'K

'v

t
z
y
x

000
0100
0010

001

             15.6 

 
That written in the form below represents the same coordinate transformations: 
 

















































'ct
'z
'y
'x

'K

c/'v

ct
z
y
x

000
0100
0010

001

             15.7 

 
That we call as: 
 



































4

3

2

1

cx
x
x
x

ct
z
y
x

xx k , 

















'K

c/'v

'' kl

000
0100
0010

001

 , 


































4

3

2

1

'cx
'x
'x
'x

'ct
'z
'y
'x

'x'x l        15.8 

 

That are the functions      ',',','',',','' 4321 ctzyxxcxxxxxxxx kklkk       15.9 

 
That in the symbolic form is written:  

''. xx   or in the indexed form l
kl

k
4

1l

l
kl

k 'x'x'x'x 


       15.10 

Being 
42

1

2

2 21
xc
vx

c
vK  (1.7), 

42

1

2

2 21
'xc
'x'v

c
'v'K  (1.8) and 1'K.K  (1.10). 

 

The transformation matrices ij   and kl''    have the properties: 

 

i
l

j
jlijklij I

'K

c/'v

K

c/v

'''.  














































 

 
 1000

0100
0010
0001

000
0100
0010

001

000
0100
0010

001
4

1

       15.11 

 

j
k

i
ikjilkji

tt I

'Kc/'vKc/v

'''  


















































 
 1000

0100
0010
0001

00
0100
0010
0001

00
0100
0010
0001

4

1

     15.12 

 

Where ji
t    is the transposed matrix of ij   and lk

t ''    is the transpose matrix of kl''    and 

  is the Kronecker’s delta. 
 

k
j

l
ljklijkl I

K

c/v

'K

c/'v

'''.  






























 
















 

 1000
0100
0010
0001

000
0100
0010

001

000
0100
0010

001
4

1

       15.13 
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l
i

k
kilkjilk

tt I

Kc/v'Kc/'v

'''  















































 

 1000
0100
0010
0001

00
0100
0010
0001

00
0100
0010
0001

4

1

     15.14 

 

Where lk
t ''    is the transposed matrix of kl''    and ji

t    is the transposed matrix of ij   

and   is the Kronecker’s delta. 
 

Observation: the matrices ij  and kl' are inverse of one another but are not orthogonal, that is: klji '   

and lkij '  . 

The partial derivatives 
j

i

x
x

 '  of the total differential j

j

i
i dx

x
'x'dx


 of the coordinate components that 

correlate according to  jii xxx ''  , where in the transformation matrix ij   the radical K is 

considered constant and equal to: 
 
 
Table 10, partial derivatives of the coordinate components: 
 








jj

i

x
x

x
x 1''  1

x
'x
1

1





 0
x
'x
2

1





 0
x
'x
3

1





 c
v

x
x 



4

1'  








j

2

j

i

x
'x

x
'x

 0
x
'x
1

2





 1
x
'x
2

2





 0
x

'x
3

2





 

0
x
'x
4

2





 








j

3

j

i

x
'x

x
'x

 0
x
'x
1

3





 0
x
'x
2

3





 1
x
'x
3

3





 0
x
'x
4

3





 








j

4

j

i

x
'x

x
'x

 0'
1

4




x
x  0

x
'x
2

4





 0
x
'x
3

4





 K
x
x 



4

4'  

 
The total differential of the coordinates in the matrix form is equal to: 
 































 


















4

3

2

1

4

3

2

1

000
0100
0010

001

cdx
dx
dx
dx

K

c/v

'cdx
'dx
'dx
'dx

            15.15 

 
That we call as: 
 


















4

3

2

1

'cdx
'dx
'dx
'dx

'dx'dx i , 














 







K

c/v

x

'x
AA

j

i
i
j

000
0100
0010

001

, 

















4

3

2

1

cdx
dx
dx
dx

dxdx j        15.16 

 

Then we have j
j

i
i

j

ji
j

i dx
x
xdxdxAdxAdxdx

 



''''
4

1

       15.17 

 

The partial derivatives 
l

k

x
x
'

  of the total differential l
l

k
k dx

x
xdx '
'

  of the coordinate components that 

correlate according to  lkk xxx ' , where in the transformation matrix kl''    the radical 'K is 

considered constant and equal to: 
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Table 11 partial derivatives of the coordinate components: 
 








l

1

l

k

'x
x

'x
x

 1
'x
x

1

1





 0
'x
x

2

1





 0
'x
x

3

1





 c
v

x
x '
'4
1



  








l

2

l

k

'x
x

'x
x

 0
'x
x

1

2





 1
'x
x

2

2





 0
'x
x

3

2





 0
'x
x

4

2





 








l

3

l

k

'x
x

'x
x

 0
'x
x

1

3





 0
'x
x

2

3





 1
'x
x

3

3





 0
'x
x

4

3





 








l

4

l

k

'x
x

'x
x

 0
'1
4




x
x  0

'x
x

2

4





 0
'x
x

3

4





 '
'4
4

K
x
x 


  

 
The total differential of the coordinates in the matrix form is equal to: 
 

















































4

3

2

1

4

3

2

1

000
0100
0010

001

'cdx
'dx
'dx
'dx

'K

c/'v

cdx
dx
dx
dx

            15.18 

 
That we call as: 
 


















4

3

2

1

cdx
dx
dx
dx

dxdx k , 






















'K

c/'v

'x

x
'A'A

l

k
k
l

000
0100
0010

001

, 

















4

3

2

1

'cdx
'dx
'dx
'dx

'dx'dx l        15.19 

 

Then we have: l
l

k
k

l

lk
l

k dx
x
xdxdxAdxdxAdx '
'

''''
4

1 
 


       15.20 

 
The Jacobians of the transformations 15.15 and 15.18 are: 
 

 
  K

K

c/v

x,x,x,x

'x,'x,'x,'x

x
'xJ
j

i













000
0100
0010

001

4321

4321

          15.21 

 

 
  'K

'K

c/'v

'x,'x,'x,'x

x,x,x,x

'x
x'J

l

k









000
0100
0010

001

4321

4321

          15.22 

 

Where 
2

1

2

2 21
c
vux

c
vK   (2.5), 

2

1

2

2 21
c

'x'u'v
c
'v'K   (2.6) and 1'K.K  (1.23). 

 
The matrices of the transformation A  and 'A  also have the properties 15.11, 15.12, 15.13 and 15.14 of the 
matrices   and ' . 
 

From the function     lkk xxx '''    where the coordinates correlate in the form  lkk xxx '  we 

have 
l

k

kl x
x

xx '' 






 

 described as:  
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1

4

41

3

31

2

21

1

111 '''''' x
x

xx
x

xx
x

xx
x

xx
x

xx
k

k 



































 

  

2

4

42

3
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2

22

1

122 '''''' x
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1
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4

4

44

3

34

2
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1

144 '
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''''' x
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xx
x

xx
k

k 



































 

 

 
That in the matrix form and without presenting the function   becomes: 
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21
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1

3
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2

2
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2
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1

3

1

2

1

1

1

43214321l

c

'x'u'v

c

'v1
'K
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x0
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x0
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x

'Kc
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x

0
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x1
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x0
'x

x0
'x

x

0
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'x

x1
'x

x0
'x

x
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'x

x0
'x

x0
'x

x1
'x

x

xxxx'x'x'x'x'x


 

Where replacing the items below:  
 

221

4
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c
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c
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x  

 
Observation: this last relation shows that the time varies in an equal form between the referentials. 
 
We get: 
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'x

x0
'x

x

c

v

'x

x

0
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x
K

v

'x
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'x

x1
'x

x

xxxx'x'x'x'x'x

  

 
That is the group 8.1 plus 8.3 of the table 9, differential operators, in the matrix form. 
 

From the function     jii xxx ''''    where the coordinates correlate in the form  jii xxx ''   we 

have 
j

i

ij x
x

xx 






 '

'
'' 

 described as: 
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1
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That in the matrix form and without presenting the function   becomes: 
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Where replacing the items below:  
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Observation: this last relation shows that the time varies in an equal form between the referentials. 
 
We get: 
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That is the group 8.2 plus 8.4 from the table 9, differential operators in the matrix form. 
 
Applying 8.5 in 8.3 and in 8.4 we simplify these equations in the following way: 
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Table 9B, differential operators with the equations 8.3 and 8.4 simplified: 
 

411 xc
v

xx' 2 






   

8.1 411 'xc
v'

x'x 2 






   

8.2 

22 x'x 



   

8.1.1 22 'xx 
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The table 9B, in the matrix form becomes: 
 




















































Kc/v
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'xc'x'x'xxcxxx

00
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0010
0001

43214321
        15.24 

 
The squared matrices of the transformations above are transposed of the matrices A and A’. 
 

Invariance of the Total Differential 
 

In the observer O referential the total differential of a function  kx  is equal to: 
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k       15.25 

 

Where the coordinates correlate with the ones from the observer O’ according to  lkk xxx ' , replacing the 

transformations 15.24 and 15.18 and without presenting the function   we have: 
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The multiplication of the middle matrices supplies: 
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         15.27 

 
Result that can be divided in two matrices: 
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That applied to the total differential supplies: 
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       15.29 

 
Executing the operations of the second term we have: 
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Where applying 8.5 we have: 
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Then we have: 
 

zero

'cdx
'dx
'dx
'dx

'dxc
'dx'vc/'v

c/'v

'xc'x'x'x























































4

3

2

1

42

14321
200

0000
0000

000

         15.30 

 
With this result we have in 15.29 the invariance of the total differential: 
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       15.31 

 

In the observer O’ referential the total differential of a function  ix'  is equal to: 
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Where the coordinates correlate with the ones from the observer O referential according to  jii xxx ''  , 

replacing the transformations 15.23 and 15.15 and without presenting the function   we have: 
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0010

001

00
0100
0010
0001

cdx
dx
dx
dx

K

c/v

Kc/v
xcxxx

'dx
'x

'
'd i

i

        15.33 

 
The multiplication of the middle matrices supplies: 
 






































 

















42

12100

0100
0010

001

000
0100
0010

001

00
0100
0010
0001

dxc
vdxc/v

c/v

K

c/v

Kc/v

          15.34 

 
Result that can be divided in two matrices: 
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42

1

42

1 200

0000
0000

000

1000
0100
0010
0001

2100

0100
0010

001

dxc
vdxc/v

c/v

dxc
vdxc/v

c/v

         15.35 

 
That applied to the total differential supplies: 
 
































































































4

3

2

1

42

14321
200

0000
0000

000

1000
0100
0010
0001

cdx
dx
dx
dx

dxc
vdxc/v

c/v

xcxxx
'dx

'x

'
'd i

i

       15.36 

 
Executing the operations of the second term we have:  
 

4
44

1

2
4

1
1

42

4

3

2

1

42

14321

2

200

0000
0000

000

dx
xdx

dx
c
vdx

x
vdx

xc
v

cdx
dx
dx
dx

dxc
vdxc/v

c/v

xcxxx 






























































  

 
Where applying 8.5 we have: 
 

  zerodx
xdx

dx
c
vdx

xdx
dx

c
vdx

xc
v 








 4

44

1

2
4

44

1

2
1

42

21  

 
Then we have: 
 

zero

cdx
dx
dx
dx

dxc
vdxc/v

c/v

xcxxx

























































4

3

2

1

42

14321
200

0000
0000

000

         15.37 

 
With this result we have in 15.36 the invariance of the total differential: 
 

 ddx
x

cdx
dx
dx
dx

xcxxx
'dx

'x

'
'd j

j
i

i


























































4

3

2

1

4321

1000
0100
0010
0001

       15.38 

 
Invariance of the Wave Equation 

 
The wave equation to the observer O is equal to: 
 

          0

1000
0100
0010
0001

1

4

3

2

1

1

4321432124

2

2
2 























































































xc

x

x

x

xcxxxxc
1

xxxxc 2

2

22

2

2

2

2

2     15.39 
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Where applying 15.24 and the transposed from 15.24 we have: 

 





















































 

























































4

3

2

1

432124

2

2
2

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

1

'xc

'x

'x

'x

'K

c
'v

'K
c
'v'xc'x'x'xxc

      15.40 

 
The multiplication of the three middle matrices supplies: 
 











































 




































2

12100

0100
0010

001

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

c
'x'u'v

c
'v

c
'v

'K

c
'v

'K
c
'v

        15.41 

 
Result that can be divided in two matrices: 
 





































































2

1

2

1 200

0000
0000

000

1000
0100
0010
0001

2100

0100
0010

001

c
'x'u'v

c
'v

c
'v

c
'x'u'v

c
'v

c
'v

         15.42 

 
That applied in the wave equation supplies: 
 

 





























































































































4

3

2

1

2

1
432124

2

2
2

200

0000
0000

000

1000
0100
0010
0001

1

'xc

'x

'x

'x

c
'x'u'v

c
'v

c
'v

'xc'x'x'xxc

      15.43 

 
Executing the operations of the second term we have: 
 

 24

2

2

1

2412412

4

3

2

1

2

1
4321

2

200

0000
0000

000

'xc
'x'u

c
'v

'x'xc
'v

'x'xc
'v

'xc

'x

'x

'x

c
'x'u'v

c
'v

c
'v

'xc'x'x'x 



























































































  

 
Executing the operations we have: 
 

 24

2

2

1

2412

22
'xc

'x'u
c
'v

'x'xc
'v








  

 
Where applying 8.5 we have: 

 
 

zero
'xc

'x'u
c
'v

'x'xc
'x'u

c
'v 










24

2

2

1

2442

1

2

22  
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Then we have: 

zero

'xc

'x

'x

'x

c
'x'u'v

c
'v

c
'v

'xc'x'x'x
















































































4

3

2

1

2

1
4321

200

0000
0000

000

         15.44 

 
With this result we have in 15.43 the invariance of the wave equation: 
 

   24

2

2
2

4

3

2

1

432124

2

2
2 1

1000
0100
0010
0001

1

'x

'

c
'

'xc

'x

'x

'x

'xc'x'x'xxc 

















































































       15.45 

 
The wave equation to the observer O’ is equal to: 

          0

1000
0100
0010
0001

1

4

3

2

1

4321432124

2

2
2 

























































































'xc

'x

'x

'x

'xc'x'x'x'x

'

c
1

'x

'

'x

'

x'

'

'x

'

c
'

2

2

22

2

2

2

2

2    15.46 

 
Where applying 15.23 and the transposed from 15.23 we have: 

 














































































































4

3

2

1

432124

2

2
2

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

1

xc

x

x

x

K

c
v

K
c
vxcxxx'x

'

c
'

      15.47 

 
The multiplication of the three middle matrices supplies: 
 













































































2

12100

0100
0010

001

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

c
vux

c
v

c
v

K

c
v

K
c
v

         15.48 

 
Result that can be divided in two matrices: 
 






























































2

1

2

1 200

0000
0000

000

1000
0100
0010
0001

2100

0100
0010

001

c
vux

c
v

c
v

c
vux

c
v

c
v

          15.49 
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That applied in the wave equation supplies: 
 

 























































































































4

3

2

1

2

1
432124

2

2
2

200

0000
0000

000

1000
0100
0010
0001

1

xc

x

x

x

c
vux

c
v

c
v

xcxxx'x

'

c
'

       15.50 

Executing the operations of the second term we have: 
 

 24

2

2

1

2412412

4

3

2

1

2

1
4321

2

200

0000
0000

000

xc
ux

c
v

xxc
v

xxc
v

x

x

x

x

c
vux

c
v

c
v

xcxxx 





















































































  

 
Executing the operations we have: 
 

 24

2

2

1

2412

22
xc

ux
c
v

xxc
v








  

 
Where applying 8.5 we have: 
 

 
 

zero
xc

ux
c
v

xxc
ux

c
v 










24

2

2

1

2442

1

2

22  

 
Then we have: 
 

zero

x

x

x

x

c
vux

c
v

c
v

xcxxx











































































4

3

2

1

2

1
4321

200

0000
0000

000

          15.51 

 
Then in 15.50 we have the invariance of the wave equation: 
 

   24

2

2
2

4

3

2

1

432124

2

2
2 1

1000
0100
0010
0001

1

xc

xc

x

x

x

xcxxx'x

'

c
'

















































































       15.52 

 
Invariance of the equations 8.5 of linear propagation 

 
Replacing 2.4, 8.2, 8.4B in 8.5 we have: 
 

 
zero

'x
'K

'K

'v'x'u
c'xc

'v
'xxc

ux
x

















4

1

242142

1

1

1  
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Executing the operations we have: 
 

zero
'xc

'v
'xc

'x'u
'xc

'v
'xxc

ux
x




















4242

1

42142

1

1
 

That simplified supplies the invariance of the equation 8.5: 
 

zero
'xc

'x'u
'xxc

ux
x














42

1

142

1

1
 

 
Replacing 2.3, 8.1, 8.3B in 8.5 we have: 
 

 
zero

x
K

K

vux
cxc

v
x'xc

'x'u
'x

















4

1

242142

1

1

1  

 
Executing the operations we have: 
 

zero
xc

v
xc

ux
xc

v
x'xc

'x'u
'x




















4242

1

42142

1

1
 

 
That simplified supplies the invariance of the equation 8.5: 
 

zero
xc

ux
x'xc

'x'u
'x














42

1

142

1

1
 

 
The table 4 in a matrix from becomes: 
 

































 





















c/E
px
px
px

K

c/v

c/'E
'px
'px
'px

3

2

1

3

2

1

000
0100
0010

001

            15.53 

 






















































c/'E
'px
'px
'px

'K

c/'v

c/E
px
px
px

3

2

1

3

2

1

000
0100
0010

001

            15.54 

 
The table 6 in a matrix form becomes: 
 































 


















 c
Jx
Jx
Jx

K

c/v

'c
'x'J
'x'J
'x'J

3

2

1

3

2

1

000
0100
0010

001

            15.55 

 

















































'c
'x'J
'x'J
'x'J

'K

c/'v

c
Jx
Jx
Jx


3

2

1

3

2

1

000
0100
0010

001

             15.56 

 
Invariance of the Continuity Equation 

 
The continuity equation to the observer O is equal to: 
 

zero

c
Jx
Jx
Jx

xcxxxx

ρ

x
Jx

x
Jx

x
Jx

x

ρ
J. 






















































3

2

1

432143

3

2

2

1

1

4


       15.57 
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Where replacing 15.24 and 15.56 we have: 
 

zero

'c
'x'J
'x'J
'x'J

'K

c/'v

'Kc/'v
'xc'x'x'xx

ρ
J. 










































































3

2

1

43214

000
0100
0010

001

00
0100
0010
0001


      15.58 

 
The product of the transformation matrices is given in 15.27 and 15.28 with this: 
 






























































































'c
'x'J
'x'J
'x'J

c
'x'u'vc/'v

c/'v

'xc'x'x'xx

ρ
J.


3

2

1

2

143214
200

0000
0000

000

1000
0100
0010
0001


      15.59 

 
Executing the operations of the second term we have:  
 

42

1

14

1

23

2

1

2

14321

2

200

0000
0000

000

'x

'

c
'x'u'v

'x

''v

'x
'Jx

c
'v

'c
'x'J
'x'J
'x'J

c
'x'u'vc/'v

c/'v

'xc'x'x'x 



























































 



 

 

Where replacing 11 'x'u''Jx   and 8.5 we have: 

 

  zero
'x
'

c
'x'u'v'

'xc
'x'u'v

'x
'

c
'x'u'v 












42

1

42

1

42

1 2 
 

 
Then we have: 
 

zero

'c
'x'J
'x'J
'x'J

c
'x'u'vc/'v

c/'v

'xc'x'x'x























































3

2

1

2

14321
200

0000
0000

000

         15.60 

 
With this result we have in 15.59 the invariance of the continuity equation: 
 

43

2

1

43214

1000
0100
0010
0001

'x

'ρ
'J.

'c
'x'J
'x'J
'x'J

'xc'x'x'xx

ρ
J.





























































        15.61 

 
The continuity equation to the observer O’ is equal to: 
 

zero

'c
'x'J
'x'J
'x'J

x'cx'x'x'x'

ρ'

x'
x''J

x'
x''J

x'
x''J

x'

ρ'
'J. 






















































3

2

1

432143

3

2

2

1

1

4


     15.62 

Where replacing 15.23 and 15.55 we have: 
 

zero

c
Jx
Jx
Jx

K

c/v

Kc/v
xcxxxx'

ρ'
'J. 































 









































3

2

1

43214

000
0100
0010

001

00
0100
0010
0001


      15.63 
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The product of the transformation matrices is given in 15.34 and 15.35 then we have: 
 

































































































c
Jx
Jx
Jx

c
vuxc/v

c/v

xcxxxx'

ρ'
'J. 3

2

1

2

143214
200

0000
0000

000

1000
0100
0010
0001


       15.64 

 
Executing the operations of the second term we have: 
 

42

1

14

1

23

2

1

2

14321

2

200

0000
0000

000

xc
vux

x

v

x
Jx

c
v

c
Jx
Jx
Jx

c
vuxc/v

c/v

xcxxx 






























































 



 

 

Where replacing 11 uxJx   and 8.5 we have: 

 

  zero
xc

vux
xc

uxv
xc

vux 










42

1

42

1

42

1 2 
 

 
Then we have: 

zero

c
Jx
Jx
Jx

c
vuxc/v

c/v

xcxxx


























































3

2

1

2

14321
200

0000
0000

000

          15.65 

 
With this result we have in 15.64 the invariance of the continuity equation: 
 

43

2

1

43214

1000
0100
0010
0001

x

ρ
J.

c
Jx
Jx
Jx

xcxxxx'

ρ'
'J.





























































        15.66 

 
Invariance of the line differential element: 

 
That to the observer O is written this way: 

          
242322212 cdxdxdxdxds  4321 cdxdxdxdx

















1000
0100
0010
0001

















4

3

2

1

cdx
dx
dx
dx

    15.67 

 
Where replacing 15.18 and the transposed from 15.18 we have: 
 

   





































































4

3

2

1

43212

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

'cdx
'dx
'dx
'dx

'K

c
'v

'K
c
'v

'cdx'dx'dx'dxds        15.68 

 
The multiplication of the three central matrices supplies: 
 













































































42

12100

0100
0010

001

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

'dxc
'dx'v

c
'v

c
'v

'K

c
'v

'K
c
'v

         15.69 
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Result that can be divided in two matrices: 
 
































































42

1

42

1 200

0000
0000

000

1000
0100
0010
0001

2100

0100
0010

001

'dxc
'dx'v

c
'v

c
'v

'dxc
'dx'v

c
'v

c
'v

         15.70 

 
That applied in the line differential element supplies: 
 

   
















































































4

3

2

1

42

1

43212

200

0000
0000

000

1000
0100
0010
0001

'cdx
'dx
'dx
'dx

'dxc
'dx'v

c
'v

c
'v

'cdx'dx'dx'dxds        15.71 

 
Executing the operations of the second term we have: 
 

  zero'cdx
'dx
'dx

c
'v'dx

c
'v'cdx

c
'cdx'dx'v

'cdx
'dx
'dx
'dx

'dx
'dx

c
'v

c
'v

c
'v

'cdx'dx'dx'dx 















































4
4

1

2
14

41

4

3

2

1

4

1

2

4321 2

200

0000
0000

000

 

 
Then we have: 

  zero

'cdx
'dx
'dx
'dx

'dx
'dx'

c
'v

c
'v

c
'v

'cdx'dx'dx'dx 




































 4

3

2

1

4

1

2

4321

200

0000
0000

000

         15.72 

 
With this result we have in 15.71 the invariance of the line differential element: 
 

             224232221

4

3

2

1

43212

1000
0100
0010
0001

'ds'cdx'dx'dx'dx

'cdx
'dx
'dx
'dx

'cdx'dx'dx'dxds 

































     15.73 

 
To the observer O’ the line differential element is written this way: 
 

          
242322212 'cdx'dx'dx'dx'ds  4321 'cdx'dx'dx'dx

















1000
0100
0010
0001

















4

3

2

1

'cdx
'dx
'dx
'dx

     15.74 

 
Where replacing 15.15 and the transposed from 15.15 we have: 
 

   
































 






































4

3

2

1

43212

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

cdx
dx
dx
dx

K

c
v

K
c
v

cdxdxdxdx'ds        15.75 
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The multiplication of the three central matrices supplies: 
 











































 




































42

12100

0100
0010

001

000
0100
0010

001

1000
0100
0010
0001

00

0100
0010
0001

dxc
vdx

c
v

c
v

K

c
v

K
c
v

         15.76 

 
Result that can be divided in two matrices: 
 





































































42

1

42

1 200

0000
0000

000

1000
0100
0010
0001

2100

0100
0010

001

dxc
vdx

c
v

c
v

dxc
vdx

c
v

c
v

          15.77 

 
That applied in the line differential element supplies: 
 

   


















































































4

3

2

1

42

1

43212

200

0000
0000

000

1000
0100
0010
0001

cdx
dx
dx
dx

dxc
vdx

c
v

c
v

cdxdxdxdx'ds         15.78 

 
Executing the operations of the second term we have: 
 

  zerocdx
dx
dx

c
vdx

c
vcdx

c
cdxvdx

cdx
dx
dx
dx

dx
dx

c
v

c
v

c
v

cdxdxdxdx 

















































4
4

1

2
14

41

4

3

2

1

4

1

2

4321 2

200

0000
0000

000

 

 
Then we have: 

  zero

cdx
dx
dx
dx

dx
dx

c
v

c
v

c
v

cdxdxdxdx 








































4

3

2

1

4

1

2

4321

200

0000
0000

000

          15.79 

 
With this result we have in 15.78 the invariance of the line differential element: 
 

             224232221

4

3

2

1

43212

1000
0100
0010
0001

dscdxdxdxdx

cdx
dx
dx
dx

cdxdxdxdx'ds 

































      15.80 

 

In §7 as a consequence of 5.3 we had the invariance of 'u'.Eu.E


  where now applying 7.3.1, 7.3.2, 7.4.1, 

7.4.2 and the velocity transformation formulae from table 2 we have new relations between Ex  and 'x'E  
distinct from 7.3 and 7.4 and with them we rewrite the table 7 in the form below: 
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Table 7B 






 



ux
v
KExxE

1
''   

7.3B 




 



''
'1

'''

xu
v
KxEEx   

7.4B 

KEyy'E'   
 
7.3.1 K'y'E'Ey   

 
7.4.1 

KEzz'E'   
 
7.3.2 K'z'E'Ez   

 
7.4.2 

Bxx'B'   7.5 x'B'Bx   7.6 

Ez
c

v
Byy'B'

2
  

 
7.5.1 

z'E'
c

v'
y'B'By

2
  

 
7.6.1 

Ey
c

v
Bzz'B'

2
  

 
7.5.2 

y'E'
c

v'
z'B'Bz

2
  

 
7.6.2 

Ez
c

ux
By

2
  

 
7.9 

z'E'
c

x''u
y'B'

2
  

 
7.10 

Ey
c

ux
Bz

2
  

 
7.9.1 

y'E'
c

x''u
z'B'

2
  

 
7.10.1 

1
''

'11 




 




 

xu
v

ux
v

    

 
With the tables 7B and 9B we can have the invariance of all Maxwell’s equations.  
 
Invariance of the Gauss’ Law for the electrical field: 
 

0
'

'z
'z'E

'y
'y'E

'x
'x'E 











            8.14 

 
Where applying the tables 6, 7B and 9B we have: 
 

  0
2 1 

 K
z
KEz

y
KEy

ux/v
KEx

tc
v

x























 

 
Where simplifying and replacing 8.5 we have: 
 

  01
1
















 













z
Ez

y
Ey

ux/v
Ex

xux
v

x
 

 
That reordered supplies: 
 

  01
1
















 





 




z
Ez

y
Ey

ux/v
Ex

ux
v

x
. 

 
That simplified supplies the invariance of the Gauss’ Law for the electrical field. 
 
Invariance of the Gauss’ Law for the magnetic field: 
 

zero
'z
'z'B

'y
'y'B

'x
'x'B 











            8.16 

 
Where applying the tables 7B and 9B we have: 
 

0
222






 








 














 Ey

c
vBz

z
Ez

c
vBy

y
Bx

tc
v

x
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That reordered supplies: 
 

0
2





























t
Bx

z
Ey

y
Ez

c
v

z
Bz

y
By

x
Bx

 

 
Where the term in parenthesis is the Faraday-Henry’s Law (8.19) that is equal to zero from where we have 
the invariance of the Gauss’ Law for the magnetic field.  
 
Invariance of the Faraday-Henry’s Law: 
 

't
'z'B

'y
'x'E

'x
'y'E










             8.18 

 
Where applying the tables 7B and 9B we have: 
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That simplified and multiplied by  ux/v1  we have: 
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Where executing the products and replacing 7.9.1 we have: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Faraday-Henry’s Law. 
 
Invariance of the Faraday-Henry’s Law: 
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Where applying the tables 7B and 9B we have: 
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That simplified supplies the invariance of the Faraday-Henry’s Law. 
Invariance of the Faraday-Henry’s Law: 
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Where applying the tables 7B and 9B we have: 
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That simplified and multiplied by  ux/v1  we have: 
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That simplifying and making the operations we have: 
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Where applying 7.9 we have: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Faraday-Henry’s Law. 
 
Invariance of the Ampere-Maxwell’s Law: 
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Where applying the tables 6, 7B and 9B we have: 
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That simplifying and making the operations we have: 
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Where simplifying and applying 7.9 we have: 
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That reorganized supplies 
 























x
Ez

t
Ez

c
ux

c
v

t
EzJz

y
Bx

x
By

22000   

 
As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Ampere-Maxwell’s Law: 
 
Invariance of the Ampere-Maxwell’s Law: 
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Where applying the tables 6, 7B and 9B we have: 
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Making the operations we have: 
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Replacing in the first parenthesis the Gauss’ Law and multiplying by 
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Where replacing uxJx  , 7.9.1, 7.9 and 8.5 we have: 
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That simplified supplies: 
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Replacing in the first parenthesis the Gauss’ Law we have: 
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That reorganized makes: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Ampere-Maxwell’s Law: 
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Where applying the tables 6, 7B and 9B we have: 
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Making the operations we have: 
 

t
Ey

c
v

ct
Bz

c
v

x
Ey

c
v

t
Ey

c
vux

ct
Ey

c
v

ct
Ey

Jy
x
Bz

z
Bx






























2

2

222222

2

2000
1211  

 
Where simplifying and applying 7.9.1 we have: 
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That reorganized makes: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Ampere-Maxwell’s Law: 
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Invariance of the Gauss’ Law for the electrical field without electrical charge: 
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Where applying the tables 7B and 9B we have: 
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Where simplifying and replacing 8.5 we have: 
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That reorganized makes: 
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That simplified supplies the Gauss’ Law for the electrical field without electrical charge. 
 
Invariance of the Ampere-Maxwell’s Law without electrical charge: 
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Where applying the tables 7B and 9B we have: 
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Making the operations we have: 
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Where simplifying and applying 7.9 we have: 
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That reorganized makes: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Ampere-Maxwell’s Law without electrical charge: 
 
Invariance of the Ampere-Maxwell’s Law without electrical charge: 
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Where applying the tables 7B and 9B we have: 
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Making the operations we have: 
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Replacing in the first parenthesis the Gauss’ Law without electrical charge and multiplying by  ux/v1  we 

have: 
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Where replacing 7.9, 7.9.1 and 8.5 we have: 
 

t
Ex

c
vux

ct
Ex

c
v

ct
Ex

cc
v

x
Ex

c
v

z
Ez

c
ux

y
Ey

c
ux

ux
v

t
Ex

z
By

y
Bz











































222

2

222

2

22200
2111  

 
That simplified supplies: 
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Replacing in the first parenthesis the Gauss’ Law without electrical charge we have: 
 

t
Ex

c
vux

cx
Ex

c
v

x
Ex

c
v

t
Ex

z
By

y
Bz




















222200
21  

 
That reorganized makes: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Ampere-Maxwell’s Law without electrical charge: 
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Where applying the tables 6, 7B and 9B we have: 
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Making the operations we have: 
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Where simplifying and applying 7.9.1 we have: 
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That reorganized makes: 
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the 
Ampere-Maxwell’s Law without electrical charge: 
 

§15 Invariance (continuation) 
 

A function    wtf  krf              2.19 

 

Where the phase is equal to  wtkr             15.81 

 
In order to represent an undulating movement that goes on in one arbitrary direction must comply with the 
wave equation and because of this we have: 
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That doesn’t meet with the wave equation because the two last elements get nule but the first one doesn’t. 
In order to overcome this problem we reformulate the phase   of the function in the following way. 
 
A unitary vector such as  
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Making the product 
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we have zcosycosxcosR.nr  


 that applied to the phase   supplies a new phase 
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with the same meaning of the previous phase  . 
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with the same meaning of the previous phase    1 . 

 
 Thus we can write a new function as: 
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That replaced in the wave equation with the director cosine considered constant supplies: 
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that simplified meets the wave equation. 
 
The positive result of the phase   in the wave equation is an exclusive consequence of the director cosines 
being constant in the partial derivatives showing that the wave equation demands the propagation to have 
one steady direction in the space (plane wave). 
 
For the observer O a source located in the origin of its referential produces in a random point located at the 

distance 222 zyxctr   of the origin, an electrical field E


 described by: 
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Where the components are described as: 
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The maximum amplitude vector Constant with the components Exo, Eyo, Ezo     15.96 
 

And module      222
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Being  f  a function with the phase   equal to15.87 or 15.88. 

 
Deriving the component Ex in relation to x and t we have: 
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that applied in 8.5 supplies 
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demonstrating that it is the phase   that must comply with 8.5. 



63/155 

      zero
c

w
k

ct

x
zerow

c

t/x

ct

kx
zero

t

wtkr

c

t/x

x

wtkr
zero

tc

t/x

x






 
















222
 

 

as 
c

w
k   then Ex complies with 8.5. 

 
As the phase is the same for the components Ey and Ez then they also comply with 8.5. 
 

As the phases for the observers O and O’ are equal    't'w'r'kwtkr   then the components of the 

observer O’ also comply with 8.5. 
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The components relatively to the observer O of the electrical field are transformed for the referential of the 
observer O’ according to the tables 7, 7B and 8. 
 
Applying in 8.5 a wave function written in the form: 
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Deriving we have: 
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That applied in 8.5 supplies: 
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that is equal to: 
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where we must have the coefficients equal to zero so that we get na identity, then: 
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Where applying ckw  we have: 
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Then to meet with the equation 8.5 we must have a wave propagation along the axis x with the speed c. 

If we apply ukw   and 
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A result also gotten from the Louis de Broglie’s wave equation. 
 

 
§16 Time and Frequency 

 
Considering the Doppler effect as a law of physics. 
 
We can define a clock as any device that produces a frequency of identical events in a series possible to be 
enlisted and added in such a way that a random event n of a device will be identical to any event in the 
series of events produced by a replica of this device when the events are compared in a relative resting 
position. 
 
The cyclical movement of a clock in a resting position according to the observer O referential sets the time in 
this referential and the cyclical movement of the arms of a clock in a resting position according to the 
observer O’ sets the time in this referential. The formulas of time transformation 1.7 and 1.8 relate the times 
between the referentials in relative movement thus, relate movements in relative movement. 
 
The relative movement between the inertial referentials produces the Doppler effect that proves that the 
frequency varies with velocity and as the frequency can be interpreted as being the frequency of the cyclical 
movement of the arms of a clock then the time varies in the same proportion that varies the frequency with 
the relative movement that is, it is enough to replace the time t and t’ in the formulas 1.7 and 1.8 by the 
frequencies y and y’ to get the formulas of frequency transformation, then:  
 

Ky'yKt't      1.7 becomes 2.22 

 

'K'yy'K'tt     1.8 becomes 2.22 

The Galileo’s transformation of velocities vu'u


  between two inertial referentials presents intrinsically 
three defects that can be described this way: 
 
a) The Galileo’s transformation of velocity to the axis x is vux'x'u  . In that one if we have cux   then 

vc'x'u  and if we have c'x'u   then vcux  . As both results are not simultaneously possible or else 

we have cux   or c'x'u   then the transformation doesn’t allow that a ray of light be simultaneously 
observed by the observers O and O’ what shows the privilege of an observer in relation to the other because 
each observer can only see the ray of light running in its own referential (intrinsic defect to the classic 
analysis of the Sagnac’s effect). 
 
b) It cannot also comply to Newton’s first law of inertia because a ray of light emitted parallel to the axis x 
from the origin of the respective inertial referentials at the moment that the origins are coincident and at the 
moment in which t = t’ = zero will have by the Galileo’s transformation the velocity c of light altered by v  to 
the referentials, on the contrary of the inertial law that wouldn’t allow the existence of a variation in velocity 
because there is no external action acting on the ray of light and because of this both observers should see 
the ray of light with velocity c. 
 
c) As it considers the time as a constant between the referentials it doesn’t produce the temporal variation 
between the referentials in movement as it is required by the Doppler effect. 
 
The principle of constancy of light velocity is nothing but a requirement of the Newton’s first law, the inertia 
law. 
 
Newton’s first law, the inertia law, is introduced in Galileo’s transformation when the principle of constancy of 
light velocity is applied in Galileo’s transformation providing the equation of tables 1 and 2 of the Undulating 
Relativity that doesn’t have the three defects described. 
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The time and velocity equations of tables 1 and 2 can be written as: 
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The distance d  between the referentials is equal to the product of velocity by time this way: 
 

't'vvtd                 1.9 
 
It doesn’t depend on the propagation angle of the ray of light, being exclusively a function of velocity and 
time, that is, the propagation angle of the ray of light, only alters between the inertial referential the 
proportion between time and velocity, keeping the distance constant in each moment, to any propagation 
angle. 
 
The equations above in a function form are written as:  
 

   't,'v'et,ved                1.9 

 
 ,t,vf't                 1.7 

 
 ,vg'v                 1.15 

 ','t,'v'ft                 1.8 

 
 ','v'gv                 1.20 

 
Then we have that the distance is a function of two variables, the time a function of three variables and the 
velocity a function of two variables. 
 
From the definition of moment 4.1 and energy 4.6 we have:  
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The elevated to the power of two supplies: 
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Elevating to the power of two the energy formula we have: 
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Where applying 16.2 we have: 
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From where we conclude that if the mass in resting position of a particle is null zeromo   the particle 

energy is equal to pcE  .            16.3 

 
That applied in 16.2 supplies: 
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From where we conclude that the movement of a particle with a null mass in resting position zeromo   will 

always be at the velocity of light cu  . 
 
Applying in pcE   the relations yhE   and  yc  we have: 
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Equation that relates the moment of a particle with a null mass in resting position with its own way length. 
 
Elevating to the power of two the formula of moment transformation (4.9) we have: 
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Where applying pcE   and 
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Where applying 16.5 results in: 
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Where applying yc   and ''yc   we have: 

 

Ky'y   or inverted 'K'yy             2.22 

 
In § 2 we have the equations 2.21 and 2.22 applying the principle of relativity to the wave phase. 
 

17 Transformation of H. Lorentz 
 
For two observers in a relative movement, the equation that represents the principle of constancy of light 
speed for a random point A is:  
 

2222222222 tczyx'tc'z'y'x           17.01 

 
In this equation canceling the symmetric terms we have: 
Nesta cancelando os termos simétricos obtemos: 
 

222222 tcx'tc'x               17.02 
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That we can write as: 
 
     ctxctx'ct'x'ct'x            17.03 

 
If in this equation we define the proportion factors   and   as: 

   
   







Bctx'ct'x

Actx'ct'x




            17.04 

where we must have 1.  to comply 17.03. 

 
The equations 17.04 where first gotten by Albert Einstein. 
 
When a ray of light moves in the plane y’z’ to the observer O’ we have x’ = zero and x = vt and such 
conditions applied to the equation 17.02 supplies: 
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2
22222 10

c
vt'ttcvt'tc            17.05 

This result will also be supplied by the equations  A and B of the group 17.04 under the same conditions: 
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From those we have: 

c
v
c
v






1

1
  and 

c
v
c
v






1

1
             17.07 

Where we have proven that 1. . 

 
From the group 17.04 we have the Transformations of H. Lorentz: 
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      17.14 

 
Sagnac effect 

 
When both observers’ origins are equal the time is zeroed (t = t’ = zero) in both referentials and two rays of 
light are emitted from the common origin, one in the positive direction (clockwise index c) of the axis x and x’ 
with a wave front Ac and another in the negative direction (counter-clockwise index u) of the axis x and x’ 
with a wave front Au. 
 
The propagation conditions above applied to the Lorentz equations supply the tables A and B below:  
 
Table A 
 
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) Sum of rays 
 Result  Result  
Condition 

cc ctx   Condition 
uu ctx    

17.08 
cc ct'x   17.08 

uu ct'x    

 
cc x'x    

uu x'x   ucuc xx'x'x    

17.09 
cc ct'ct   17.09 

uu ct'ct   ucuc ctct'ct'ct    

 
cc 'ct'x    

uu 'ct'x    

 
Table B 
 
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) Sum of rays 
 Result  Result  
Condition 

cc 'ct'x   Condition 
uu 'ct'x    

17.10 
cc 'ctx   17.10 

uu 'ctx    

 
cc 'xx    

uu 'xx   ucuc 'x'xxx    

17.11 
cc 'ctct   17.11 

uu 'ctct   ucuc 'ct'ctctct    

 
cc ctx    

uu ctx    

 
We observe that the tables A and B are inverse one to another. 
 
When we form the group of the sum equations of the two rays from tables A and B: 
 









B'ct'ctctctD

Actct'ct'ct'D

ucuc

ucuc




          17.15 

 
Where to the observer O’ cu AA'D   is the distance between the front waves Au and Ac and where to the 

observer O cu AAD   is the distance between the front waves Au and Ac. 

 
In the equations 17.15 above, due to the isotropy of space and time and the front waves cu AA   of the 

two rays of light being the same for both observers, the sum of rays of light e times must be invariable 
between the observers, which we can express by: 
 

  t'tctct'ct'ctD'D ucuc          17.16 

 
This result that generates an equation of isotropy of space and time can be called as the conservation of 
space and time principle. 
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The three hypothesis of propagation defined as follows will be applied in 17.15 and tested to prove the 
conservation of space and time principle given by 17.16: 
 
Hypothesis A: 
 
If the space and time are isotropic and there is no movement with no privilege of one observer considered  
over the other in an empty space then the propagation geometry of rays of light can be given by: 

uc 'ctct   and cu 'ctct             17.17 

This hypothesis applied to the equation A or B of the group 17.15 complies to the space and time 
conservation principle given by 17.16. 
 
The hypothesis 17.17 applied to the tables A and B results in: 
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          17.18 

Hypothesis B: 
 
If the space and time are isotropic but the observer O is in an absolute resting position in an empty space 
then the geometry of propagation of the rays of light is given by: 

ctctct uc               17.19 

That applied to the table A and B results in: 
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           17.20 
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             17.21 

Summing A and B in 17.20 we have: 
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   17.22 

This result doesn’t comply with the conservation of space and time principle given by 17.16 and as D'D   it 
results in a situation of four rays of light, two to each observer, and each ray of light with its respective 
independent front wave from the others. 
 
Hypothesis C: 
 
If the space and time are isotropic but the observer O’ is in an absolute resting position in an empty space 
then the propagation geometry of the rays of light is given: 
 

'ct'ct'ct uc               17.23 

 
That applied to the tables  A and B results in: 
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           17.24 
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            17.25 

Summing C and D in 17.24 we have: 
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   17.26 

This result doesn’t comply with the conservation of space and time principle exactly the same way as 
hypothesis B given by 17.16 and as D'D   D'D   it results in a situation of four rays of light, two to each 
observer and each ray of light with its respective independent front wave from the others. 
 

 
Conclusion 

 
The hypothesis A, B and C are completely compatible with the demand of isotropy of space and time as we 
can conclude with the geometry of propagations. 
 
The result of hypothesis A is contrary to the result of hypothesis B and C despite of the relative movement of 
the observers not changing the front wave Au relatively to the front wave Ac because the front waves have 
independent movement one from the other and from the observers. 
 
The hypothesis A applied in the transformations of H. Lorentz complies with the conservation of space and 
time principle given by 17.16 showing the compatibility with the transformations of H. Lorentz with the 
hypothesis A. The application of hypothesis B and C in the transformations of H. Lorentz supplies the space 
and time deformations given by 17.22 and 17.26 because the transformations of H. Lorentz are not 
compatible with the hypothesis B and C. 
 
For us to obtain the Sagnac effect we must consider that the observer O’ is in an absolute resting position, 
hypothesis C above and that the path of the rays of light be of R2 : 
 

R'ct'ct'ct uc 2              17.27 

 
For the observer O the Sagnac effect is given by the time difference between the clockwise ray of light and 
the counter-clock ray of light uc ttt   that can be obtained using 17.24 (C-D), 17.27 and 17.14: 
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         17.28 

 
§9 The Sagnac Effect (continuation) 

 
The moment the origins are the same the time is zeroed (t = t’ = zero) at both sides of the referential and the 
rays of light are emitted from the common origin, one in the positive way (clockwise index c) of the axis x and 
x’ with a wave front Ac and the other one in the negative way (counter clockwise index u) of the axis x and x’ 
with wave front Au. 
 
The projected ray of light in the positive way (clockwise index c) of the axis x and x’ is equationed by 

cc ctx   and cc 'ct'x   that applied to the Table I supplies:  

 

ccc
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cc Kct'ct
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  1  (1.8)  9.11 
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1

 (1.20)   9.12 
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From those we deduct that the distance between the observers is given by:  
 

ccccc 't'vtvd               9.13 

Where we have:  
 

111 





 





  cc

cc 'KK
c
'v

c
v

           9.14 

 
The ray of light project in the negative way (counter clockwise index u) of the axis x and x’ is equationed by 

uu ctx   and uu 'ct'x  : that applied to the Table I gives:  

 

uuu
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uu Kct'ct
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1

 (1.20)   9.16 

 
From those we deduct that the distance between the observers is given by:  
 

uuuuu 't'vtvd               9.17 

 
Where we have:  
 

111 





 





  uu

uu 'KK
c
'v

c
v

           9.18 

 
We must observe that at first there is no relationship between the equations 9.11 to 9.14 with the equations 
9.15 to 9.18. 
 
With the propagation conditions described we form the following Tables A and B:  
 
Table A 
 

Equation 
Clockwise ray of 
light (c) 

Equation 
Counter clockwise ray of 
light (u) 

Sum of the rays of light 

 Result  Result  

Condition cc ctx   Condition uu ctx    

1.2 ccc Kct'x   1.2 uuu Kct'x    

 ccc Kx'x    uuu Kx'x   uuccuc KxKx'x'x   

1.7 ccc Kct'ct   1.7 uuu Kct'ct   uuccuc KctKct'ct'ct   

 cc 'ct'x    uu 'ct'x    

 
Table B 
 

Equation 
Clockwise ray of 
light (c) 

Equation 
Counter clockwise ray of 
light (u) 

Sum of the rays of light 

 Result  Result  

Condition cc 'ct'x   Condition uu 'ct'x    

1.4 ccc 'K'ctx   1.4 uuu 'K'ctx    

 ccc 'K'xx    uuu 'K'xx   uuccuc 'K'x'K'xxx   

1.8 ccc 'K'ctct   1.8 uuu 'K'ctct   uuccuc 'K'ct'K'ctctct   

 cc ctx    uu ctx    
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We observe that for the rays of light with the same direction the Tables A and B are inverse from each other. 
 
Forming the equations group of the sum of the rays of light of the Tables A and B:  
 









B'K'ct'K'ctctctD

AKctKct'ct'ct'D

uuccuc

uuccuc
         9.19 

 
Where for the observer O’ cu AA'D   is the distance between the wave fronts Au and Ac and where for 

the observer O cu AAD   is the distance between the wave fronts Au and Ac. 

 
In the equations above 9.19 due to the isotropy of the space and time and the wave fronts cu AA   of the 

rays of light being the same for both observers, the sumo of the rays of light and of times must be invariable 
between the observers, which is expressed by:  
 

  t'tctct'ct'ctD'D ucuc          9.20 

 
This result that equations the isotropy of space and time can be called as the space and time conservation 
principle. 
 
The three hypothesis of propagations defined next will be applied in 9.19 and tested to prove the compliance 
of the conservation of space and time principle given by 9.20. With these hypotheses we create a bond 
between the equations 9.11 to 9.14 with the equations 9.15 to 9.18. 
 
Hypothesis A: 
 
If the space and time are isotropic and there is movement with any privilege of any observer over each other 
in the empty space then the propagation geometry of the rays of light is equationed by:  
 









B'KK'vv'tt'ctct

A'KK'vv'tt'ctct

cucucucu

ucucucuc
        9.21 

 
 
With those we deduct that the distance between the observers is given by:  
 

uuuuccccuc 't'vtv't'vtvdd            9.22 

 
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and 
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of 
light are compensated in the referentials.  
 
Hypothesis B: 
 
If the space and time are isotropic but the observer O is in an absolute resting position in the empty space 
then the propagation geometry of the rays of light is equationed by:  
 















Cvttvtv

Bvvv

Actctct

uucc

uc

uc

            9.23 

 
With those we deduct that the distance between the observers is given by:  
 

uuccuc 't'v't'vvtdd             9.24 

 
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and 
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of 
light are compensated in the referentials.  
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Hypothesis C: 
 
If the space and time are isotropic but the observer O is in an absolute resting position in the empty space 
then the propagation geometry of the rays of light is equationed by:  
 















C't'v't'v't'v

B'v'v'v

A'ct'ct'ct

uucc

uc

uc

           9.25 

 
With those we deduct that the distance between the observers is given by:  
 

uuccuc tvtv't'vdd              9.26 

 
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and 
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of 
light are compensated in the referentials.  
 
In order to obtain the Sagnac effect we consider that the observer O’ is in an absolute resting position, 
hypothesis C above and that the rays of light course must be of R2 : 
 

R'ct'ct'ct uc 2              9.27 

 
Applying the hypothesis C in 9.11 and 9.15 we have: 
 






 

c
'v'tt'K'tt cccc 1             9.28 

 






 

c
'v'tt'K'tt uuuu 1             9.29 

 
For the observer O the Sagnac effect is given by the time difference between course of the clockwise ray of 
light and the counter clock ray of uc ttt   that can be obtained making  (9.28 – 9.29) and applying 9.27 

making: 

2
4211
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'Rv
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c
'v'tttt uc

 




 





         9.30 

 

The equation 
c
tv

c
tv

c
't'vt uucc 222   is exactly the result obtained from the geometry analysis of 

the propagation of the clockwise and counter clockwise rays of light in a circumference showing the 
coherence of the hypothesis adopted by the Undulating Relativity.  
In 9.30 applying 9.12 and 9.16 we have the final result due to cv  and uv : 
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c
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c
Rv

c
tvttt







222

44'4''2          9.31 

 
The classic formula of the Sagnac effect is given as:  
 

22
4

vc
Rvttt uc 

               9.32 

 
From the propagation geometry we have: 
 

c
vtt 2                9.33 
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The classic times would be given by: 
 

c
Rt 2                9.34 

 

vc
Rtc 

 2                9.35 

 

vc
Rtu 

 2                9.36 

 
Applying 9.34, 9.35 and 9.36 in 9.33 we have: 
 

2
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c
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c
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2
422              9.38 

 

  cvc
Rv
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R

c
vtu 





2
422              9.39 

 
The results 9.37, 9.38 and 9.39 are completely different from 9.32. 
 

§18 The Michelson & Morley experience 
 
The traditional analysis that supplies the solution for the null result of this experience considers a device in a 
resting position at the referential of the observer O’ that emits two rays of light, one horizontal in the x’ 
direction (clockwise index c) and another vertical in the direction y’. The horizontal ray of light (clockwise 
index c) runs until a mirror placed in x’ = L at this point the ray of light reflects (counter clockwise index u) 
and returns to the origin of the referential where x’ = zero. The vertical ray of light runs until a mirror placed in 
y’ = L reflects and returns to the origin of the referential where y’ = zero. 
 
In the traditional analysis according to the speed of light constancy principle for the observer O’ the rays of 
light track is given by:  
 

L'ct'ct uc                18.01 

 
For the observer O’ the sum of times of the track of both rays of light along the x’ axis is:  
 

c
L

c
L

c
L't't't uc'x

2             18.02 

 
In the traditional analysis for the observer O’ the sum of times of the track of both rays of light along the y’ 
axis is: 
 

c
L

c
L

c
L't't't 'y

2              18.03 

As we have 
c
L't't 'y'x
2  there is no interference fringe and it is applied the null result of the 

Michelson & Morley experience.  
 
In this traditional analysis the identical track of the clockwise and counter clockwise rays of light in the 
equation 18.01 that originates the null result of the Michelson & Morley experience contradicts the Sagnac 
effect that is exactly the time difference existing between the track of the clockwise and counter clockwise 
rays of light.   
 
Based on the Undulating Relativity we make a deeper analysis of the Michelson & Morley experience 
obtaining a result that complies completely with the Sagnac effect.  
 
Observing that the equation 18.01 corresponds to the hypothesis C of the paragraph §9. 
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Applying 18.01 in 9.19 we have: 
 

 







B'K'KL'LK'LKctctD'K'ct'K'ctctctD
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From 18.04 A we have: 
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Where applying 9.26 we have: 
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LtttctctL'D ucxuc
22           18.06 

 
In 18.04 B we have: 
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uc 11           18.07 

 
Where applying 9.25 B we have: 
 

 
c
LtttLctctD ucxuc
22           18.08 

 
The equations 18.06 and 18.08 demonstrate that the Doppler effect in the clockwise and counter clockwise 
rays of light compensate itself in the referential of the observer O resulting in: 
 

c
Lt't't x'x'y
2               18.09 

 
Because of this, according to the Undulating Relativity in the Michelson & Morley experience we can predict 
that the clockwise ray of light has a different track from the counter clockwise ray of light according to the 
formula 18.08 obtaining also the null result for the experience and matching then with the Sagnac effect. This 
supposition cannot be made based on the Einstein’s Special Relativity because according to 17.26 we have: 
 
  x'x t't               18.10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



76/155 

§19 Regression of the perihelion of Mercury of 7,13” 
 
Let us imagine the Sun located in the focus of an ellipse that coincides with the origin of a system of 
coordinates (x,y,z) with no movement in relation to denominated fixed stars and that the planet Mercury is in 
a movement governed by the force of gravitational attraction with the Sun describing an elliptic orbit in the 
plan (x,y) according to the laws of Kepler and the formula of the Newton's gravitational attraction  law: 
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The sub index "o" indicating mass in relative rest to the observer. 
 
To describe the movement we will use the known formulas: 
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The formula of the relativity force is given by: 
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In this the first term corresponds to the variation of the mass with the speed and the second as we will see 
later in 19.22 corresponds to the variation of the energy with the time. 
 
With this and the previous formulas we obtain: 
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In this we have the transverse and radial component given by: 
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As the gravitational force is central we should have to null the traverse component zeroFˆ 


 so we have: 
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From where we have: 
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From the radial component r̂F


 we have: 
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That applying 19.12 we have: 
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That simplifying results in: 
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This equaled to Newton's gravitational force results in the relativistic gravitational force: 
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As the gravitational force is central it should assist the theory of conservation of the energy (E) that is written 
as: 

pk EEE  = constant.             19.17 

 
Where the kinetic energy (Ek) is given by: 
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And the potential energy (Ep) gravitational by: 
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Resulting in: 
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As the total energy (E) it is constant we should have: 
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This applied in the relativistic force 19.06 and equaled to the gravitational force 19.01 results in: 
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In this substituting the previous variables we get: 
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From this we obtain the radial component r̂F


 equals to: 
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That easily becomes the relativistic gravitational force 19.16. 
 

From 19.26 we obtain the traverse component ̂F
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From this last one we have: 
 

2

2

22
o2

2

2
2

c

u
1

dt

dr

rc

k

m

1

dt

d
r

dt

d
r

dt

d

dt

dr
r2








           19.29 

 
As the gravitational force is central it should also assist the theory of conservation of the angular moment 
that is written as: 
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Resulting in L that is constant. 
 

In 19.33 we had zero
dt

k̂d
  because the movement is in the plane (x,y). 
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Deriving L we find: 
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From that we have: 
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Equaling 19.12 originating from the theory of the central force with 19.29 originating from the theory of 
conservation of the energy and 19.35 originating from the theory of conservation of the angular moment we 
have: 
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From the last two equality we obtain 19.24 and from the two of the middle we obtain 19.16. 
 
For solution of the differential equations we will use the same method used in the Newton's theory. 
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From the module of the angular moment we have 2
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That derived supplies 
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Where applying 19.40 and deriving we have: 
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In this with 19.36 the radical derived is obtained this way: 
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That applied in 19.44 supplies: 
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Simplified results: 
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Let us find the second derived of the angle deriving 19.40: 
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In this applying 19.42 and 19.45 and simplifying we have: 
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Applying in 19.04 the equations 19.40 and 19.42 and simplifying we have: 
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The equation of the relativistic gravitational force 19.16 remodeled is: 
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In this applying the formulas above we have: 
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In this we will consider constant the Newton's angular moment in the form: 
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                19.53 

 
That it is really the known theoretical angular moment. 
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Where we have: 
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The equation 19.54 has as solution: 
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Where we consider zeroo . 

 

It is denominated in 19.57 A1Q2  .           19.58 

 
The equation 19.58 is function only of A demonstrating the intrinsic union between the variation of the mass 
with the variation of the energy in the time, because both as already described, participate in the relativistic 
force 19.06 in this relies the essential difference between the mass and the electric charge that is invariable 
and indivisible in the electromagnetic theory. 
 
From 19.57 we obtain the ray of a conical: 
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Where   is the eccentricity and D the directory distance of the focus. 
 

Deriving 19.57 we have 
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Applying in 19.54 the variables we have: 
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In this applying in the first parenthesis A1Q2   we have: 

 

           zero1AAAA22AA211AA1AA12A11AAQQ2Q 222224   
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In 19.63 applying in the second parenthesis A1Q2   we have: 
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The rest of the equation 19.63 is therefore: 
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The data of the elliptic orbit of the planet Mercury is [1]: 
 
Eccentricity of the orbit 206,0 . 
 
Larger semi-axis = a = 5,79.1010m. 
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The orbital period of the Earth (PT) and Mercury (PM) around the Sun in seconds are: 
 

.s.,PT 710163  
 

.s.,PM 610607  
 
The number of turns that Mercury (mo) makes around the Sun (Mo) in one century is, therefore: 
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Theoretical angular moment of Mercury: 
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Applying the numeric data with several decimal numbers to the rest of the equation 19.63 we have: 
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Result that we can consider null. 
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We will obtain the relativistic angular moment of the rest of the equation 19.63 in this applying the variables 
we have: 
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   19.73 

 
This last equation has the exclusive property of relating the speed c to the denominated relativistic angular 
moment that is smaller than the theoretical angular moment 19.66. 
 
The variation of the relativistic angular moment  in relation to the theoretical angular moment is very small 
and given by: 
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  .   19.74 

 
That demonstrates the accuracy of the principle of constancy of the speed of the light. 
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In reality, the equation 19.06 provides a secular retrocession perihelion of Mercury, which is given by in 
 

  .rad10.46,323.013.000.000,079,41521
Q

1
79,4152 5








       19.75 

 
Converting for the second we have: 
 

"13,7
00,600.3.00,180.10.46,3 5








 .         19.76 

 
This retrocession, is not expected in Newtonian theory is due to relativistic variation of mass and energy and 
is shrouded in total observed precession of 5599. " 
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§§19 Advance of Mercury’s perihelion of 42.79” 
 
If we write the equation for the gravitational relativity energy ER covering the terms for the kinetic energy, the 
potential energy Ep and the resting energy: 
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Being the conservative the gravitational force its energy is constant. Assuming then that in 19.77 when the 
radius tends to infinite, the speed and potential energy tends to zero, resulting then: 
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Writing the equation to the Newton’s gravitation energy EN having the correspondent Newton’s terms to the 
19.77: 
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Where 
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o  is the kinetic energy, 
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 the potential energy and 2
ocm  the resting energy or better saying 

the inertial energy. 
 
From this 19.79 we have: 
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Deriving 19.79 we have: 
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Making the relativity energy 19.78 equal to the Newton’s energy 19.79 we have: 
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In that denominating the relativity potential ( ) as: 
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In this one replacing the approximation: 
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We have: 
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That simplified results in the Newton’s potential: 
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Replacing 19.84 and the relativity potential 19.85 in the relativity energy 19.78: 
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We have the Newton’s energy 19.79: 
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Deriving the relativity potential 19.85 we have the relativity gravitational acceleration modulus exactly as in 
the Newton’s theory: 
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In this one applying 19.81 we have: 
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The vector acceleration is given by 19.05: 
 

 ˆ2ˆ
2

22

2

2
































dt

d
r

dt

d

dt
drr

dt

d
r

dt
rda


 

 
 
 
 
 
 



91/155 

The relativity gravitational acceleration modulus 19.89 is equal to the component of the vector radius (r̂ ) 
thus we have: 
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Being null the transversal acceleration we have: 
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That is equal to the derivative of the constant angular momentum 
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Rewriting some equations already described we have: 
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From 19.90 we have: 
 

2
o

2

2

2

2

2

r

GM

dt
d

r
dt
rd

c2
u3

1




























 

 
In this one we 19.94 the speed of 19.80 and the angular momentum we have: 
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Where we have: 
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The solution to the differential equation 19.95 is: 
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Where   is the eccentricity and D the focus distance to the directory. 
 

Deriving 19.97 we have 
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Applying the derivatives in 19.95 we have: 
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The coefficient of the squared co-cosine can be considered null because 1Q   and D2 is a very large 
number: 
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Resulting from the equation 19.100: 
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Due to the unicity of the equation 19.102 we must have the only solution that makes it null simultaneously 
the parenthesis and the rest of the equation, that is, we must have a unique solution for both the following 
equations: 
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These equations can be written as: 
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In these ones  the common term 
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With 19.96 and the theoretical momentum we have: 
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It is applied in 19.105 and 19.106 resulting in: 
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From 19.108 we have the mistake made in 19.105: 
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From 19.109 we have Q: 
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It is applied in 19.104 resulting in 19.110: 
 

zero
D
1

A
1

D
1

A
1

D
2

A
1

D
A2

1

1
D
1

A
1

D
2

A
1

Q
1

D
1

A
1

2







 







 







 





 

 
From 19.112 we have: 
 

  
   599.920.999.999,0

10.300,600.955.442.55

10.98,110.67,66
1

Dc

GM6
1Q 28

3011

2
o 




 19.113 

 
That corresponds to the advance of Mercury’s perihelion in one century of: 
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Calculated in this way: 
 
In one trigonometric turn we have "00,000.296.16060360  seconds. 
 
The angle   in seconds ran by the planet in one trigonometric turn is given by: 

 

Q
Q 00,000.296.100,000.296.1   . 

 
If 00,1Q  we have a regression. 00,000.296.1 . 

 
If 00,1Q  we have an advance. 00,000.296.1 . 
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The angular variation in seconds in one turn is given by: 
 

00,000.296.11100,000.296.100,000.296.1










QQ
 . 

 
If zero  we have a regression. 

 
If zero  we have an advance. 

 
In one century we have 415,79 turns that supply a total angular variation of: 
 









 79,415.00,000.296.1.1

Q
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If  zero  we have a regression. 

 

If zero  we have an advance. 

 
 

§20 Inertia 
 
Imagine in an infinite universe totally empty, a point O' which is the beginning of the coordinates of 

the observer O'. In the cases of the observer O’ being at rest or in uniform motion the law of inertia requires 
that the spherical electromagnetic waves with speed c issued by a source located at point O' is always 
observed by O', regardless of time, with spherical speed c and therefore the uniform motion and rest are 
indistinguishable from each other remain valid in both cases the law of inertia. To the observer O’ the 
equations of electromagnetic theory describe the spread just like a spherical wave. The image of an object 
located in O’ will always be centered on the object itself and a beam of light emitted from O' will always 
remain straight and perpendicular to the spherical waves. 

Imagine another point O what will be the beginning of the coordinates of the observer which has the 
same properties as described for the inertial observer O'. 

Obviously two imaginary points without any form of interaction between them remain individually and 
together perfectly meeting the law of inertia even though there is a uniform motion between them only 
detectable due to the presence of two observers who will be considered individually in rest, setting in motion 
the other referential. 

The intrinsic properties of these two observers are described by the equations of relativistic 
transformations. 

Note: the infinite universe is one in which any point can be considered the central point of this 
universe. 
 

(§ 20 electronic translation) 
 

§20 Inertia (clarifications) 
 
Imagine in a totally empty infinite universe a single point O. Due to the uniqueness properties of O a 

radius of light emitted from O must propagate with velocity c. If this ray propagates in a straight line, then O 
is defined as the origin of an inertial frame because it is either at rest or in a uniform rectilinear motion. 
However, in the hypothesis of propagation of the light ray being a curve the movement of O must be 
interpreted as the origin of an accelerated frame. Therefore the propagation of a ray of light is sufficient to 
demonstrate whether O is the origin of an inertial frame or accelerated frame. 

Now imagine if in the universe described above for the inertial reference frame O there is another 
inertial frame O' that does not have any kind of physical interaction with O. In the absence of any interaction 
between O and O' the uniqueness properties are inviolable for both points and rays of light emitted from O 
and O' have the same velocity c. It is impossible for the velocity of light emitted from O to be different from 
the velocity of light emitted from O' because each reference exists as if the other did not exist. Being O and 
O' the origin of inertial frames the propagation of light rays occurs in a straight line with velocity c and the 
relations between times t and t' of each frame are given by table I. 
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§21 Advance of Mercury’s perihelion of 42.79” calculated with the Undulating Relativity 
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Energy Newtonian (EN) 
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§22 Spatial deformation 
 

2

2
1

'

c
v

tt


        'tt   

 






 








2

221

1
12

c
vc

L
vc

L
vc

Lttt    
c
Lt '2'  

 

2

2

2

2

2

2
1'

1

'2

1
12

c
vLL

c
v

c
L

c
vc

Lt 








 

   LL '  

 
This is the spatial deformation. 
 
The length L' at rest in the reference frame of the observer O' is greater than the length L that is moving with 
velocity relative v on reference frame the observer O. 
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Where the distance d and d’ varies inversely with the distances L and L’. 
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In general, we obtain (14.2, 14.4): 
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§23 Space and Time Bend 
 
Variables with line 'r,'y,'x,'v,'t


 etc ...They are used in §21. 
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§24 Variational Principle 
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So we have        
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§ 24 electronic translation 

 
§24 Variational Principle Continuation 
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î
'dt
'dx

'dt
'rd'v












 






 

 

2

2

2

2

x

2

2'x

c
v1

x

c
v1

v
dt
dx

c
v1

1
'dt
'dx'v'x











   

 

xm

c
'v1

'xm

c
'v1cm

'xd
d

'xd
'dT'p o

2

2

o
2

22
ox 
















   'xm

c
v1

xm

c
v1cm

xd
d

xd
dTp o

2

2

o
2

22
ox 
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§25 Logarithmic spiral 
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§25 Logarithmic Spiral (Continuation) 
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§25 Logarithmic Spiral Continuation II 
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§26 Advancement of the Periélio of Mercury of 42,99 " 
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§25 Logarithmic Spiral continued 
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The first hypothesis to obtain a particular solution of the differential equation is to assume the infinite radius 
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This result shows that in infinity the influence of the central mass is zero zeroMo  . 

 
The second hypothesis to obtain another particular solution of the differential equation is obtained by 

observing that the angle  Q  of the equation   1Qcos   indicates the direction of the infinite radius 

r  where the influence of the central mass is zero zeroMo   and 1Q2  therefore the direction of the 

center of mass is given by the angle  Q  that replaced in the equation   1Qcos   results in the 

new equation   1Qcos   that indicates direction opposite the direction of the infinite radius which is 

the direction of the center of mass. 
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Applying the results of the second hypothesis in the differential equation: 
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§27 Advancement of Perihelion of Mercury of 42.99”        "contour Conditions" 
 
Let us start from the equation expressing the equilibrium of forces: 
 

             21.65 

 

On the right side we have the gravitational force 
 

�̂� defined by Newton, on the left side we have the 

physical description of Force �⃗� =
⃗

 of the Undulating Relativity. 

 
The physical properties of equation 21.65 require its validity when its radius varies from a radius greater than 
zero to an infinite radius, so the radius varies from 𝑧𝑒𝑟𝑜 < 𝑟 ≤ ∞, and so we have two distinct boundary 
conditions. The first boundary condition is when the radius is infinite 𝑟 = ∞ and the gravitational force is zero, 
which means that the particle is at rest with 𝑣′ = 𝑧𝑒𝑟𝑜 and 𝑎⃗ = 𝑧𝑒𝑟𝑜 and the second boundary condition is 
when the radius is greater which is zero and smaller than infinity 𝑧𝑒𝑟𝑜 < 𝑟 < ∞  which means that the particle 
is in motion due to the influence of a gravitational force 21.65 with 𝑣′ ≠ 𝑧𝑒𝑟𝑜 and 𝑎⃗ ≠ 𝑧𝑒𝑟𝑜. 
 
In §26 following the calculations is substituted in 21.65, the equality, 21.62, 21.69 and 
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After these substitutions we obtain the differential equation: 
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        27.1 

 
This equation has to be valid for the same boundary conditions as equation 21.65, that is, it has to be valid 
from a radius r greater than zero (𝑟 > 𝑧𝑒𝑟𝑜) to an infinite radius (𝑧𝑒𝑟𝑜 < 𝑟 ≤ ∞). Your solution is given by: 
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Which should cover the two contour conditions already described. 
 
Applying solution 27.2 in differential equation 27.1 we have: 
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        27.3 

 
This equation must have solution for the same two contour conditions of 21.65. 
 
Solution of 27.3 for the first boundary condition which is when the radius is infinite  r = ∞, and the 
gravitational force is zero which means that the particle is at rest and we have 
 𝑣′ = 𝑧𝑒𝑟𝑜 and 𝑎⃗ = 𝑧𝑒𝑟𝑜. 
 

Applying 1Q2  in 27.3 we get: 

 

 (1 − 1 )
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+ − − +
(∅ )

+ = 𝑧𝑒𝑟𝑜. 

 
(∅)

+ = 𝑧𝑒𝑟𝑜    𝜀 =
(∅)

         27.4 

 
 
Equation 27.4 is exactly equal to the result of equation 27.2 when the radius is infinite 𝑟 = ∞, w = zero and Q 
= 1, as shown in 27.5: 
 

𝑤 = = [1 + 𝜀𝑐𝑜𝑠(∅𝑄)] = [1 + 𝜀𝑐𝑜𝑠(∅1)] =
(∅)

+ = 𝑧𝑒𝑟𝑜      27.5 

 
Therefore in 27.4 we have an exact result that describes how in infinity the eccentricity ε is related to the 
angle ∅ of the infinite radius of the particle, being 𝜀 ≥ 1  which means that the motion from infinity will be or 
parabolic with 𝜀 = 1  or hyperbolic with 𝜀 > 1. Note that by definition 𝜀 > 𝑧𝑒𝑟𝑜. 
 
Solution of 27.3 for the second boundary condition which is when the radius is greater than zero and less 
than infinity 𝑧𝑒𝑟𝑜 < 𝑟 < ∞  which means that the particle is in motion due to the influence of a gravitational 
force with 𝑣′ ≠ 𝑧𝑒𝑟𝑜 and 𝑎⃗ ≠ 𝑧𝑒𝑟𝑜. 
 

Applying 𝑄 =  in 27.3 we have: 
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−
(∅ )

+ = 𝑧𝑒𝑟𝑜   𝜀 =
(∅ )

         27.6 

 
In the theory of conic for hyperbole we have 𝜀 = , equating to 27.6 we have 𝜀 =

 
=

(∅ )
 This results 

𝑎 = 𝑐. 𝑐𝑜𝑠(∅𝑄)) which is the correct formula, of the greater half axis of hyperbola. 
 
Therefore in 27.6 we have an exact result that describes how in the course of 𝑧𝑒𝑟𝑜 < 𝑟 < ∞ the eccentricity ε 
is related to the angle ∅ of the particle, being 𝜀 ≥ 1 which means that the motion will be or parabolic with 
𝜀 = 1 or hyperbolic with 𝜀 > 1. Note that by definition 𝜀 > 𝑧𝑒𝑟𝑜  
 

§28 Simplified Periellium Advance 
 

Perihelion Retrogression  𝐐 > 𝟏 
 
Imagine that the sun and Mercury are two particles, with the Sun being at the origin of a coordinate system 
and Mercury lying at a point A on the xy plane. The vector radius r⃗ = rr connecting the origin to point A will 
describe Mercury's motion in the xy plane. 
 
In the description of the movement of the planet Mercury to the observer O' corresponds to the variables with 
line for the observer O as without line being used a single radius r⃗ = rr and a single coordinate system for 
both observers. 
 
Time t' is a function of time t that is t′ = t′(t) and time t is a function of time t' that is t = t (t '). 
 

dt = dt′ 1 +      dt′ = dt 1 −        21.02 

 

1 − 1 + = 1             21.03 

 
v′ =       v =         21.04 

 
dt > 𝑑t′    v′ > v    vdt = v′𝑑t′      21.05 
 
r⃗ = rr    𝑑r⃗ = drr + rdr   �̂�. 𝑑r⃗ = drr. r + rr. dr = 𝑑𝑟    28.01 
 
The radius can be considered a function of time t′ = t′(t) ie r⃗ = 𝑟(t′) = 𝑟[t′(t)] or it can be considered a 
function of time t = t(t′) ie r⃗ = 𝑟(t) = 𝑟[t(t′)]. 
 
r⃗ = r⃗(t′) = r⃗[t′(t)]     r⃗ = r⃗(t) = r⃗[t(t′)]       28.02 
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= r + r
∅

∅     v⃗ =
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= r + r
∅

∅  
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⃗

       v⃗ =
⃗

       28.03 
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( )
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�⃗�′ =
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=
( )

= − r
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r + 2
∅

+ r
∅

∅       28.05 

 
Both speeds and accelerations are positive. 
 

�⃗� =
⃗

=
⃗
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�⃗� =
⃗

= F⃗ = 1 −
⃗

+ v
⃗

          28.06 

 

𝐸 = ∫ �⃗�′. 𝑑𝑟 = ∫ �⃗�. 𝑑𝑟 = ∫ − �̂�. 𝑑𝑟           28.07 

 

𝐸 = ∫
⃗

. 𝑑𝑟 = ∫ 1 −
⃗

+ v
⃗

. 𝑑𝑟 = ∫ − �̂�. 𝑑𝑟  

 

𝐸 = ∫ = ∫ = ∫ − 𝑑𝑟 𝑑𝐸 = �⃗�. 𝑑𝑟 = = = − 𝑑𝑟    28.08 

 

𝐸 = 𝑚 c 1 + = = + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 𝐸 = 𝑚 c 1 + − = 𝑚 c      28.09 

 

𝐸 = − = 𝑚 c    = 1 + = 1 + 𝐴      28.10 

 

In this first variant relativistic kinetic energy is greater than inertial energy > 𝑚 c .This causes 

Mercury's perihelion to recede. The planet seems heavier due to the movement. 
 

= �⃗�.
⃗

= = = − 𝑑𝑟 = − �̂�.
⃗
  

 

= �⃗�. v⃗ =
⃗

⃗

=
⃗

⃗

= − 𝑑𝑟 = − �̂�. v⃗  

 

= �⃗�. v⃗ =
⃗ . ⃗

=
.⃗ ⃗

= − �̂�. v⃗   �⃗� =
⃗

= − �̂�      28.11 

 

�⃗� = − r
∅

r + 2
∅

+ r
∅

∅ = − �̂�  

 

�⃗�∅ = 2
∅

+ r
∅

∅ = 𝑧𝑒𝑟𝑜     = 𝑟
∅

= 2
∅

+ r
∅

= 𝑧𝑒𝑟𝑜 

 

�⃗� ̂ = − r
∅

�̂� = − �̂�  

 

− r
∅

= −   

 
∅

=       = −L
∅
     =

∅
 

 

∅
− r = −   

 

∅
+ r =   

 

∅
+ =     𝐴 =     𝐵 =  
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= 1 + 𝐴 = 1 + 3𝐴 + 3𝐴 + 𝐴 ≅ 1 + 3𝐴   3𝐴 + 𝐴 ≅ 𝑧𝑒𝑟𝑜 

 

1 + 3𝐴
∅

+ = 𝐵             28.12 

 

1 + 3𝐴
∅

+ 1 + 3𝐴 − 𝐵 = 𝑧𝑒𝑟𝑜  

 

∅
+ 3𝐴

∅
+ + 3𝐴 − 𝐵 = 𝑧𝑒𝑟𝑜  

 

∅
+ 3𝐴

∅
𝑤 + w + 3𝐴𝑤 − 𝐵 = 𝑧𝑒𝑟𝑜  

 

∅
+ w + 3𝐴

∅
𝑤 + 3𝐴𝑤 − 𝐵 = 𝑧𝑒𝑟𝑜          28.13 

 

𝑤 = = [1 + 𝜀𝑐𝑜𝑠(∅𝑄)]    
∅

=
(∅ )

   
∅

=
(∅ )

  

 
(∅ )

+ [1 + 𝜀𝑐𝑜𝑠(∅𝑄)] + 3𝐴
(∅ )

[1 + 𝜀𝑐𝑜𝑠(∅𝑄)] + 3𝐴 [1 + 𝜀𝑐𝑜𝑠(∅𝑄)] − 𝐵 = 𝑧𝑒𝑟𝑜  

 

−𝑄
(∅ )

+ +
(∅ )

− 3𝐴𝑄
(∅ )

− 3𝐴𝑄
(∅ )

+ +
(∅ )

+ 3𝐴
(∅ )

− 𝐵 = 𝑧𝑒𝑟𝑜  

 

(3𝐴 − 3𝐴𝑄 )
(∅ )

+ 1 − 𝑄 − 3𝐴𝑄 +
(∅ )

+ + − 𝐵 = 𝑧𝑒𝑟𝑜  

 

−
(∅ )

+ − − +
(∅ )

+ + − = 𝑧𝑒𝑟𝑜  

 

𝜀𝐷𝐵 = = = 1  

 

(1 − 𝑄 )
(∅ )

+ − − +
(∅ )

+ + − = 𝑧𝑒𝑟𝑜  

 

(1 − 𝑄 )
(∅ )

+ − − +
(∅ )

+ = 𝑧𝑒𝑟𝑜  𝑄 =      28.14 

 

1 −
(∅ )

+ − − +
(∅ )

+ = 𝑧𝑒𝑟𝑜  

 

1 +
6A

𝜀𝐷
− 1 −

12A

𝜀𝐷

𝑐𝑜𝑠 (∅𝑄)

𝐷
+

1

3𝐴
1 +

6A

𝜀𝐷
−

1

3𝐴
1 +

12A

𝜀𝐷
−

1

𝜀𝐷
1 +

12A

𝜀𝐷
+

2

𝜀𝐷
1 +

6A

𝜀𝐷

𝑐𝑜𝑠(∅𝑄)

𝐷

+
1

𝜀 𝐷
1 +

6A

𝜀𝐷
= 𝑧𝑒𝑟𝑜 

 

−
(∅ )

+ + − − − − + +
(∅ )

+ + = 𝑧𝑒𝑟𝑜  

 

−
(∅ )

+ −
(∅ )

+ + = 𝑧𝑒𝑟𝑜  

 

6A
(∅ )

+
(∅ )

− − = 𝑧𝑒𝑟𝑜  

 

(∅ )
=

± .

.
  

 

(∅ )
=

±

.
  

 

(∅ )
=

±
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(∅ )
=

±
  

 
(∅ )

= =   

 
(∅ )

=       𝜀 −
(∅ )

= 𝑧𝑒𝑟𝑜       28.15 

 

For hyperbole eccentricity (𝜀) is defined as 𝜀 =
(∅ )

 where (∅) is the angle of the asymptote. 

 
Advance of the Periellium  𝐐 < 𝟏 

 

dt = dt′ 1 +     dt′ = dt 1 −    dt > 𝑑𝑡′ 

 

1 − 1 + = 1  

 
v =      v′ =     v′ > v 

 
r⃗ = rr     𝑑r⃗ = drr + rdr   �̂�. 𝑑r⃗ = drr. r + rr. dr = 𝑑𝑟 
 

v⃗ =
⃗

= r + r
∅

∅   v⃗′ =
⃗

= r + r
∅

∅ 

 

v⃗ =
⃗

     v⃗′ =
⃗

 

 

�⃗� =
⃗

=
⃗

=
( ̂)

= − r
∅

r + 2
∅

+ r
∅

∅  

 

�⃗�′ =
⃗

=
⃗

=
( ̂)

= − r
∅

r + 2
∅

+ r
∅

∅  

 

�⃗� =
⃗

=
⃗

  

 

�⃗� =
⃗

= �⃗�′ = 1 +
⃗

− v′
⃗

         28.16 

 

𝐸 = ∫ �⃗�. 𝑑𝑟 = ∫ �⃗�′. 𝑑𝑟 = ∫ − �̂�. 𝑑𝑟  

 

𝐸 = ∫
⃗

. 𝑑𝑟 = ∫ 1 +
⃗

− v′
⃗

. 𝑑𝑟 = ∫ − �̂�. 𝑑𝑟  

 

𝐸 = ∫ = ∫ = ∫ − 𝑑𝑟 𝑑𝐸 = �⃗�′. 𝑑𝑟 = = = − 𝑑𝑟    28.17 

 

𝐸 = −𝑚 c 1 − = − = + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒  𝐸 = −𝑚 c 1 − − = −𝑚 c   28.18 

 

𝐸 = − − = −𝑚 c    = 1 − = 1 − 𝐴     28.19 

 

In this second variant relativistic kinetic energy is smaller than inertial energy < 𝑚 c .This causes the 

advance of Mercury's perihelion. The planet really is lighter due to movement. 
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= �⃗�′.
⃗

= = = − = − �̂�.
⃗
  

 

= �⃗�′. v⃗′ =
⃗

⃗

=
⃗

⃗

= − �̂�. v⃗′  

 

= �⃗�′. v⃗′ =
⃗. ⃗

=
⃗ . ⃗

= − �̂�. v⃗′   �⃗�′ =
⃗

= − �̂�    28.20 

 

�⃗�′ = − r
∅

r + 2
∅

+ r
∅

∅ = − �̂�  

 

�⃗�′∅ = 2
∅

+ r
∅

∅ = 𝑧𝑒𝑟𝑜    = 𝑟
∅

= 2
∅

+ r
∅

= 𝑧𝑒𝑟𝑜 

 

�⃗�′ ̂ = − r
∅

�̂� = − �̂�  

 

− r
∅

= −   

 
∅

=      = −L′
∅
     =

∅
 

 

∅
− r = −   

 

∅
+ r =   

 

∅
+ =       𝐴 =     𝐵 =  

 

= 1 − 𝐴 = 1 − 3𝐴 + 3𝐴 − 𝐴 ≅ 1 − 3𝐴    3𝐴 − 𝐴 ≅ 𝑧𝑒𝑟𝑜 

 

1 − 3𝐴
∅

+ = 𝐵             28.21 

 

1 − 3𝐴
∅

+ 1 − 3𝐴 − 𝐵 = 𝑧𝑒𝑟𝑜  

 

∅
− 3𝐴

∅
+ − 3𝐴 − 𝐵 = 𝑧𝑒𝑟𝑜  

 

∅
− 3𝐴

∅
𝑤 + w − 3𝐴𝑤 − 𝐵 = 𝑧𝑒𝑟𝑜  

 

∅
+ w − 3𝐴

∅
𝑤 − 3𝐴𝑤 − 𝐵 = 𝑧𝑒𝑟𝑜          28.22 

 

𝑤 = = [1 + 𝜀𝑐𝑜𝑠(∅𝑄)]    
∅

=
(∅ )

    
∅

=
(∅ )

 

 
−𝑄 𝑐𝑜𝑠(∅𝑄)

𝐷
+

1

𝜀𝐷
[1 + 𝜀𝑐𝑜𝑠(∅𝑄)] − 3𝐴

−𝑄 𝑐𝑜𝑠(∅𝑄)

𝐷

1

𝜀𝐷
[1 + 𝜀𝑐𝑜𝑠(∅𝑄)] − 3𝐴

1

𝜀𝐷
[1 + 𝜀𝑐𝑜𝑠(∅𝑄)] − 𝐵 = 𝑧𝑒𝑟𝑜 
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−𝑄
(∅ )

+ +
(∅ )

+ 3𝐴𝑄
(∅ )

+ 3𝐴𝑄
(∅ )

− +
(∅ )

+ 3𝐴
(∅ )

− 𝐵 = 𝑧𝑒𝑟𝑜  

 

−𝑄
(∅ )

+ +
(∅ )

+ 3𝐴𝑄
(∅ )

+ 3𝐴𝑄
(∅ )

− −
(∅ )

− 3𝐴
(∅ )

− 𝐵 = 𝑧𝑒𝑟𝑜  

 

(3𝐴𝑄 − 3𝐴)
(∅ )

+ 1 − 𝑄 + 3𝐴𝑄 −
(∅ )

+ − − 𝐵 = 𝑧𝑒𝑟𝑜  

 

−
(∅ )

+ − + −
(∅ )

+ − − = 𝑧𝑒𝑟𝑜  

 

(𝑄 − 1)
(∅ )

+ − + 𝑄 −
(∅ )

+ − − = 𝑧𝑒𝑟𝑜  

 

𝜀𝐷𝐵 = = = 1  

 

(1 − 𝑄 )
(∅ )

+ − + − 𝑄 +
(∅ )

− + + = 𝑧𝑒𝑟𝑜  

 

(1 − 𝑄 )
(∅ )

+ − + − 𝑄 +
(∅ )

+ = 𝑧𝑒𝑟𝑜 𝑄 =      28.23 

 

1 −
(∅ )

+ − + − +
(∅ )

+ = 𝑧𝑒𝑟𝑜  

 

1 − − 1 +
(∅ )

+ − 1 − + 1 − − 1 − + 1 −
(∅ )

+ 1 − =

𝑧𝑒𝑟𝑜  
 

(∅ )
+ − + + − − + + −

(∅ )
+ − = 𝑧𝑒𝑟𝑜  

 
(∅ )

+ −
(∅ )

+ − = 𝑧𝑒𝑟𝑜  

 

6A
(∅ )

−
(∅ )

+ − = 𝑧𝑒𝑟𝑜  

 

(∅ )
=

± .

.
  

 

(∅ )
=

±

.
  

 

(∅ )
=

±
  

 
(∅ )

=
±

  

 
(∅ )

= =   

 
(∅ )

=       𝜀 −
(∅ )

= 𝑧𝑒𝑟𝑜       28.24 

 

For hyperbole eccentricity (𝜀) is defined as 𝜀 =
(∅ )

 where (∅) is the angle of the asymptote. 
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The movements of the ellipses will focus F '(left) on the origin of the frame. 
 

All ellipses are described by the equation 𝑟 = 𝑟(𝑡) =
( )

=
( )

=
.

. ( )
 In these the angle 

vector radius (tQ), indicates the position of the planet Mercury in all ellipses, the movement of Mercury in the 
ellipses is counterclockwise, with the value of Q being the cause of perihelion advancement or retraction. 
 
The first ellipse in blue represents retrogression of the perihelion, where we have Q = 1.1. 
 
The second red ellipse represents the advancement of the perihelion, in this we have Q = 0.9. In this ellipse 
the perihelion and aphelion advance in the trigonometric sense, that is, counterclockwise which is the same 
direction as the planet's movement in the ellipse. 
 
The fifth ellipse in green represents a stationary ellipse Q = 1. 
 

"Although nobody can return behind and perform a new beginning,   
any one can begin now and create a new end"  

(Chico Xavier) 
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