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Abstract 

In this paper, we investigated the performance of thin-film transistors (TFTs) with different 

channel configurations including single-active-layer (SAL) Sn-Zn-O (TZO), dual-active-

layers (DAL) In-Sn-O (ITO)/TZO, and triple-active-layers (TAL) TZO/ITO/TZO. The TAL 

TFTs were found to combine the advantages of SAL TFTs (a low off-state current) and 

DAL TFTs (a high mobility and a low threshold voltage). The proposed TAL TFTs exhibit 

superior electrical performance, e.g. a high on-off state current ratio of 2 × 108, a low 

threshold voltage of 0.52 V, a high saturation mobility of 145.2 cm2/Vs, and a low off-state 

current of 3.3 pA. The surface morphology and characteristics of the ITO and TZO films 

were investigated and the TZO film was found to be C-axis-aligned crystalline (CAAC). A 

simplified resistance model was deduced to explain the high channel resistance of TAL 

TFTs. At last, TAL TFTs with different channel lengths were also discussed to show the 

stability and the uniformity of our fabrication process. Owing to its low-processing 

temperature, superior electrical performance, and low cost, TFTs with the proposed TAL 

channel configuration are highly promising for flexible displays where the use of heat-

sensitive polymeric substrates is desirable.  
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 Introduction 

Thin-film transistors (TFTs) has been widely used as switching devices for flat-panel 

display such as active-matrix liquid crystal displays (AM-LCD) and Active Matrix Organic 

Light Emitting Diodes (AM-OLED). High-performance TFTs with a high mobility, a low 

threshold voltage, and a low swing slope can reduce the power consumption and enhance 

the quality of flat-panel display.1-4 Therefore, various studies has be carried out to improve 

the electrical performance of TFTs, this includes adopting different device structures,5 

using different materials for the channel layer, and optimizing the fabrication processes.6 

TFTs fabricated by solution processing and inkjet printing have the advantage of low cost, 

while suffering from a low mobility and a high annealing temperature.7,8 TFTs based on 

2-dimentional (2D) materials such as graphene and Molybdenum disulfide (MoS2) have 

been widely investigated recently due to their excellent electrical properties.9,10 However, 

2D materials-based TFTs still have some challenges in large-scale fabrication of high 

quality devices, not compatible with modern Silicon-based microelectronic technologies. 

Zinc-oxide (ZnO) based TFTs have attracted considerable attention for their superior 

electrical and optical properties since last decade.2,3,11-13 Among ZnO-based 

multicomponent oxide TFTs, In-Ga-Zn-O, Al-Zn-O, In-Zn-O,  Zn-In-Sn-O TFTs had been 

proved to be attractive alternatives to conventional silicon-based TFTs in AMOLED due 

to their high mobility, low threshold voltage, fully transparency, and large-area 

applications.14-20 While most of these work required a high processing or annealing 

temperature (above 300 ℃). These thermal processes increase the manufacturing cost 

and limits their application in flexible display where low processing temperature (<100 ℃) 

is desirable.14,21,22 Thus, alternative ZnO-based TFTs fabricated at low temperature still 

need to be investigated. Sn-doped ZnO (TZO) has the advantages of high mobility and 

low temperature processing compatibility.23,24 While the research of TZO TFTs received 

less attention and the device performance presented is undesirable. High-performance 

TZO TFTs fabricated at a low temperature are still of interest. Therefore, the goal of our 

research is to realize high-performance TZO TFTs at a low temperature.  

Multi-stacked active-layer structures have been previous demonstrated to improve the 

performance of solution-processed TFTs.25,26 However, a systematic work to probe the 

performance of TZO TFTs with multi-layer is still lacking. Previously, we reported 

improving the performance of TZO TFTs with various strategies such as adding oxygen 

during the deposition of TZO layers,27,28 adopting  DAL ITO/TZO TFTs,29,30 and adjusting 

the thickness of the ITO/TZO active layer.31 We demonstrated that TZO TFTs are 

promising switching devices for flat-panel display. The DAL TFTs can effectively improve 

the mobility and reduce the threshold voltage. However, the DAL TFTs have a high off-

state current due to the high carrier density in the ITO layer, leading to a higher power 

consumption in real applications. Therefore, we aim to optimize the channel configuration 

of the TFTs to reduce the off-state current and improve the on-off current ratio.  

In this paper, we compared the performance of TFTs with different channel configurations 

and demonstrated that high-performance TZO TFTs can be realized at low temperature 



(80 ℃) by adopting TAL stack for TFTs. Compared to TFTs with SAL or DAL channel 

configuration, the proposed TAL TZO/ITO/TZO TFTs exhibit a saturation mobility (μsat) of 

145.2 cm2/Vs and a low threshold voltage (Vth) of 0.52V. The quality of the TZO film and 

ITO films were characterized by AFM, SEM, and XRD. The stability and uniformity of our 

fabrication process is confirmed by the consistent performance of TAL TFTs with different 

channel lengths. A physical mechanism for the electrical improvement is also deduced. 

The proposed TAL TFTs are promising in various applications due to the superior 

performance, low-processing temperature, and low cost.  

Results 

Device structure and fabrication process. A schematic of the device structure is shown 

in Fig. 1a. A bottom-gate TFT was fabricated on glass substrate by standard 

photolithography and lift-off techniques, without any intentional substrate-heating. All 

procedures were carried out with a temperature below 80℃. A top-view optical image of 

a representative device is shown in Fig. 1b. The device was fabricated using a 3 photo-

masks process, as shown in Fig. 2. The fabrication procedures are described in methods.  

 

 

Figure 1. (a) Schematic illustration of the device structure. An inverted staggered 
structure was adopted in this research. The channel layer and the dielectric layer are 
patterned using the same mask. (b) An optical photo (top view) of a representative device 
in this paper.   



 

Figure 2. Fabrication process of the TFTs with three different channel configurations: 
channel type 1 (SAL), channel type 2 (DAL), and channel type 3 (TAL). The devices were 
fabricated from step 1 to step 4 successively. Three different kinds of devices were 
fabricated with the corresponding channel type (SAL, DAL, and TAL). 

Electrical measurements. Fig. 3a-c shows schematics of three different channel 

configurations: SAL, DAL, and TAL. Fig. 3d shows the representative transfer curves of 

TFTs with three different channel configurations: TZO/ITO/TZO (TAL), ITO/TZO (DAL), 

and TZO (SAL). All the devices have the same channel dimension with a channel width 

of 100 𝜇𝑚 and a channel length of 20 𝜇𝑚. The drain to source voltage was biased at 5V 

to make sure the TFTs operate on saturation region. Back-gate voltage was biased from 

-4V to 10 V.  The transport measurements were carried out under ambient condition at 

room temperature. Fig. 3d shows that the TAL TFTs have the best performance with a 

high on-off state current ratio (Ion/Ioff) of ~ 2 × 108 and a low Vth of ~0.5 V. Moreover, TAL 

TFTs has a high μsat of 145.2 cm2/Vs and a low Ioff of 3.3 pA. The Subthreshold Slope 

(SS) was calculated by the equation (1), while Vth and μsat were extracted by the equation 

(2) and (3), using the linear fitting based on 10% - 90% of the maximum IDS on the IDS
1/2 

versus VGS plot 32. Cox of 2.6×10 8 F/cm2 was extracted from C-V curve of 100K Hz33.   
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Figure 3. (a) Schematic of TZO single-active layer, (b) Schematic of ITO/TZO dual-active 
layers, (c) Schematic of TZO/ITO/TZO triple-active layers. (d) Representative transfer 
curves of TFTs with the three different channel configurations: SAL, DAL, and TAL. The 
drain to source voltage was set to 5V.  

Fig. 4 compares the electrical properties of TFTs with three different channel 

configurations. Fig. 4a compares the μsat of the devices. We can see that comparing to 

SAL TZO TFTs, the TFTs with TAL and DAL channel configurations have much higher 

μsat (roughly 5 times higher). This high mobility is due to the good conductivity of the ITO 

layer in the channel34. Fig. 4b compares the Ion/Ioff and Vth and shows that the TAL TFTs 

have the lowest Vth and highest Ion/Ioff. The DAL TFTs and SAL TFTs has similar Ion/Ioff. 

After adding the ITO layer, both the Ion and Ioff of the DAL TFTs are increased. Compared 

to SAL TFTs, DAL TFTs has the advantages of high μsat and low Vth while also suffering 

from the disadvantage of high Ioff. The TAL TFTs combine the advantages of SAL TFTs 

(low Ioff) and DAL TFTs (high μsat and low Vth). Fig. 4c shows the variation of SS due to 

back gate voltage in TFTs with TAL, DAL, and SAL, respectively. All the TFTs have similar 

values of SS (~0.3V/dec.). Fig. 4d shows the channel resistivity of the SAL stack, DAL 

stack, and TAL stack. The SAL stack and TAL stack have roughly the same channel 

resistivity, ~20 times larger than that in DAL stack. This confirms the lower Ioff in TAL and 

SAL TFTs while the higher Ion in DAL TFTs, shown in Fig. 3d. Extracted parameters were 

summarized in Table 1.  



 

Figure 4. Comparison of the electrical properties in three different TFTs. (a) Saturation 
mobility, (b) on-off state current ratio and threshold voltage, (c) subthreshold slope, and 
(d) channel resistivity.  

These electrical results are originated from the different roles of each film in the channel. 

As the n-channel TZO TFTs operated on enhancement mode, most of the induced 

carriers go either into the deep localized states in the TZO layer or into the interface states 

when the gate bias voltage VGS＜0V. Only a very small fraction of electrons that are close 

to the front of TZO/SiO2 interface (interface near to the gate electrode) participate in 

channel conduction, resulting in a low Ioff. While as the VGS increases, the channel 

conductivity increases rapidly due to charges accumulating in the TZO layer, yielding a 

suitable high Ion. The TZO channel controls the charge conductance to get a high Ion/Ioff 

and a suitable Vth. While for DAL ITO/TZO TFTs, the ITO layer dominates in Ion 

transmission for its high carrier density, leading to a higher Ion. The TZO layer provides a 

suitable Vth and Ion/Ioff ratio for its low carrier density on off-state and its controlling ability 

in the charge conductance. Compared to TZO conducting layer, the thin ITO layer of the 

DAL ITO/TZO channel provides a higher carrier concentration, therefore maximizing the 

charge accumulation and yielding a high μsat.35 



 

Figure 5. Schematic cross-sectional view of the overall resistance in (a) SAL TZO TFTs, 

(b) DAL ITO/TZO TFTs and (c) TAL TZO/ITO/TZO TFTs. RSD is the resistance in the 

source and drain electrode, RCON, RCON2, RCON3 are the interface resistances between 

interface and RCh11, RCh21, RCh22, RCh31, RCh32, RCh33 are the resistances in the active 

layers. 

From the resistance point of view, the ITO layer reduces the channel resistance of 

ITO/TZO TFTs while encapsulating the ITO layer between two TZO layers can increases 

the channel resistance. The schematic illustration of the three different channel 

configurations is shown in Fig. 5. Compared to the SAL TZO TFTs, the higher carrier 

density in the ITO layer, leads to smaller channel layer resistance Rch22 and Rch32 (shown 

in Fig. 5b-c)36, resulting in smaller overall resistance of ITO/TZO TFTs (Roverall2) despite 

small contact resistance Rcon and Rcon2. Using the equation (4):  

 
While for the TAL, thinner TZO layer has lower carrier density, yielding larger channel 

resistances Rch31 and Rch33, the series resistance Rcon3 also adds to Roverall3 (shown in Fig. 

5(c)).31,37 Thus, Roverall3 is larger than the Roverall2 . This can be confirmed by the resistivity 

shown in Fig. 4d. Therefore, the TAL TFTs have lower Ioff than the DAL TFTs.   
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Figure 6. (a) . Output characteristics of the TAL TFTs. (b) Representative transfer 
characteristics of TAL TFTs with channel length of 20µm, 80 µm, and 100 µm.  

Output characteristics and device stability. Fig. 6a shows the output characteristics of 

the TAL TFTs. The TAL TFTs work on enhancement mode and the back-gate voltage 

was set from 0V to 5 V with a step of 1 V. The drain and source voltage scans from 0V to 

12V. The drain current is raised rapidly within 1 V between drain and source and a clear 

saturation region can be observed. This demonstrates the good switch controlling ability 

(switch from off-state to on-state rapidly) of the device. Fig. 6a shows that the saturation 

current exceeds 300 µA at a low back-gate voltage of 5 V. This indicates good current 

driving ability in the TAL TFTs. However, nonlinear correlation between the VDS and the 

IDS was also observed for VDS <1V. This may be due to the parasitic resistance induced 

by trap states near source and drain regions, leading to the current crowding 

phenomenon. Part of the drain voltage may drop on the parasitic resistance.38 Due to the 

limitation of our setup, all the electrical characteristic measurements were performed 

under ambient condition. Oxygen may be adsorbed on the top of the channel and form a 

depletion layer. This may also lead to current crowding phenomenon. More work can be 

done to improve the quality of the contact interface but that`s out of the scope of this 

paper. Moreover, later work will optimize the device structure by adding an insulating layer 

on top of the channel to prevent this problem.  

To investigate the stability and the uniformity of our fabrication process. TAL TFTs with 

different channel lengths are also fabricated and measured. Fig. 6b shows the 

representative transfer characteristics of TAL TFTs with three different channel length 20 

µm, 80 µm, and 100 µm. The related parameters were extracted and shown in Table 1. 

All the devices have comparable saturation mobility higher than 100 cm2/Vs and high on-

off state current ratio higher than 108. This indicates our fabrication process is stable and 

uniform.  



Table 1 Extracted parameters of the studied TFTs.  

 

Material surface morphology and transparency. Fig. 7a-b show the AFM surface 

morphology of the ITO and TZO film, respectively. The RMS is 0.8nm and 1.9nm, 

respectively. The smooth surface of the ITO film indicates better conductance of the film 

while the TZO film has a granular surface morphology with a larger surface roughness. 

The X-ray diffraction in Fig. 7c has one prominent peak at 34.3°, indicating Sn atoms can 

successfully replace Zn sites in the lattice and form C-axis-aligned crystalline (CAAC).39-

41 The average grain size of the TZO film is estimated to be 17.1 nm using the Scherer 

formula, this can also be confirmed by the SEM image shown in Fig. 7d.  

 

Figure 7. Surface characterization off the ITO and TZO films. (a) AFM image of the ITO 
film. (b) AFM image of the TZO film. (c) XRD diffraction pattern of the TZO film. (d) SEM 
micrograph of the TZO film. The scale bar for AFM images and SEM images is 200 µm.  

 



Discussion 

For SAL TZO TFTs, oxygen was intentionally added during the RF sputtering process of 

the TZO film to reduce oxygen vacancy in the material, leading to reduction the hole 

density in the channel, which can reduce the off-state current and improve the swing slope 

of the device.28 This can explain the low off-state current in SAL TZO TFTs. For the DAL 

ITO/TZO TFTs, ITO layer with a high carrier density was introduced to form channel layer. 

The high carrier density improves the mobility and the on-state current. Though the DAL 

ITO/TZO TFTs have superior performance including a high mobility, a low Vth, and a low 

SS, the high off-state current will lead to a high power consumption in real applications. 

The TAL channel configuration proposed in this paper has lower off-state current and still 

maintain a high mobility, can effectively solve this problem. Note that the thickness of the 

channel stack can also affect the performance of the devices. We have previously 

reported TZO TFTs and ITO/TZO TFTs with various TZO film thickness and ITO film 

thickness.30,31 The thickness of the channel layers of the SAL TFTs and DAL TFTs in this 

research has been optimized. Thus, we can eliminate the effect of channel thickness 

when comparing the performance of devices with three different channel configurations. 

A more systematic work on optimizing the thickness of TAL stacks is on going. But this 

would not affect our comparison of the three channel configurations and demonstration 

of the superior performance of the TAL TFTs.  

Conclusions 

In this paper, we compared the electrical properties of TFTs with three different channel 

configurations including SAL, DAL, and TAL. Compared to SAL TFTs, DAL TFTs has a 

higher mobility and a lower SS due to the high carrier density from the ITO layer. While 

DAL TFTs suffer from a high off-state current, which leads to a higher power consumption 

in real application. The TAL TFTs were proposed to solve this problem. The proposed 

TAL TFTs combine the advantages of both SAL TFTs and DAL TFTs and exhibit superior 

electrical performance such as a high on-off state current ratio of 2 × 108, a low Vth of 

0.52 V, a high μsat of 145.2 cm2/Vs, and a low off-state current of 3.3 pA. The surface 

morphology of the ITO and TZO film are investigated. A simplified resistance model was 

deduced to explain the high resistivity of the TAL channel. A more systematic work on 

optimizing the thickness of each layer in the TAL stacks is on going. Owing to its 

advantages of low-processing temperature, superior electrical performance, simple 

process and low cost, TFTs with the proposed TAL channel configuration are highly 

promising for oxide semiconductor TFTs manufacturing and have application in flexible 

displays where the use of heat-sensitive polymeric substrates is desirable. Thus, this 

investigation is very crucial for commercial applications.  

Methods 

Device fabrication. The fabrication procedures are described as follows: (1) A gate 

electrode was patterned and a 150-nm thick ITO film was deposited by radio frequency 

(RF) magnetron sputtering at room temperature (RT) in Ar (pressure: 1.2 Pa and power: 



70W). (2) A 150-nm thick SiO2 was grown using plasma-enhanced chemical vapor 

deposition (PECVD) with a mixture of SiH4 and N20 (ratio 65:130) at 80 ℃. (3) Channel 

layers were deposited by RF sputtering at room temperature in Ar/O2 mixture (flow rate 

ratio 100/8) with a power of 70W. The target adopted for sputtering was a ceramic target 

with a mass ratio of ZnO : SnO2 = 97 : 3. In this paper, TFTs with three different channel 

configurations were fabricated. (a) Single-active-layer TFTs (SAL TFTs) with single TZO 

layer (channel type 1 in Fig. 2), a 45-nm thick TZO was growth by RF sputtering. (b) Dual-

active-layer TFTs (DAL TFTs) with ITO/TZO stack (channel type 2 in Fig. 2), a 5-nm thick 

ITO was first deposited and followed by depositing a 45-nm thick TZO. (c) Triple-active-

layer TFTs (TAL TFTs) with TZO/ITO/TZO stack (channel type 3 in Fig. 2), 22-nm thick 

TZO, 5-nm ITO, and 22-nm TZO were deposited sequentially by RF sputtering. (4) After 

patterning the source and drain electrodes, a 150-nm thick ITO film was RF sputtered 

and lifted to form the source and drain electrodes.  

 

Device Measurement and Materials Characterizations. The surface 

morphology of the TZO films and ITOs films were evaluated by atomic force microscopy 

(AFM) and scanning electron microscope (SEM). The structure of the TZO film was 

analyzed by X-ray powder diffraction (XRD). The channel resistivity was obtained from 

four-probe station. The transport properties of the TFTs were characterized by a 

semiconductor parameter analyzer (Agilent 4156C).    

Data Availability. The datasets generated during and/or analyzed during the 

current study are available from the corresponding author on reasonable request 
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